首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新生代青藏高原的隆升改变了整个亚洲的构造格局,对气候、环境均产生了重要的影响,但高原的隆升扩展机制众说纷纭.青藏高原东南缘作为扩展前缘,其构造演化对了解整个高原的扩展机制具有重要的意义.本文总结了近年来对青藏高原东南缘地壳结构研究的最新进展,特别是2011年中国地震科学探测台阵计划开展以来,利用密集地震台阵取得的新成果,探讨了青藏高原东南缘地壳的结构与变形机制.这些研究发现青藏高原的地壳由高原向外围减薄,但在高原边界断裂附近存在地壳厚度突变带;下地壳中存在两个独立的低速异常,一个位于松潘—甘孜块体下方,被高原的边界断裂所围限,另一个位于小江断裂带下方,呈NE-SW向展布.我们认为青藏高原东南缘下地壳物质被边界(丽江—小金河)断裂所围限,并没有继续向边缘流出,但是地壳挤出产生的应力作用继续向东南方向传递,造成了小江断裂带附近的地壳变形.  相似文献   

2.
青藏高原东缘作为高原生长的东边界,其新生代以来隆升剥露与扩展模式备受关注.高原内部平缓的地貌和边界构造带不显著的缩短变形被认为是下地壳流作用的重要证据.然而近年来,越来越多的低温热年代学研究结果表明,中-晚新生代以来跨不同断裂带存在显著的差异性隆升剥露,指示了断裂体系在青藏高原东缘构造变形与演化中的重要作用.本文系统收集区域内现有不同封闭温度体系的低温热年代学数据,综合分析结果表明青藏高原东缘隆升剥露及生长扩展与整个高原抬升具有准同步性.最为广泛和显著的剥露主要发生在~30 Ma以来,且高原东缘的最大侵蚀量区受控于断裂活动,快速侵蚀带的空间分布与鲜水河断裂带相一致.在区域尺度上,现有数据所揭示的剥露事件启动、持续时间及速率的显著差异性揭示了断层活动对青藏高原东缘地表剥露过程的控制作用.本文提出青藏高原向东扩展是多阶段、非均匀过程,新生代以来不同断裂带在青藏高原向东扩展过程中起到了至关重要的作用,不支持"下地壳流假说"强调的"东缘上地壳变形不显著"的认识.  相似文献   

