共查询到20条相似文献,搜索用时 10 毫秒
1.
Field experimental materials on the sea current measurements, carried out by the Sakhalin Research Institute for Fishery and Oceanography in September–December 2004 near the Sakhalin southeastern coast, are analyzed. The experiment included the installation of two coastal and one more remote autonomous buoy stations. The tidal flows in this region, unlike those on the northeastern shelf of the island, are relatively small and do not play a significant role in the dynamics of the coastal zone. The character of currents at coastal stations is determined primarily by their response to the wind effect. In particular, significant water temperature falls of 6–8°C, observed from 2–3 days to a week, are indicative of coastal upwelling induced by the wind. During the passage of a deep cyclone that caused a storm wave 1 m high, the flow velocity at coastal stations increased up to 1.5 knots. At a more remote station, in the region of Cape Svobodnyi, the flow character was determined by the East Sakhalin Current, whose autumn intensification was observed in the second ten-day period of October. It manifested itself in a sharp intensification of the flow, directed southward and southeastward throughout the entire water column, which practically was not pronounced at the coastal stations. 相似文献
2.
The data of instrumental observations of water temperature at autonomous bottom stations in the coastal zone of Sakhalin Island (the depth is 3-17 m) mainly along the southeastern coast are analyzed. The cases of sharp (by 15°C per day) temperature drop are detected. They are caused by the strengthening of southern and southwestern winds typtcal of summer and betng the offshore winds which favor the lift of cold water to the surface. This phenomenon is observed every year but its intensity varies depending on the frequency of offshore winds. Along the southwestern coast of Sakhalin, where the offshore effect is induced by northern, northeastern, and eastern winds characterized by the low frequency of occurrence, water temperature drops are rarer and shorter (3-5 days) but rather sharp. The occurrence of cold water (its temperature is sometimes negative) in the shallow coastal zone may lead to the mass mortality of juvenile salmon after its downstream migration in spawning rivers, may impede the approaches of humpback salmon and negatively affect its catch. 相似文献
3.
Data of long-term observations at three standard oceanographic sections are analyzed. A complex pattern of seasonal variability of oceanographic conditions off the southwestern coast of Sakhalin Island is studied. It is shown that the cold West Sakhalin Current directed to the south is observed from May to October; the low-salinity cold flow of the Sea of Okhotsk water oriented to the north is recorded from November to March. The northern boundary of penetration of the Sea of Okhotsk water is identified. 相似文献
4.
5.
V. S. Tambovskii E. A. Tikhonchuk G. V. Shevchenko 《Russian Meteorology and Hydrology》2010,35(3):197-205
The ice drift data obtained with the Furuno radar using a special methodology simultaneously at seven fixed points around
the Molikpaq oil-drilling platform on the northeastern shelf of Sakhalin Island in the period from May 14 to 28, 2003 are
analyzed. It is shown that at different distances from the shore significant variations are observed both in the alongshore
and, especially, transverse components of the tidal seaice drift, which are responsible for the ice cover deformation, whose
indices are of a substantial magnitude. The divergence has the maximum positive values (the ice opening is observed) at comparatively
low drift velocities of southern bearings soon after the tidal flow direction changed. The ice cover compression was accordingly
observed under opposite conditions. The dependence of deformation indices on the tidal cycle phase is well agreed with the
results earlier obtained at the coastal Odoptu radar station (RS), where the measurements were carried out using a similar
methodology under alike physico-geographic conditions. A steady character of the results obtained allows forecasting the tide-induced
ice cover extension and compression, which is of a practical value for providing the ship operations in the region of the
Molikpaq platform in the ice season. 相似文献
6.
