首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
刘黎平  谢蕾  崔哲虎 《大气科学》2014,38(2):223-236
本文首先利用数值模拟的方法,分析了利用毫米波云雷达功率谱密度反演雨滴谱时,降水粒子米散射效应、空气湍流、空气上升速度等对雨滴谱和液态水含量等参数反演的影响;建立了功率谱密度处理及其直接反演雨滴谱、液态水含量、降水强度和空气上升速度的方法;并利用2012年7月在云南腾冲观测的二次弱降水数据,采用毫米波雷达和Ku波段微降水雷达观测的回波强度、径向速度垂直廓线以及780 m高度上的功率谱密度对比的方法,以及毫米波云雷达观测的780 m高度上功率谱密度、回波强度与地面雨滴谱计算得到的这些量的对比方法,分析了毫米波雷达数据的可靠性;并将780 m高度上毫米波雷达反演的雨滴谱与地面雨滴谱数据进行了对比,分析了毫米波雷达反演的雨滴谱的准确性;分析了毫米波雷达回波强度偏弱的原因,讨论了该高度以下降水对毫米波雷达衰减的影响。结果表明:空气湍流对弱降水微物理参数反演影响不大,而空气上升速度和米散射效应均对反演结果有一定影响;毫米波雷达观测到的径向速度和功率谱密度与微降水雷达比较一致,回波强度的垂直廓线的形状与微降水雷达也比较一致,但毫米波雷达观测的回波强度偏弱;与雨滴谱计算值相比,毫米波雷达观测的低层的回波强度也偏弱,天线上的积水是造成毫米波雷达回波强度变弱的主要原因。毫米波雷达观测的低层的功率谱密度与地面雨滴谱观测的数据形状比较一致,但有一定的位移。毫米波雷达反演的雨滴谱与地面观测的谱型和粒子大小也比较一致。这些结果初步验证了毫米波雷达观测的功率谱密度及其反演方法的可靠性。  相似文献   

2.
朱怡杰  李泓  骆婧瑶 《气象》2024,50(5):577-590
为评估台风条件下毫米波雷达的探测表现,利用上海2018年和2019年4个台风影响期间的毫米波雷达数据,结合雨滴谱仪、静止卫星、S波段天气雷达等资料,探讨了利用毫米波雷达研究台风外围云系的可能性。结果表明:毫米波雷达探测台风外围区域具有良好的性能,对于云降水结构的垂直探测具有一定应用潜力;在降水强度低于5mm·h-1时雷达对于云顶高度的探测较为准确;提出一种融化层亮带判别方法,亮带识别结果与探空观测一致。对比毫米波雷达与S波段天气雷达降水强度反演,结果显示利用毫米波雷达衰减特征能够实现降水强度廓线的反演,但需要对存在显著雨滴碰并增长的降水进行识别并订正,可为毫米波雷达探测台风外围云系提供参考依据。  相似文献   

3.
使用中国气象局大气探测综合试验基地35 GHz毫米波云雷达和L波段风廓线雷达2016年5月1日-7月31日在降水条件下的观测数据,根据不同观测模式下两部雷达得到的数据,计算在一定高度区间内不同下落速度的降水粒子反射率因子变化量,初步分析不同下落速度的降水粒子对毫米波衰减的影响。结果表明:在持续时间较长的层状云降水且降水粒子在雷达观测范围内均匀分布条件下,毫米波衰减与降水粒子下落速度呈近似线性关系,且毫米波经过的路径长度越长,衰减越大;毫米波在经过1110~2430 m,1110~3510 m的高度区间时,下落速度处于3.5~7.5 m·s-1之间的降水粒子对毫米波的衰减作用导致毫米波云雷达所测的等效反射率因子分别减小约1~7 dB和2~11 dB。  相似文献   

4.
通过分析W波段和Ka波段云雷达同时探测回波的差异,验证了W波段云雷达初样机的探测性能。结果表明:1)W波段云雷达初样机工作稳定,两个波段雷达都可以探测云层、云的边界、云厚等宏观参数,也可以反映出云的精细结构及云内微物理参数的变化,回波强、速度小、谱宽大的冰晶云含有上升气流及较多过冷水。2)增强模式的W波段云雷达在近地面探测雾、霾的能力比Ka波段云雷达强;两部云雷达对云层较薄的云探测能力基本相当,对多层云、云层较厚、含水量较多的云及降水的探测,由于强衰减的作用,W波段雷达所测云厚度小、云顶低、回波强度小,并且非瑞利散射也会造成W波段雷达的回波强度降低。  相似文献   