3.
自50~55 Ma以来,印度次大陆向北与欧亚大陆碰撞后形成喜马拉雅—青藏高原造山带,碰撞导致地壳增厚致使高原大幅隆升,改变了亚洲大陆岩石圈的构造格局,也对东亚地区的气候和环境产生了巨大影响。阿尔金断裂作为青藏高原北缘的主控边界断裂,其运动学性质在20世纪70年代备受关注,不同量级的滑动速率引出了块体运动与东向逃逸和连续变形与地壳增厚两种端元模型。约10~15 Ma以来,在青藏高原南部与北部出现地堑与裂谷,为高原东西向拉张运动提供了证据,表明青藏高原开始经历地壳减薄过程。青藏高原形成以来形变场经历怎样变化,长时间尺度的地质学构造过程与现今GPS观测是否能够统一?10~15 Ma以来青藏高原地壳减薄过程造成高原高程怎样的变化?青藏高原北缘,尤其是跨阿尔金断裂具有怎样的现今三维地壳变形场,地壳应变是如何在北阿尔金断裂、祁漫塔格断裂和阿尔金断裂之间分配的?青藏高原北缘与塔里木盆地具有怎样的力学性质,对跨阿尔金断裂构造形变场造成怎样的影响?最后,GPS观测得到的现今地表形变场能够对青藏高原形变模式的争论作出何种解答?上述科学问题的解答,对于研究青藏高原隆升与变形过程具有十分重要的意义。本研究分为两部分。第一部分是青藏高原北缘三维震间运动场的观测与研究。在青藏高原北缘跨阿尔金断裂中段自建9个GPS连续台站并开展观测,根据区域研究特点设计无人值守的观测台站,具有低成本投入、高质量观测的特点。上述连续GPS台站的建立填补了青藏高原北缘,尤其是在阿尔金无人区地壳形变观测研究的空白,积累了宝贵的连续GPS数据;截止2015年7月,共有4年的连续GPS观测。数据分析结果证明,设计建站方法行之有效,GPS台站稳定、观测数据质量稳定、数据连续性稳定。结合使用中国大陆构造环境监测网络在研究区及邻域GPS连续台站数据作位置时间序列与速度场解算,获得青藏高原北缘地区跨阿尔金断裂中段现今三维形变场。使用三维线弹性后向滑移(backslip)块体运动模型,反演塔里木块体、北阿尔金块体、柴达木块体和祁漫塔格块体的三维块体运动。结果表明,北阿尔金山相对于塔里木盆地有(1.32±0.2)mm/a的抬升速率,相对于柴达木盆地具有(0.73±0.3)mm/a的抬升速率,可解释为北阿尔金块体存在显著的造山过程;阿尔金断裂有(8.21±0.60)mm/a的左旋走滑速率、(0.66±0.60)mm/a的缩短速率;祁漫塔格断裂有(0.53±0.60)mm/a的左旋走滑速率、(1.53±0.60)mm/a的缩短速率;北阿尔金断裂有(0.87±0.60)mm/a的左旋速率、(0.69±0.60)mm/a的缩短速率。同时,阿尔金断裂中、西两段滑动速率基本一致,约为8.0~10.0mm/a。定量研究结果支持连续形变与地壳增厚模型,表明相对塔里木块体,青藏高原北缘地区正在抬升、增厚,以北阿尔金山地区最为明显,抬升速率约达1.3mm/a。跨青藏高原北缘的阿尔金断裂、北阿尔金断裂和祁漫塔格断裂近200km的宽泛变形带内,南北向地壳缩短并不明显,缩短量仅约为2.9mm,且近一半缩短量发生在祁漫塔格山南侧。GPS观测阿尔金断裂车尔臣河段(~86°E)剖面表明,断裂两侧存在非对称变形特征。本文采用非对称变形模型反演GPS速度剖面数据,获得断裂两侧塔里木盆地和青藏高原北部的地壳介质剪切模量差异。结果显示,塔里木盆地地壳介质剪切模量约为青藏高原北部剪切模量1.53倍,相应S波波速比值为1.24,与Yang等人得到的地壳和上地幔三维VSV模型结果一致。地震学研究结果认为,青藏高原北部与东部地区在中地壳存在低速层,局部区域可能发生部分熔融;Hacker等进一步确认羌塘地块中地壳到深部地壳存在熔融现象。本文的研究运用了与地震学完全不同的资料,通过大地测量方法推导青藏高原北部与塔里木盆地的地壳介质力学性质差异,得到与地震学研究得到的S波波速比及其构造物理学解释相当一致的结果。成果为青藏高原力学演化模型提供新的约束。本论文第二部分内容是使用覆盖青藏高原及周边的GPS速度场,计算青藏高原内部应变率场。GPS观测速度场不仅显示了南东东-北西西向的地壳拉张过程,也揭示了青藏高原内部更加重要的地壳减薄过程。结果显示,青藏高原北部和南部的垂向应变率(减薄应变率)分别为(8.9±0.8)nanostrain/a和(7.4±1.2)nanostrain/a,青藏高原西南部的垂向应变率为(12.0±3.2)nanostrain/a,表明青藏高原内部大尺度范围应变率测量结果的一致性。并且青藏高原内部的拉张应变率观测也相当一致,青藏高原北部,沿着N114±1°E主应变方向的拉张应变率为(21.9±0.4)nanostrain/a;高原南部沿着N93±1°E主应变方向的拉张应变率为(16.9±0.2)nanostrain/a;高原西南部沿着N74±3°E主应变方向的拉张应变率为(22.2±1.8)nanostrain/a。如果地壳减薄开始于10~15 Ma,并且现今观测得到应变率适用于整个时间跨度,那么地壳累积减薄5.5~8.5km。应用Airy地壳均衡理论,青藏高原的平均高程将下降~1km。青藏高原北部、南部和西南部相似的垂向应变速率也表明,在3个区域的地壳拉张、正断裂运动和地壳减薄过程由相同的物理机制所支配。综合上述两部分研究成果,发现青藏高原现今垂向运动在高原内部和边缘地区存在很大差别。高原内部地区正在经历地壳减薄,而高原边缘地区正在经历不同程度的增厚与隆升。青藏高原北缘地区的垂向应变率约5~20nanostrain/a,如果考虑重力均衡作用,对应的垂向隆升速率在0.04~0.14mm/a左右。但是,对于局部地区如北阿尔金块体,其底部受到塔里木盆地南缘下插挠曲板块的支持,在没有重力均衡情况下,垂向隆升速率可能达到1mm/a。喜马拉雅地区呈现不同水平的垂向形变,垂向应变强烈(约10~80nanostrain/a),山脉底部受到印度下插板片的支持,无法通过重力均衡假定由垂向应变率估计隆升速率。但由GPS与水准数据约束的俯冲板片模型推测山脉隆升速率达到约7mm/a。而对于祁连山地区,GPS应变率推测得到垂向应变率约20~40nanostrain/a,应用地壳均衡理论,平均隆升速率为0.15~0.3mm/a;而由于逆冲推覆构造与褶皱变形带的存在,中下地壳有可能仍存在弹性变形,不能实现完全重力均衡,实际隆升速率有可能高于这一估计。本文研究给出青藏高原不同地区三维形变场与形变速率的定量估计,是对连续形变与地壳增厚形变模型的重要修正。结果并不支持块体运动与东向逃逸模型,并认为高原南北双向俯冲模型中的塔里木块体南向俯冲几乎不存在。  相似文献   