J. P. Putaud N. Mihalopoulos B. C. Nguyen J. M. Campin S. Belviso 《Journal of Atmospheric Chemistry》1992,15(2):117-131
Daily measurements of atmospheric sulfur dioxide (SO2) concentrations were performed from March 1989 to January 1991 at Amsterdam Island (37°50 S–77°30 E), a remote site located in the southern Indian Ocean. Long-range transport of continental air masses was studied using Radon (222Rn) as continental tracer. Average monthly SO2 concentrations range from less than 0.2 to 3.9 nmol m-3 (annual average = 0.7 nmol m-3) and present a seasonal cycle with a minimum in winter and a maximum in summer, similar to that described for atmospheric DMS concentrations measured during the same period. Clear diel correlation between atmospheric DMS and SO2 concentrations is also observed during summer. A photochemical box model using measured atmospheric DMS concentrations as input data reproduces the seasonal variations in the measured atmospheric SO2 concentrations within ±30%. Comparing between computed and measured SO2 concentrations allowed us to estimate a yield of SO2 from DMS oxidation of about 70%. 相似文献
7.
In this paper, results of numerical experiments based on the one-dimensional thermodynamic model of hummock formations evolution, which has been developed by the authors, are analysed. This model has been used for computation of relative rates of freezing and melting of hummocks in typical conditions of the northeastern shelf of Sakhalin Island; then obtained values were compared with the plain sea ice cover parameters simulated by using climate and actual meteorological data. It is shown that obtained results well comply with observational data collected during expeditions in this region. 相似文献
8.
Two gravity wave events as observed at Georg von Neumayer Station in Antarctica are described and analyzed. Wind and temperature are recorded at a meteorological tower. Surface pressure time series are available from four sites so that rather exact evaluations of phase speed and wavelength are possible. Radiosonde ascents provide information on the structure of the atmosphere above the boundary layer.The pressure traces of both events are dominated by sinusoidal oscillations with a well defined frequency. Related variations of wind and temperature are small during the first event (16 July 1986) as are those of temperature on 29 September 1986. However, wind oscillations are quite large during this second event. An attempt is made to interpret the data in the light of linear gravity theory. It is found that linear gravity waves of frequency and phase speed as observed were able to propagate throughout the troposphere on 16 July. We conjecture on the basis of linear theory that the wave of 29 September was propagating on the surface inversion. 相似文献
9.
Peter C. Smith 《大气与海洋》2013,51(1):181-209
Abstract Analysis of current, temperature and salinity records in the nearshore region of the Scotian Shelf during the Canadian Atlantic Storms Program (CASP), reveals that the inertial wave field is highly intermittent, with comparable amplitudes in the surface and deep layers. Clockwise current energy in the surface layer is concentrated at a frequency slightly below inertial, consistent with Doppler shifting by the strong mean current and/or straining by the mean flow shear, whereas the spectral peak in deep water is at the local inertial frequency. Clockwise coherence is high (γ2 ≥ 0.8) horizontally over the scale of the array (60 km × 120 km) and in the vertical, with upward phase propagation rates of 0.15–0.50 × 10?12 ms?1, inversely proportional to the local value of the Brunt Väisälä frequency. Clockwise current energy decreases in the onshore direction and appears to be completely inhibited on the 60‐m isobath. A case study of the response to the CASP IOP 14 storm indicates that the inertial waves may be generated by a strong wind shift propagating onshore at a speed of 10 ms?1. On the eastern side of the array (Liscomb line), clockwise current oscillations propagate onshore in the surface layer at a rate (8.1 ± 0.9 m s?1) comparable with the speed of the atmospheric front, while waves in the pycnocline move offshore at a lower (internal wave) speed (1.8 m s?1). Furthermore the temperature and salinity fluctuations are in (out) of phase with longshore current in the deep (surface) layer. However, on the western side of the array (Halifax line), the inertial waves are more complex. A sharp steepening of phase lines at the coast indicates that the phase speed of clockwise current oscillations is considerably reduced and the evidence for offshore propagation of internal waves is less clear. The discrepancies between observations on the two lines suggest that the internal wave field is three‐dimensional. Results of simple mixed‐layer models indicate that the inertial response near the surface is sensitive to the accurate definition of the local wind field, but not to certain model physics, such as the form of the decay term. The observations also show some qualitative similarities with models for two‐dimensional response to a moving front (e.g. Kundu, 1986), but the actual forcing terms are more complicated, based on IOP 14 wind measurements. 相似文献
10.