5.
云底高度的地基毫米波云雷达观测及其对比   总被引:4,自引:2,他引:2       下载免费PDF全文
对2014年11月20日—12月31日中国气象局大气探测综合试验基地Ka波段毫米波云雷达、Vaisala CL51激光云高仪、L波段高空探测系统观测的云底高度进行对比分析。结果表明:在低能见度条件下,毫米波云雷达对云的探测能力明显优于激光云高仪,随着能见度的增加,两设备云探测能力差距在减小;毫米波云雷达与激光云高仪同时观测到有云时,二者观测的云底高度相关系数为0.92;毫米波云雷达与探空观测云底、云顶高度的相关系数分别为0.93和0.78;云雷达观测的云底高度均略低于激光云高仪和探空,云雷达观测的云顶高度略高于探空。  相似文献   

6.
基于飞机观测资料的降水粒子反射率因子阈值分析   总被引:2,自引:0,他引:2       下载免费PDF全文
降水粒子对云的生消和演化有非常重要的影响。毫米波雷达适合观测非降水云和弱降水云。利用毫米波雷达数据判断云内降水粒子生成与否有很高的实用价值。本文利用飞机观测的云滴谱数据计算云的反射率因子。将其与雷达探测值进行比对,发现两者有较好的一致性。因此利用滴谱计算的降水粒子反射率因子阈值可以作为雷达判断降水粒子生成的指标。通过分析滴谱计算云滴和降水粒子的反射率因子的概率密度函数可以得到用于区分云滴和降水粒子的反射率因子阈值。通常,云滴的反射率因子不超过-5dBz,降水粒子的反射率因子高于-20dBz,-15~-12dBz可作为判断降水粒子出现的阈值。  相似文献   

7.
毫米波测云雷达系统及其外场试验结果初步分析   总被引:6,自引:1,他引:5  
观测云宏观信息及其辐射特性的工具一直都很缺乏。利用毫米波测云雷达连续观测大气中的云能够获得有重要意义的参数,这些参数包括宏观上的云厚、云高、云层数,微观上云粒子的大小、滴谱分布、冰与液态水的含量等,它们不仅决定了云的上行、下行辐射的影响效果,也是研究自然降水过程的重要参数。文章介绍了2007年中国气象科学研究院研发的应用于探测云、雾和沙尘暴垂直结构的机动式8.6 mm毫米波雷达系统(HMBQ),重点介绍测云雷达在2008~2009年主要参加的外场试验情况,最后给出了探测得到的各种类型云(包括非降水云、弱降水云以及降雪云等)的雷达回波图,并作了初步分析。  相似文献   

8.
加密外场试验可提供云降水物理过程新的数据。2014年7月1日—8月31日,第3次青藏高原大气科学试验项目组在那曲开展了水汽、云和降水的综合观测,使用了中国最先进的Ka波段毫米波云雷达、Ku波段微降水雷达、C波段连续波雷达和激光雷达,并配以微波辐射计、雨滴谱仪等设备,获取了高时空分辨率的云和降水宏微观垂直结构特征数据;利用C波段双线偏振雷达与新一代天气雷达配对,进行双多普勒雷达观测,获取青藏高原对流云三维风场和降水粒子相态的结构和演变数据。文中简单介绍了本次试验的情况,并利用这次观测的云雷达数据对那曲地区夏季云的云顶和云底高度、云厚、云量、云层数等特征的日变化进行了初步统计分析,对不同类型云的宏观特征进行了讨论。结果表明:本次外场试验首次成功获取到了多种雷达的云观测数据。那曲地区夏季云主要集中在6 km(距地面高度,下同)以上和4 km以下;总云量、高云的云顶、云量和云厚等云的统计参数有明显的日变化,10时(北京时)为云发展最弱的时段,20时云发展最为旺盛;初生的积云和层云常常出现在3 km高度上,这一高度上常常存在明显的上升气流;深对流系统高度可达16.5 km,同时存在上升气流和下沉气流,对流中可能存在过冷水。这些数据和初步结果为进一步开展高原云和降水机理、云和降水物理过程参数化方案研究及卫星反演结果的订正提供了基础。  相似文献   

