首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Continuous records of the electron content of the ionosphere, from 1965 to 1970, are used to obtain power spectra covering periods from 30 sec to 2 yr at latitudes of 34°S and 42°S. At periods up to 5 min, amplitudes were less than 0.2 per cent of the total electron content. Variations produced by gravity waves were very common in the range 20–80 min, with no preferred periods. The r.m.s. amplitude per octave A0 was about 1015 electrons/m2, or 0.6 per cent of the mean electron content. The amplitude increased during the day, particularly in winter when periodic components predominated. The cut-off at about 17 min was sharply defined, giving a mean scale height for the neutral atmosphere (at 300 km) of about 43 km in summer, 47 km on winter days and 42 km on winter nights.

From 12 hr to 1 month A0 was about 12 per cent of the mean electron content in both summer and winter at 34°S, and 10 per cent at 42°S. The 24 hr and 27 day peaks were largest just before sunspot maximum, and almost disappeared near sunspot minimum. Variations between 1 and 27 days reflect the random occurrence of ionospheric storms and show no consistent peaks. Day to day and night to night variations were both about 10 per cent of the background content for periods from 2 days to 2 yr, apart from a slight decrease between 1 and 6 months.  相似文献   


2.
Observations on artificial satellites have been used to investigate how the air density at heights between 190 and 260 km varies with latitude The Discoverer series of satellites was used because the position of their perigees moved over the latitude range from 80°S to 80°N.

It is concluded that the air density at a fixed height is a function of latitude and is about 30 per cent smaller at the poles than at the equator. This result is applicable to a local time of 14h in the years 1959–1960: it is different from that obtained by Groves who concluded that the density is independent of latitude.  相似文献   


3.
655 visual observations of 1972-25G, Molniya 1V Rocket, were made when its perigee height was below 130 km, and have been used to determine its orbit at 17 epochs between 5 November 1973 and 24 February 1974 and obtain almost daily values of its rate of decay. These give 52 values of atmospheric density with a relative accuracy of 1 % at a height of 128 km in latitudes 55–65°S. Day-to-day variations correlated with geomagnetic activity of up to 10% are found, plus an irregular semi-annual variation of amplitude 10%. The decrease in inclination has been measured accurately enough to enable the mean atmospheric rotation rate to be determined over the same time-span.  相似文献   

4.
The average rotation rate of the upper atmosphere can be found by analysis of the changes in the orbital inclinations of satellites, and results previously obtained have indicated that the atmospheric rotation rate appreciably exceeds the Earth's rotation rate at heights between 200 and 400 km.We have examined all such results previously published in the light of current standards of accuracy: some are accepted, some revised, and some rejected as inadequate in accuracy. We also analyse a number of fresh orbits and, adding these to the accepted and revised previous results, we derive the variation of zonal wind speed with height and local time. The rotation rate (rev/day) averaged over all local times increases from near 1.0 at 150 km height to 1.3 near 350 km (corresponding to an average west-to-east wind of 120 m/s), and then decreases to 1.0 at 400 km and probably to about 0.8 at greater heights. The maximum west-to-east winds occur in the evening hours, 18–24 h local time: these evening winds increase to a maximum of about 150 m/s at heights near 350 km and decline to near zero around 600 km. In the morning, 4–12 h local time, the winds are east to west, with speeds of 50–100 m/s above 200 km. We also tentatively conclude that, at heights above 350 km, the average rotation rate is greater in equatorial latitudes (0–25°) than at higher latitudes.  相似文献   