While nocturnal offshore precipitation, which produces rain cells and bands, has been studied in tropical areas, few studies have analyzed the occurrence of this phenomenon at higher latitudes. Using radar reflectivity, nocturnal rainfall in the western Mediterranean area has been detected near the coast of the Iberian Peninsula and North Africa. More than 50 events have been recorded since 2009. MM5 mesoscale simulations of some of the recorded events allow us to establish that the most likely causes for these precipitation events are: (1) the interaction between cold air masses conducted by drainage and katabatic winds, and (2) a wetter and warmer synoptic wind. Two different episodes are presented: one in the northeastern Iberian Peninsula, caused by stratiform clouds, which occurred at the mouths of three rivers; the other case, produced by convective clouds, occurred at the southern Iberian Peninsula and was caused by the drainage winds flowing down from some mountain ranges located close to the coast. 相似文献
11.
The technology ofthe method of joint probabilities ofthe tidal and residual (de-tided) components developed to estimate the possible sea level fluctuations [1, 10] and modified to calculate rare extreme total sea current velocities [8], is applied to compute ice drift velocity on the northeastern shelf of Sakhalin Island. The initial data are the hourly series of the drift velocity vector obtained from radar observations at Odoptu coastal station (1986-1996, during the whole ice season) and at the Molikpaq drilling platform (in May in 1999, 2000, 2003, 2005, and 2006). The distribution of the tidal component was determined by the prediction of the corresponding series for 19 years that is possible due to the stability of characteristics of the tidal drift. The distribution of the residual component was estimated by combining all de-tided series for the entire time period. The obtained estimates of total ice drift velocities of rare occurrence are in good agreement with those presented in [8] and can be used for designing facilities for the extraction and transportation of hydrocarbons on the northeastern shelf of Sakhalin Island. 相似文献
12.
利用多普勒雷达数据分析中国华东地区登陆台风轴对称降水特征 总被引:1,自引:1,他引:1
利用中国新一代多普勒雷达网温州雷达和台湾气象局五分山雷达资料、地面自动站降水资料,分析2004-2007年登陆中国华东地区的6个台风从登陆前18小时至登陆后6小时的降水结构时空变化特征.环状平均回波分析显示,在台风离陆地较远时,轴对称降水径向廓线呈双峰结构,最大降水位于台风眼墙处,降水次大值位于台风外围雨带处.台风强度越强,最大降水越强,且离台风中心的距离也越近.当台风接近登陆时,其内核区降水有增强的趋势,从登陆前6小时至登陆时,各台风内核区平均降水率的增强倍率在1.3-3.2,且外围降水随时间向台风中心收缩,内缩速率随台风强度增强而减慢.台风登陆后,台风眼被降水填塞,强度快速减弱,同时降水持续内缩,内核区总降水逐渐衰减.此外本文还建立了一个登陆前台风轴对称降水径向廓线模型,该模型能定量地描述降水廓线的双峰结构,模拟结果与实际雷达观测降水廓线的的均方根误差最小为0.46 mm/h,最大为5.3 mm/h. 相似文献
13.
S. A. Myslenkov A. A. Shestakova P. A. Toropov 《Russian Meteorology and Hydrology》2016,41(10):706-713
The results ofnumerical simulation of storm waves near the northeastern coast ofthe Black Sea using different wind forcing (CFSR reanalysis, GFS forecast, and WRF reanalysis and forecast) are presented. The wave modeling is based on the SWAN spectral wave model and the high-resolution unstructured grid for the Tsemes Bay. The quality estimates of wave simulation results for various wind forcing are provided by comparing the model results with the instrumental data on wind waves in the Tsemes Bay. It is shown that the forecast of the maximum wave height for some storms using the WRF wind forcing is more accurate than that based on the GFS forcing. 相似文献
14.