9.
固态毫米波雷达探测模式的对比评估与分析   总被引:1,自引:1,他引:0  
武静雅  刘黎平  郑佳锋 《气象》2016,42(7):790-798
利用2014年广东阳江和青藏高原外场观测中多种探测仪器的观测资料,对比了灾害天气国家重点实验室与航天科工23所联合研制的固态毫米波雷达三种探测模式最小可测回波强度、可测液态水(冰水)含量、观测同一目标时回波强度的差异以及与K波段微降水雷达回波强度的差异等。结果表明:(1)毫米波雷达不同模式最小可测回波强度差异与理论差异一致,边界层模式和降水模式能观测近地面全部层云和积云,卷云能观测5km高度冰水含量在0.0007 g·m~(-3)以上的卷云,随着高度上升探测能力有所下降;(2)毫米波雷达使用不同模式观测同一目标时,不同观测模式宏观回波强度一致,大部分差异不超过3.5 dB;(3)K波段微降水雷达和Pasivel2激光雨滴谱仪的近地面回波强度一致,毫米波雷达与K波段微降水雷达存在系统差异。  相似文献   

10.
王卫民  徐八林  雷勇  舒斌  马芳 《气象》2024,50(3):291-302
利用丽江站新建的Ka波段毫米波云雷达获得的高时间分辨率的垂直观测资料,结合同址的地面自动气象站和雨滴谱的分钟数据、常规探空数据和附近C波段天气雷达的强度回波,分析了两次降水过程前后云雷达反射率因子Z、径向速度Vr、速度谱宽Sw的垂直变化规律。分析表明:在发生弱降水时,云雷达Z在垂直方向的变化不明显;但Vr、Sw值在0℃层稍低位置有一个明显的分界层(融化层),粒子通过融化层后Vr、Sw都是快速变大,这个变化主要是粒子的相态由固态变成液态引发的,可以通过Vr、Sw突变值的位置来识别0℃层亮带的高度。从C波段天气雷达回波强度、剖面图及云雷达位置的时间-高度图看,对毛毛雨和小雨的回波,强度和高度差异比较明显,毛毛雨比小雨回波高度低、强度弱,与云雷达相比C波段雷达对高一些的云观测不到,对距离较远的弱降水回波无法观测到;由于相同粒子对不同波长电磁波的散射不一样,造成两种雷达垂直方向观测到的Z变化不同。对比弱降水回波,云雷达在...  相似文献   

11.
毫米波测云雷达在降雪观测中的应用初步分析   总被引:2,自引:0,他引:2  
本文利用毫米波云雷达联合称重式雨量计、气球探空和S波段天气雷达在北京对2015年11月三次降雪进行了观测,以2015年11月22~23日降雪过程为例,主要从降雪系统的宏观结构特征、微物理变化以及毫米波雷达在降雪探测中电磁波衰减情况、雪粒子含水量和地面降雪量估测几方面进行初步分析。结果表明:(1)毫米波云雷达具有高时空分辨率,能对降雪系统进行精细化探测,在降雪系统发展最旺盛的阶段能够通过反射率(Z)、退极化比(LDR)和径向速度(V)初步判断出云中是否含有过冷液滴;(2)降雪回波强度最大值能反映整层云系中含水量最大的区域,当最大值Z大于20 dBZ时,最大值的大小、最大值持续时间、最大值出现的高度与地面降水量成正相关,速度最大值表示云中粒子上升最大速度(速度为正时)或者粒子下落的最小速度(速度为负时),主要分布在-0.5~2 m s?1,速度最小值表示粒子下落的最大速度,主要在-3~-1 m s?1;(3)随着高度增加反射率的垂直廓线会出现多个峰值,这是由于不同高度层风速分布不均造成的,降雪回波这种特点比降雨回波更明显;(4)对比Ka与S波段雷达反射率可知,两雷达反射率平均差值小于2.5 dBZ,Ka波段反射率略大S波段雷达反射率;(5)降雪量反演与地面降雪量仪数据对比,逐小时降雪量反演精度为20.38%,累计降雪量反演误差为6.58%,24小时累计降雪量绝对误差为1.9 mm,说明云雷达估算累计降雪量具有较高的可行性,能够很准确的反映地面实际降雪情况,当降雪系统发展旺盛时,雪粒子含水量分布在0.05~0.15 g m?3,在降雪初期或者降雪系统消散期,雪粒子含水量一般小于0.04 g m?3,能够很好地反映出整层降雪回波的雪粒子含水量。这些云雷达在降雪观测中的应用和初步分析结果可以更好的地了解降雪系统宏微观结构,为云模式的发展和人工影响天气中增雪潜力评估提供一些参考。  相似文献   