4.
以青藏高原北缘及东北缘的柴达木-祁连山地块内的活动断裂、由断裂所围限的微小块体为研究对象,系统收集整理区内活动断裂定量参数和GPS速度场等资料,使用球面应变率计算方法分析研究区内GPS 速度场得到现今构造应变率场,讨论区内最大剪应变率、面膨胀率与旋转率等参数与区域构造变形之间的关系;同时,依据区内详实的活动断裂资料建立精细的微小活动块体模型,利用Backslip模型反演断裂所围限的各个块体边界断裂的滑动速率、块体内部统一应变率及块体欧拉运动学参数等,并与活动构造方法获得的滑动速率做对比;最后,讨论研究区内由GPS速度场所揭示的地壳运动变形模式.结果表明:(1)柴达木-祁连山地区地壳运动,在沿着山脉走向上具有带状区域分块运动特征,大范围内具有弥散变形特征;(2)青藏高原北部变形场应是通过不同断裂差异性相对运动、区域内部逆冲挤压和块体旋转共同作用的结果.从鄂拉山到古浪民勤一带具有强烈的逆冲活动,其两侧地壳块体分别具有逆向旋转的运动性质;(3)在研究区东部GPS速度场所呈现顺时针旋转的形态,应是处于不同地块边界处的中下地壳与地幔介质差异驱动机制对上地壳块体所产生的作用,并以近地表断层应变率积累形式表现的结果,是祁连山地块、阿拉善块体、鄂尔多斯地块等大型块体推挤旋转影响下的复杂运动学形态.  相似文献   

5.
青藏高原东北缘是青藏高原横向扩展的前缘位置,其岩石圈变形方式和动力学机制是理解青藏高原横向扩展模式的关键.本研究利用数值模拟方法,以地表地形、岩石圈结构和地表热流等观测为约束,重点讨论了流变强度差异对青藏高原东北缘岩石圈变形方式的影响.结果表明:当青藏高原周缘地块岩石圈地幔强度相对较高,地壳强度相对较低的情况下,在不断扩展的青藏高原挤压作用下,周缘地块地壳增厚,增厚的地壳在重力作用下使得下覆岩石圈地幔俯冲下插;而当周缘地块岩石圈地幔强度非常高,则有限的地壳增厚不能使其俯冲下插,只能在地壳部分形成有限的缩短变形;低黏滞性、高速流动的下地壳使得下地壳整体增厚,从而对青藏高原地表的整体抬升有重要贡献,而对岩石圈地幔的变形方式影响有限.  相似文献   