Ta-Yung Li 《Boundary-Layer Meteorology》1974,7(2):185-198
Radon is an excellent tracer for the study of transport processes in the lower atmospheric boundary layer. Analyses of the radon data measured on a 300-m meteorological tower at Philadelphia show that the diurnal variation of atmospheric turbulence is closely related to the meteorological variables. A model of variation of radon concentration with mean wind speed and low-level vertical temperature difference is derived. It indicates that radon concentration is inversely proportional to the mean wind speed and directly proportional to the temperature difference. These predictions are in good agreement with the measurements. 相似文献
15.
The summer of 2003 was the hottest on record throughout much of Europe. Understanding how the event developed and the factors that contributed to it may help us improve seasonal forecasting models and assess the risk of such events in the future. This study uses atmosphere-only model integrations and observed data to investigate the potential predictability of the climate anomalies, and in particular the impact that the warming in the Indian Ocean and Mediterranean Sea had on the development of the temperature anomalies. The model results suggest that the temperature anomalies were potentially predictable and that both Indian Ocean and Mediterranean sea surface temperature anomalies contributed to the development of the observed warm and dry anomalies over Europe. Furthermore, it was found that, in the model, the Mediterranean anomalies contributed most strongly to the warming in June and July and the Indian Ocean anomalies enabled the positive temperature anomalies to persist into August. Previously published work has described the role of the Indian monsoon in modulating the seasonal cycle in rainfall over Europe. Comparison with this work suggests a mechanism by which warming in the Indian Ocean may have contributed to the persistence of the temperature and precipitation anomalies into August. 相似文献
16.
Changes in meridional heat transports, carried either by the atmosphere (HTRA) or by the ocean (HTRO), have been proposed to explain the decadal to multidecadal climate variations in the Arctic. On the other hand, model simulations indicate that, at high northern latitudes, variations in HTRA and HTRO are strongly coupled and may even compensate each other. A multi-century control integration with the Max Planck Institute global atmosphere-ocean model is analyzed to investigate the relative role of the HTRO and HTRA variations in shaping the Arctic climate and the consequences of their possible compensation. In the simulation, ocean heat transport anomalies modulate sea ice cover and surface heat fluxes mainly in the Barents Sea/Kara Sea region and the atmosphere responds with a modified pressure field. In response to positive HTRO anomalies there are negative HTRA anomalies associated with an export of relatively warm air southward to Western Siberia and a reduced inflow of heat over Alaska and northern Canada. While the compensation mechanism is prominent in this model, its dominating role is not constant over long time scales. The presence or absence of the compensation is determined mainly by the atmospheric circulation in the Pacific sector of the Arctic where the two leading large-scale atmospheric circulation patterns determine the lateral fluxes with varying contributions. The degree of compensation also determines the heat available to modulate the large-scale Arctic climate. The combined effect of atmospheric and oceanic contributions has to be considered to explain decadal-scale warming or cooling trends. 相似文献
17.
Abstract From 16 AVHRR infrared satellite images of the west coast of Vancouver Island, British Columbia, collected during the five summers of 1984–1988, 4 alongshore temperature transects were sampled. Upon Fourier transforming the transect data, we found that the energy spectra of the temperature variance in alongshore wavenumber space in general followed a –2.1 power law, which agreed with previous observations from other parts of the world. Summer images may be divided into 2 types: upwelling dominated and non‐upwelling dominated. When a strong upwelling‐induced alongshore cold front was observed, the regimes shoreward and seaward of the front had distinctly different spectra. Cross‐spectral analysis of transect data between images taken a day apart in the presence of strong upwelling events revealed significant coherence at the low wavenumber regime (wavelength 300 km and above, corresponding to the large eddies) and often at the high wavenumber regime (wavelength 30 km or below, corresponding to the fine structures of the eddies). The coherence dropped for images taken 2 or more days apart, suggesting a decorrelation time‐scale of about 2 days. In the absence of strong upwelling and associated eddies, summer transect temperature data from different years often showed a similar alongshore linear trend in addition to possible large differences in the mean temperature. 相似文献
18.