12.
在众多种针对云垂直结构的探测中,毫米波雷达可获取云底、云顶、云厚等完整的云垂直结构信息,并可以连续监测云的垂直剖面变化,是有力的探测手段之一。而无线电探空因其直接的测量优势,能直观、确切地描述大气湿度垂直结构,可将其进一步处理生成云垂直结构信息,并作为一种数据源用于与毫米波雷达云垂直结构探测结果进行比对,以评估毫米波雷达针对云宏观垂直结构的探测性能,为毫米波雷达更好地应用于云探测提供参考。通过获取位于北京南郊观象台的毫米波雷达2014年10月28日至2015年2月17日长达113天连续观测的反射率因子以及探空温、压、湿数据,设计或选取合适的方法对二者进行云边界的计算,并进行云高(包括云底高和云顶高)以及云层数的一致性比对分析。结果认为,除对于高层云的云顶高度毫米波雷达由于探测限制不能探测到10 km以上的云顶,某些时刻与探空产生较大差异外,在云底高度以及中低云的云顶高度上可以与探空观测取得很好的匹配效果,对于云的垂直分层上二者也有较强的一致性。该毫米波雷达具有较为准确并连续刻画10 km以下云垂直结构的能力。  相似文献   

13.
毫米波测云雷达作为一种新型的气象探测装备,在云粒子的探测上具有一定的优势。基于毫米波测云雷达的探测数据和探空仪获取的温度数据,设计云粒子相态识别算法。采用该算法,对2017年1月19日、2月7日、3月20日的毫米波测云雷达探测数据进行了云粒子相态识别和过冷水等数据产品反演。分析结果表明,逆温层与过冷水层高度正相关,过冷水和冰晶交汇区附近会出现湿冰相和混合相,过冷水含量与融化层亮带呈一定的负相关关系,整体相态识别结果与实际相吻合,验证了粒子相态识别算法的有效性。  相似文献   

14.
汪会  郭学良 《气象学报》2018,76(6):996-1013
为了加强对青藏高原深对流云垂直结构的深入认识,利用TRMM、CloudSat和Aqua多源卫星观测资料及地基垂直指向雷达(C波段调频连续波雷达和KA波段毫米波云雷达)资料,对第三次青藏高原大气科学试验期间2014年7月9日13-16时(北京时)发生在那曲气象站附近的深厚强对流云和那曲气象站以西100 km左右的深厚弱对流云的垂直结构特征进行了分析,得到的结果如下:(1)深厚强对流云和深厚弱对流云的水平尺度均较小(10-20 km),垂直发展高度较高(15-16 km,均指海拔高度);深厚强对流云在0℃层以下雷达反射率因子递增非常快,表明对流云内固态降水粒子下落至0℃层以下后融化过程有很重要的作用;在对流减弱阶段有明显的0℃层亮带出现,亮带位于5.5 km左右(距地1 km);(2)对比TRMM测雨雷达和C波段调频连续波雷达观测到的雷达反射率因子,发现TRMM测雨雷达在11 km以下存在高估;(3)深对流云主要为冰相云,云内10 km以上主要是丰富小冰粒子,而10 km以下是较少的大冰晶粒子;深厚强对流云和深厚弱对流云的微物理过程都主要包括混合相过程和冰化过程,混合相过程分为两种:一种是-25℃(深厚强对流云)或-29℃(深厚弱对流云)高度以下以凇附增长为主,另一种是该高度以上主要以冰晶聚合、凝华增长为主,该过程冰晶粒子有效半径增长较快。这些空基和地基的观测证据进一步揭示了青藏高原深对流云的垂直结构特征,为模式模拟青藏高原深对流云的检验提供了依据。   相似文献   