6.
青藏高原东南部的地貌结构是高原隆升深部动力过程与高原扩展的重要指标之一,存在受下地壳流驱动的渐变模型和受宽约50~200km的雅砻-玉龙断裂系控制的陡变模型2种不同认识。文中基于30m分辨率的SRTM数据进行数字高程分析,利用高程和水系参数对研究区地貌加以提取和分析,结合野外地貌和构造调研的结果以及前人的相关研究,对高原东南缘川滇地块中部构造地貌细结构进行了详细的解析。研究认为,青藏高原东南边界具有明显的台阶式构造地貌结构,不同台阶梯度带受不同时期发育的NE-SW向断裂控制。其中一级边界位于木里-玉龙断裂,控制了平均海拔4 200m的高原面的东南边界,是渐新世—中新世早期构造抬升的结果;二级边界受中新世中期逆冲活动的金河-箐河断裂控制,其构成丽江—盐源一带海拔中等(约3 000m)、相对低起伏区域的东南边界。高原东南边界的台阶式构造地貌结构反映了高原向SE的前展式逆冲扩展。这种扩展模式并不支持下地壳管道流连续变形模型。  相似文献   

7.
根据中国大陆活动地块构造、全新世活动断裂、分辨率为1°×1°的中国大陆地壳波速结构等,建立了中国大陆构造应力应变场的二维有限元模型。利用GPS实测资料,导出现今中国大陆构造应力场年平均变化的有限元模型位移速率边界条件,进而通过数值模拟研究了中国大陆现今构造应力应变场的年变化图像的基本特征。研究结果表明:(1)中国大陆现今构造变形的总体特征受控于与周边板块的相互作用,其中印度板块起着主要控制作用。中国大陆西部具有向NNE方向的位移速率,其值在碰撞边界最大,由南至北、由西到东,向北的位移分量逐步减小而向东的位移分量逐步增大;东部地区存在着整体的向东运动,且具有一定的向南运动分量。(2)中国大陆现今地壳应力场近年来处于增强的进程中,且呈现了以青藏高原为中心向东辐射的基本形态。总体特征与中国大陆背景应力场相似,表明了中国大陆现今构造运动的继承性。(3)最大主应变具有明显的西高东低特征,西部构造活动强烈,而东部相对较弱。活动断裂带均为最大主应变的高值区,而它们所围限的活动地块内部的应变相对较小。(4)川滇地区的应力应变场具有特殊性,并非由单纯的板块边界碰撞所控制,周围活动地块的运动、下地壳或上地幔的物质流动以及特殊的边界构造形态(如喜马拉雅东构造结)的作用,均可能成为其区域构造应力应变场的控制因素。  相似文献   

8.
史克旭  张瑞青  肖勇 《地球物理学报》1954,63(12):4369-4381
青藏高原东北缘作为高原向外扩张的最前缘地区,代表了高原最新的变形状态,是研究青藏高原变形加厚的关键地区.本文利用"中国地震科学台阵探测"项目在南北地震带北段布设的密集宽频带流动台阵资料,采用虚拟地震测深方法(VDSS),对青藏高原东北缘及周边地区的地壳厚度进行了研究,以期为研究青藏高原东北向扩展的前缘位置,以及扩展的动力学模式等提供地球物理学依据.波形模拟的结果显示,研究区地壳厚度变化剧烈.其中,祁连和西秦岭地块内地壳厚度存在明显的东西向横向变化,以103°E为界,东部地区为45~50 km,而西部地区地壳已明显增厚,约达到55 km以上.与祁连造山带相邻的阿拉善块体南缘地壳也明显加厚,接近55 km,而阿拉善块体内部地壳厚度约为45~50 km.与其他研究地区相比,鄂尔多斯地块地壳相对要薄,但整体而言,鄂尔多斯地块地壳呈现南北薄(约45 km)、中央厚(约50 km)的形态特征.此外,在六盘山断裂带台站下方观测到复杂的SsPmp震相,推测为双Moho界面结构.结合其他地球物理学证据,我们认为青藏高原东北缘地区地壳增厚方式以均匀缩短增厚为主,且高原向北东扩展的前缘已越过祁连山北缘断裂,进入阿拉善块体南缘地区.  相似文献   