5.
Cosmos 316 (1969-108A) was launched on 23 December 1969 into an orbit with an initial perigee height of 154 km at an inclination of 49.5° to the equator. Being very massive, Cosmos 316 had a longer lifetime than any previous satellite with such a low initial perigee: it remained in orbit until 28 August 1970. Because of its interest for upper-atmosphere research, the satellite was intensively observed, and accurate orbits are being determined at RAE from all available observations. Using perigee heights from the RAE orbits so far computed, and decay rates from Spacetrack bulletins, 102 values of air density have been obtained, giving a detailed picture of the variations in density at heights near 150 km between 24 December 1969 and 28 August 1970. The three strongest geomagnetic storms, on 8 March, 21 April and 17 August 1970, are marked by sudden increases in density of at least 23, 15 and 24 per cent respectively. With values of density extending over eight months, it is possible for the first time to examine a complete cycle of the semi-annual variation at a height near 150 km: the values of density, when corrected to a fixed height, exhibit minima in mid January and early August; at the intervening maximum, in April, the density is 30 per cent higher than at the minima.  相似文献   

6.
Neutral density data were obtained near 400km (1600 LT) from a microphone density gauge on OGO-6 from 0°G to 40°N magnetic latitude for 25 September–3 October 1969. Several geomagnetic storms occurred during this period (ap varied from 0 to 207). Least-squares fits were made to data points on density-ap and density-Dst scatter diagrams, where the density values selected were delayed in time behind ap and Dst. An equation representing the least-squares fit was computed for each delay time. The equation of best fit (and the corresponding time delay between the density and the magnetic index which resulted in this best fit) was found by choosing the equation that gave the minimum standard error. For example, the best fit at 10°N geomagnetic latitude occurred for ap at t — 3 hr, where t is the time of the density values. The implications of the time differences associated with the best fits at various latitudes and longitudes are discussed with regard to the time delays involved in geomagnetic heating of the neutral upper atmosphere.

A low-latitude density bulge has been found between 0°N and 40°N whose magnitude varies with ap. DeVries (1972b) has independently discovered this daytime phenomenon. If the bulge is a semi-permanent feature near the equinoxes because of the enhanced geomagnetic activity, this may help explain the semi-annual effect in density, which was uncovered first in the drag data from low inclination satellites.  相似文献   


7.
Variations in air density, the satellite drag coefficient, and the atmospheric rotation rate at 60°S lat and 120–130 km height during the period September 1968–June 1969 have been determined from analysis of the high-eccentricity orbit of the 4th Molyniya 1 upper-stage rocket body, 1966-92D. The results show good correlation between density increases and strong geomagnetic activity, although solar flares of equal geomagnetic index value do not consistently produce density changes of equal magnitude. A 30 per cent semi-annual variation was observed, but there was no indication of the 50 per cent lower thermosphere seasonal-latitudinal variation that was predicted from the CIRA 1972 atmosphere. The satellite drag coefficient was observed to begin decreasing with height at an altitude where the molecular mean free path, λ, was twice the satellite's length. The coefficient decreased to a value approaching 1.0 as the satellite's perigee height fell below the altitude where λ was one-half the length. A mean atmospheric rotation rate of 1.1 ± 0.1 Earth rot/day was obtained for the last 20 days of decay. However, variations were observed with west-to-east wind speeds of ?100 m/sec measured for a local time of 13 hr.  相似文献   

8.
The orbit of Cosmos 268 rocket (1969-20B) has been determined at 28 epochs during its 342-day life, with the aid of the PROP5 orbit refinement program. All available observations were used, including 16 from the Hewitt camera at Malvern, 28 from the 200-mm camera at Meudon, 56 from the kinetheodolite at the Cape Observatory, 700 visual observations from volunteer observers, 500 US Navy observations and 200 British radar observations. The orbits are of very good accuracy for such a high-drag satellite, most of the values of inclination having standard deviations less than 0.002°. The most accurate orbits are those utilizing photographic observations, and the best of these has standard deviations of 0.00001 in eccentricity and 0.0001° in inclination.