本文采用美国台风联合警报中心整编的1981—2012年的best-track热带气旋资料、中国大陆743站逐日降水数据、亚太经合组织气候中心的北半球夏季季节内振荡(BSISO)指数和美国国家环境预报中心及大气研究中心的再分析资料,分析了中国东南部地区热带气旋暴雨特征及其与BSISO 8个位相的联系。结果表明:7、8月,中国东南沿海地区的热带气旋暴雨发生的频次最多,多个站点热带气旋暴雨占总暴雨频次的比例达40%以上。7、8月热带气旋暴雨主要发生于BSISO1的第1、2、7、8位相,发生的暴雨频次占总频次的78.4%,主要分布于福建省沿海地区和西南部;BSISO2的第5、6、7位相热带气旋暴雨发生的频次也较多,占总频次的73.6%,主要分布于福建省沿海地区及西南部和广东省西南沿海地区。对发生较多热带气旋暴雨的BSISO1和BSISO2位相背景下的环流合成异常的诊断显示,西北太平洋伸向中国东南沿海地区,大尺度引导气流为显著的异常东风带,有利于热带气旋登陆中国大陆;显著异常的纬向东风切变、气旋性相对涡度和整层水汽的异常辐合,有利于热带气旋登陆过程强度的维持,促使热带气旋暴雨发生在中国大陆。 相似文献
19.
Daily measurements of atmospheric concentrations of dimethylsulfide (DMS) were carried out for two years in a marine site at remote area: the Amsterdam Island (37°50S–77°31E) located in the southern Indian Ocean. DMS concentrations were also measured in seawater. A seasonal variation is observed for both DMS in the atmosphere and in the sea-surface. The monthly averages of DMS concentrations in the surface coastal seawater and in the atmosphere ranged, respectively, from 0.3 to 2.0 nmol l-1 and from 1.4 to 11.3 nmol m-3 (34 to 274 pptv), with the highest values in summer. The monthly variation of sea-to-air flux of DMS from the southern Indian Ocean ranges from 0.7 to 4.4 mol m-2 d-1. A factor of 2.3 is observed between summer and winter with mean DMS fluxes of 3.0 and 1.3 mol m-2 d-1, respectively. 相似文献
20.
Seasonal variation and physical properties of the cloud system over southeastern China derived from CloudSat products 总被引:2,自引:0,他引:2
Based on the National Centers for Environmental Prediction(NCEP) and Climate Prediction Center(CPC) Merged Analysis of Precipitation(CMAP) data and Cloud Sat products, the seasonal variations of the cloud properties, vertical occurrence frequency, and ice water content of clouds over southeastern China were investigated in this study. In the Cloud Sat data, a significant alternation in high or low cloud patterns was observed from winter to summer over southeastern China. It was found that the East Asian Summer Monsoon(EASM) circulation and its transport of moisture leads to a conditional instability, which benefits the local upward motion in summer, and thereby results in an increased amount of high cloud. The deep convective cloud centers were found to coincide well with the northward march of the EASM, while cirrus lagged slightly behind the convection center and coincided well with the outflow and meridional wind divergence of the EASM. Analysis of the radiative heating rates revealed that both the plentiful summer moisture and higher clouds are effective in destabilizing the atmosphere. Moreover, clouds heat the mid-troposphere and the cloud radiative heating is balanced by adiabatic cooling through upward motion, which causes meridional wind by the Sverdrup balance. The cloud heating–forced circulation was observed to coincide well with the EASM circulation, serving as a positive effect on EASM circulation. 相似文献