9.
海原—六盘山构造区为青藏高原东北部构造变形最为显著的区域之一,历史强震活动频繁,是研究青藏高原NE向扩展的重要窗口和地震孕育过程的理想场所。文中处理了跨海原-六盘山断裂2014—2020年期间2个轨道的时序Sentinel-1A/B SAR数据,获得了该区域InSAR视线向现今的地壳形变场。融合公开发表的近十多年时间尺度的水平GPS地壳运动速度场,获得了研究区高密度地壳水平形变场。对比GPS、水准和InSAR观测结果,以及GPS-InSAR融合的高密度水平形变场,分析讨论了该区域的地壳形变、应变场特征及其与构造之间的对应关系。主要结论如下:1)GPS和InSAR观测表明,1920年海原8.5级大地震的震后黏弹性松弛效应在海原断裂南侧至今仍较为明显;2)GPS-InSAR高分辨率水平形变场表明,狭义海原断裂左旋滑动速率的递减主要发生在中东段,而中西段递减并不显著,可能与海原断裂向六盘山断裂之间由左旋走滑向逆冲推覆构造转换有关;3)六盘山断裂中—南段的地壳垂直形变和水平形变场特征均显示,该段断裂可能处于强震孕育的中晚期,根据反演得到的断层运动参数和地震地质资料,估算六盘山断裂中—南段发生强...  相似文献   

10.
贺兰山西麓断裂的水平运动性质对厘定阿拉善地块与华北地块的现今界线,探讨青藏高原向NE扩展的影响范围均具有重要意义。通过野外地质地貌调查发现:贺兰山西麓断裂切割了新近系背斜的西翼,干河沟组和清水营组之间的地质界线被右旋错动,位移800m;在断裂附近的第四纪洪积高台地上,多处发育了与主断裂相交的次级张性节理(裂隙),其锐角指示主断裂具有右旋走滑性质;贺兰山西麓断裂南端发育的与主断裂斜交的正断层,表明断裂西盘向N运动并在端部形成拉张调整区,反映了主断裂水平运动为右旋走滑;形成于不同时期不同规模的冲沟跨断裂发生了明显的右旋扭动。因此,贺兰山西麓断裂的水平运动是右旋走滑,而非前人认为的左旋走滑。从断裂活动和新生代地层变形的相互关系分析,认为晚新生代以来,在贺兰山西麓断裂附近存在2个阶段的构造变形:即早期褶皱变形,后期断裂活动。这2次构造变形是青藏高原对阿拉善地块的持续推挤,导致其向NE侧向挤出的结果。青藏高原扩展的影响范围在上新世末已抵达贺兰山西麓地区,并导致贺兰山西麓断裂的右旋走滑运动,形成了阿拉善地块和华北地块的现今边界,也是青藏高原扩展的最新前缘。  相似文献   

11.
阿拉善地块南缘地处青藏高原东北缘地壳扩展前锋带的北侧,对该地区活动断裂晚第四纪的运动性质、滑动速率等开展研究,有助于理解阿拉善地块的晚第四纪构造变形特征及其对青藏高原向N扩展的响应。文中结合遥感影像解译与野外地质地貌考察,对阿拉善地块南缘的北大山断裂进行了分段和活动性研究。结果表明,北大山断裂左旋走滑断错晚第四纪洪积扇和阶地等地貌,形成显著的位错阶地坎、冲沟以及断层陡坎。通过对断错地貌线等标志的测量、复原、统计分析等,发现断裂的地貌位移值分布于3~20m,发育新鲜断层自由面的断层陡坎和左旋错动的纹沟指示了断层的最新一次活动。基于同期洪积扇年龄估算得到北大山断裂晚更新世以来的左旋滑动速率为0.3~0.6mm/a。北大山断裂的运动学特征与区域NE向应力场一致,可能受到了青藏高原NE向扩展的影响。  相似文献   