The values of inclination obtained, after correction to allow for the effects of other perturbing forces, have been analysed to determine zonal wind speeds in the upper atmosphere at heights a little above perigee (230–250 km) averaged over latitudes up to about 25°. The results show a clear distinction between the wind at night (21 to 03 hr local time), which is west-to-east with an average speed of 140 ± 50 m/sec, and the wind by day (08 to 17 hr), which is east-to-west with an average speed of 110 ± 50 m/sec.  相似文献   


9.
Autospectra in the 2–13 month range, computed from mean monthly horizontal intensity on quiet days at Trivandrum, situated close to the dip equator, suggest an exceedingly large semi-annual modulation of the field confined to an interval of about 5 hr centred at 1000 LT. The amplitude of the semi-annual oscillation at this station, derived from power density, is greater than 19 γ at 1000 LT. Between 1900 and 0500 LT, spectral lines, corresponding to a period of six months, are not observed above the continuum. Spectral densities from observations at two other electrojet stations in India, Kodaikanal and Annamalainagar, and at Alibag, outside the electrojet, establish the existence of an appreciable enhancement of the semi-annual oscillation of the field in the equatorial electrojet belt. Similar computations of spectra using observations on all days, however, suggest a secondary component in the evening sector. This component is not enhanced in the equatorial electrojet belt. It is concluded that while in low latitudes the daytime component is largely associated with the modulation of Sq currents, in the electrojet belt it appears to be due entirely to a semi-annual modulation of the equatorial electrojet. It is also concluded that the secondary component, observed in the evening sector in low latitude and equatorial stations, is associated purely with the modulation of the ring current by disturbance. The two components of the semi-annual variation observed at the Indian stations have also been noticed at several stations between geomagnetic latitudes N54.6° and S41.8°. It is also observed that the association of the semi-annual component with geomagnetic latitude is confined to the evening-night component.  相似文献   

10.
The rocket of Cosmos 268, 1969-20B, entered orbit on 5 March 1969, with an initial perigee height of 230 km and inclination of 48.40°. Accurate orbits were computed at RAE from all available observations. Using the values of perigee height from the RAE orbit and decay rates from Spacetrack bulletins, 103 values of density have been calculated between July 1969 and February 1970. On three occasions when geomagnetic activity was strong there were sudden increases in density. When the density was corrected to a fixed height, the semi-annual variation was apparent. There was a strong minimum in July 1969, a maximum in October–November 1969 and a weak minimum in January 1970.  相似文献   

11.
Insight into the causes of the annual and semi-annual ozone oscillations may be gained from the analysis of photochemical model behavior. In this paper, the monthly variations of the ozone mixing ratio computed by the two-dimensional photochemical model of Garcia and Solomon (1983, J. geophys. Res. 88, 1379) are Fourier-analyzed and compared with SBUV observations of ozone mixing ratio. Remarkably good qualitative agreement between the model calculations and the observations is found. Analysis of computed transport and chemical production and destruction rates reveals the causes of the modelled seasonal ozone variations.

It will be shown that at high latitudes and low altitudes, modelled ozone abundances increase in the winter due to transport and decrease in the summer due to chemical destruction. In the middle stratosphere, the calculated annual ozone variation is largely due to the annual variation in the odd-oxygen production rate, and in the upper stratosphere, the computed annual ozone variation is caused by the large calculated annual oscillation in temperature. Comparison between the model and observations suggests that the equatorial semi-annual oscillation above 10 mb is caused mainly by the semi-annual temperature and wind oscillation (SAO). Below 10 mb the computed equatorial ozone variation is caused by the increased rates of odd-oxygen production associated with the semi-annual zenith crossings of the Sun. Finally, the calculated polar semi-annual ozone oscillations are found to be caused by modulation of the radiatively driven middle-stratospheric ozone variation by temperature dependent chemical destruction processes.  相似文献   