15.
我国地基天气雷达技术系统发展介绍   总被引:2,自引:0,他引:2  
回顾了我国天气雷达从常规雷达发展到单极化多普勒,再到双极化多普勒,雷达获取目标的参数信息更加丰富的过程。分析了常规、单极化多普勒、双极化多普勒雷达工作原理及其产品信息。对于我国新一代S、C和X波段的天气雷达性能进行了研究对比。阐述了毫米波段多普勒测云雷达工作原理及其产品。对新一代天气雷达网进行了分析及展望,双极化将是我国天气雷达网升级改造趋势,为弥补新一代天气雷达探测盲区,小型移动电扫描雷达也是一种辅助主雷达网可移动灵活布网的趋势。  相似文献   

16.
毫米波测云雷达融化层自动识别技术   总被引:2,自引:1,他引:1  
孙晓光  刘宪勋  贺宏兵  程周杰 《气象》2011,37(6):720-726
为了充分利用雷达数据中的融化层信息,通过分析融化层在反射率因子和线性退极化比(LDR)参量中的特性,结合国内某型毫米波测云雷达的特点,提出了一种融化层边界自动识别的技术。利用2010年5-10月国内某型毫米波测云雷达在杭州的探测资料及相应的探空资料,对识别结果以及算法中参数的敏感性进行了对比和分析。对比结果表明,该方法能有效识别亮带的存在,得到的融化层上边界平均高度与实测零度层高度的误差小于100 m。参数的敏感性分析表明,融化层在反射率和LDR中的特性存在差异,其厚度在600~1500 m。毫米波测云雷达距离分辨率高、LDR对融化层敏感以及使用反射率和LDR双重约束是识别出的融化层边界误差较小的原因。  相似文献   

17.
吴翀  刘黎平  翟晓春 《大气科学》2017,41(4):659-672
激光云高仪和云雷达是探测云底的两种设备,但其探测能力和探测结果有一定的差异,对比分析两种设备的测云效果有助于正确认识它们的探测优势,推进我国云雷达在云探测中的应用。本文提出了基于云雷达数据的云底和云顶高度分析方法,利用2014年夏季第三次青藏高原大气科学试验云雷达、激光雷达和激光云高仪数据,统计了三种设备探测青藏高原低云、中云和高云的云底高度偏差、探测率,分析了激光云高仪探测云底偏高的原因,根据探测结果提出了固态发射机体制雷达探测青藏高原低云的优化观测模式,模拟分析了探测效果。结果表明:(1)云雷达对高云的探测能力要明显优于激光云高仪,但其对低云的探测能力有待改进,激光云高仪探测云底下部的边界层内的云雷达回波信号可能是非云降水回波;低层云的遮挡作用明显降低了激光云高仪对多层云的观测能力;与激光云高仪相比,云雷达仍然会漏掉一些高云和中云。(2)激光云高仪探测的中云和高云的云底很多在云雷达回波内部,云雷达和激光云高仪观测的云底的时空对应关系比较差。(3)增大激光发射功率和优化固态发射机体制云雷达观测模式可提高云的观测能力,微波和激光雷达数据融合可全面了解不同类型云的宏观特征。这一工作为云雷达和激光雷达数据的应用,评估激光云高仪和云雷达探测青藏高原云的能力,讨论设计优化的云观测方案,为推进我国云观测技术的发展提供了重要参考依据。  相似文献   

18.
运用毫米波雷达结合地面观测对2017年4月15-16日发生在宁波北部海域的大范围大雾天气过程进行了分析。结果表明:毫米波雷达可以实现对10 km左右的液态水系统、千米左右游离液态水团和更小尺度的局地短时液态水团等进行有效监测。10 km尺度的液态水系统过境使站点的能见度呈现深V型变化;未有液态水系统过境的站点,在靠近液态水系统时也会出现能见度变化。千米尺度的游离液态水团对能见度也有很强的影响,是造成无液态水系统过境时能见度急剧变化的主要原因之一。更小尺度的局地短时液态水团的形成与局地其他因素关系紧密,不能单以雷达反射率来进行分析。能见度的变化主要受毫米波雷达反射率相关因素和气象要素两者影响,约各占40%左右,毫米波雷达的应用将未确定因素导致的能见度变化次数降低到了20%以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号