12.
Autocorrelation analyses of K-coronameter observations made at Haleakala and Mauna Loa, Hawaii, during 1964–1967 have established average yearly rotation rates of coronal features as a function of latitude and height above the limb. At low latitudes the corona was found to rotate at the same rate as sunspots but at higher latitudes was consistently faster than the underlying photosphere. There were differences as large as 3–4% in the rate at specific latitudes from year to year and between the two hemispheres. In 1967 a nearly constant rotation was found for heights ranging from 1.125 to 2.0 R 0. For 1966 there was a more complicated pattern of height dependence, with the rate generally decreasing with height at low latitudes and increasing at high latitudes.At Hawaii Institute of Geophysics.  相似文献   

13.
COSMOS 1009 rocket was launched on 19 May 1978 into an orbit with initial perigee height 150 km and apogee 1100 km: its lifetime was only 17 days. The orbit has been determined daily during the final 14 days of its life, using the RAE orbit refinement program PROP6,with about 1100 observations supplied by NORAD. An average accuracy of about 60 m, radial and cross-track, was achieved.The orbits were analysed to reveal three features of the upper atmosphere at heights between 125 and 175 km. From the decrease in perigee height, five values of density scale height, accurate to ±4%, were obtained. The first three were within 10% of those from CIRA 1972; the fourth, after a magnetic storm, was higher than expected; the fifth gave evidence of the decrease in drag coefficient at heights below 130 km.Atmospheric oblateness produced a change of 4° in perigee position during the last four days of the life. Analysis showed that the ellipticity of the upper atmosphere was approximately equal to that of the Earth, f, for the first two of the four days, and about 12f in the last two.The orbital inclination decreased during the 14 days by about 50 times its standard deviation, and the observed variation was analysed to determine zonal winds at heights of 150–160 km at latitudes near 47° north. The zonal wind was very weak (0±30 m/s) for 23–28 May at local times near 03h; and 90±30 m/s east-to-west for 29 May to 4 June at local times near 01 h.  相似文献   

14.
The average angular velocity of the upper atmosphere, which we take as Λ times the Earth's angular velocity, can be evaluated by analysing the changes in the orbital inclinations of satellites. In this paper the nine most suitable orbits now available are analysed and values of Λ are found for heights between 200 and 260 km. The results, which are more accurate than in our previous studies, confirm that Λ 1, i.e. that the atmosphere rotates faster than the Earth at these heights, and show that Λ increases with height, from 1.1 at 210 km to 1.4 at 260 km. This corresponds to mean west-to-east winds of 30 m/s at 210 km, increasing to 130 m/s at 260 km height. Results from one satellite indicate that the wind is probably strongest at times near sunset, with Λ = 1.5 ± 0.1 at 200 km height in August 1966. Comparisons are made with previous observational results and some of the suggested theoretical explanations are outlined.  相似文献   

15.
Energy spectra of electrons between 30 eV and 18 keV were obtained with a spectrometer on a Black Brant rocket launched from Cape Parry, N.W.T. (Λ = 75.2°) on December 6, 1974 to study the dayside magnetospheric cleft. The rocket flew to an apogee of 236 km and travelled poleward to 80° invariant latitude. The cleft was observed to extend from 76.9 to 78.4° invariant latitude. Equatorward of this electrons of a few keV energy were observed with a total energy flux of up to 2 erg/cm2 sec ster. Variable fluxes of electrons with a spectrum fitted by a Maxwellian distribution of 150 eV characteristic energy were observed through most of the cleft. One inverted V structure was crossed. In that region, the electron energy increased to 650 eV and a total energy flux of 8 erg/cm2 sec ster was measured. The event was a temporal one and only a few km in width, as deduced from optical data. Fluxes of about 10−2 erg/cm2 sec ster were recorded poleward of the cleft.  相似文献   

16.
The Stratospheric Aerosol and Gas Experiments (SAGE) I and II measure Mie, Rayleigh, and gaseous extinction profiles using the solar occultation technique. These global measurements yield ozone profiles with a vertical resolution of 1 km which have been routinely obtained for the periods from February 1979 to November 1981 (SAGE I) and October 1984 to the present (SAGE II). The long-term periodic behavior of the measured ozone is presented as well as case studies of the observed short-term spatial and temporal variability.

A linear regression shows annual, semi-annual, and quasi-biennial oscillation (QBO) features at various altitudes and latitudes which, in general, agree with past work. Also, ozone, aerosol, and water vapor data are described for the Antarctic springtime showing large variation relative to the vortex. Cross-sections in latitude and altitude and polar plots at various altitudes clearly delineate the ozone hole vertically and areally. Comparisons of vertical profiles are made from 1979 to 1988.

Although there is a three-year gap between the SAGE I and II measurements, the two data sets have been used to determine long-term changes in ozone. The intercomparison generally shows decreases in the upper stratosphere (25–50 km) of 4% or less from 1980 to 1986.  相似文献   


17.
An analysis of the 4571 Å line of neutral magnesium is presented in which one-dimensional macroscopic velocity fields are included. It is shown that gradients over restricted heights in the vertical and horizontal components of the velocity field of order -0.005 s–1 and -0.004 s–1 (such that velocity towards the observer decreases as height increases), respectively, result in asymmetries in the computed line profile similar to those observed. The heights in the solar atmosphere at which these velocity gradients exist are shown to be very critical in reproducing the observations. It was found that the best results were obtained when the gradients existed in the height range from 200 km to 300 km below the temperature minimum. The results indicate that for the Mg i 4571 Å line model calculations that do not include one-dimensional flow velocities may safely be compared with frequency-averaged observations.  相似文献   

18.
The Agena B upper-stage rocket 1963-27A was launched into a near-circular orbit, inclined at 82.3° to the Equator, on 29 June 1963. Its orbit is determined at 52 epochs over the 16 month interval prior to its decay on 26 October 1969. The resulting orbital elements are used to obtain 95 atmospheric density values, at heights near 400km. Corrected to fixed heights, and normalised to a common exospheric temperature, these values reveal the semi-annual variation in density. A comparison between the observed variation and that of a recent model atmosphere is made. Although agreement between the two is generally good, their principal differences are discussed.  相似文献   

19.
The monthly median virtual height (hF) of the F-region was studied for a period of 6 years (1980–1985) from sunspot maximum to minimum, using data from 11 ionosonde stations in the Japanese-Australian longitudinal sector, in an invariant latitude range: 37°N to 54°S. The night-time maximum in the median height progressively decreases equatorwards, particularly in the local winter and spring, while a reverse weak tendency is observed in summer. The median height reaches peak in both hemispheres from 1 to 2 years after sunspot maximum then decreases towards sunspot minimum. A second diurnal maximum in hF, preceded by a well-defined minimum, was consistently observed over the solar cycle close to the sunrise time at the F-region, mainly at low invariant latitudes (9–20°). The second maximum has a distinct seasonal variation, being most pronounced in winter and diminishing in summer. It is envisaged that the second peak in hF is associated with the wave disturbance generated by the supersonic motion of the sunrise terminator. Possible effects of the background height variations on the propagation of the magnetic storm-induced travelling ionospheric disturbances are discussed.  相似文献   

20.
Changes in the orbital periods of two satellites, 1962-βτ6 (Injun 3 rocket) and 1965-11D (Cosmos 54 rocket), have been used to deduce the air density at heights of 240 and 280 km during April–November 1967. At both heights the generally low density observed in July and the higher density in April and October were almost certainly part of a semi-annual variation similar to that observed at other heights in the thermosphere. The ratio of the maximum (October) to minimum (July) density was about 1·8 at 240 km and 2·2 at 280 km. Superimposed upon this variation were short-lived increases in density associated with magnetic storms, the largest being of 65 per cent at 280 km on 25 May, and a periodic variation with an amplitude of up to 25 per cent from the monthly mean density, related to the 10·7 cm solar radiation flux. A diurnal variation of density was also detected with a maximum density at 14 hr and a maximum to minimum ratio of 1·7 at 280 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号