12.
作为控制断层两盘相对运动的重要因素,断裂带介质力学性能与断层面上的滑动速率及应力状态、区域地壳运动速度场等密切相关.受印度板块北东向推挤以及阿拉善地块和鄂尔多斯地块的阻挡作用,青藏高原东北缘构造变形复杂.本文在综合区域动力学环境、活动断裂空间展布以及下地壳黏滞性结构的基础上构建了青藏高原东北缘三维有限元动力学模型;以GPS速度场为约束模拟研究了断层剪切力学性能对区域地壳运动速度场图像的控制作用,进而在最优模型基础上分析了当前青藏高原东北缘不同断裂的应力状态.结果显示:阿尔金断裂东段和广义海原断裂对区域地壳运动速度场控制作用强烈,但二者剪切力学性能相反,阿尔金断裂东段断层剪切模量与周边地壳介质相当,而广义海原断裂断层剪切模量可低至周边地壳介质剪切模量的1/10000;六盘山断裂和西秦岭北缘断裂对区域地壳运动速度场的控制作用较弱,模拟结果显示二者均具有较强的剪切力学性能.基于最佳模型的应力状态分析指出:阿尔金断裂东段,广义海原断裂西段的木里—江仓断裂、中段的金强河—毛毛山—老虎山断裂、东段的六盘山断裂,以及西秦岭北缘断裂中西段当前应力率水平较高,且与前人给出的青藏高原东北缘高闭锁区域吻合.动力学上的高应力率与运动学上的强闭锁良好吻合,预示着这些断裂是地震危险分析值得关注的区域.  相似文献   

13.
随着空间大地测量技术不断发展,GPS观测的地壳水平形变速度场精度也在不断提高,更加严密的GPS应变分析模型将有助于促进更高精度的地壳运动模型的构建.大地线长度与对应球面弧长之间的差异与纬度、经度变化均有关,并且与纬度变化影响最为显著,纬度越低,相应的椭球面效应约显著.本文在最小二乘配置模型的基础上进一步研究并推导了基于椭球坐标系的GPS应变分析模型,通过该模型进一步计算了青藏高原南部喜马拉雅构造带及阿萨姆构造结地区现今GPS应变分布.最大、最小主应变的显示喜马拉雅山脉中部的南北向压缩变形最强,西部次之,东部最弱.在印度板块的俯冲推挤作用下,喜马拉雅构造带内部地壳的变形过程并不统一.本文研究发现雅鲁藏布江缝合带与亚东—古鲁断裂带是该区域地壳水平形变的两条重要分界构造,雅鲁藏布江缝合带南部、亚东—古鲁断裂西侧的条带状地区可能是青藏南部吸收来自印度板块俯冲挤压作用的主要区域,最大剪应变分布及面膨胀值分布均表明亚东—古鲁断裂带是喜马拉雅构造带东西向拉伸变形过程中的一条重要的分界构造.沿喜马拉雅构造带分布的地壳剧烈变形区域集中分布在断裂以西,向东跨过该断裂的GPS应变场大幅减弱.青藏高原东南缘以阿萨姆构造结为中心的顺时针旋转变形存在旋转内、外圈层速度不一致现象,旋转速率由内向外逐渐增强.  相似文献   

14.
喜马拉雅构造带及其临近区域是印度板块与欧亚大陆板块挤压碰撞的前缘地带.本文利用GPS实测速度场与震源机制解数据分别计算了研究区域现今地壳岩石圈表面的GPS应变场及岩石圈内部的主应力分布,研究了印度板块持续挤压作用下板块边界带地壳岩石圈现今地壳形变的空间分布特征.结果显示,南北向的剧烈挤压变形与东西向的拉伸变形是现今青藏高原南缘地壳岩石圈的主要变形特征.其中南北向的地壳挤压变形主要集中在主前缘冲断带与雅鲁藏布江缝合带之间.东西方向上,南北走向的亚东—谷露断裂是区域地壳东西向伸展变形的重要分界断裂.75°E是研究区域地壳形变的另一条显著不连续边界,其西侧地壳主压应变强度低、方向弥散且最大主压应力方向一致性较差,而东侧地壳主压应变方向与主压应力方向以及地壳水平运动速度场方向均具有较好的一致性.布格重力异常的小波多尺度辨析结果显示该分界带与循喜马拉雅西构造结楔入欧亚大陆的印度板块密切相关.  相似文献   

15.
基于中国大陆地壳运动观测网络GNSS速度场结果,通过最小二乘配置建模、速度残差检验、应变率场分析等,研究了西部地区地壳变形特征及其与M≥7.0强震孕育的关系。主要认识包括:①GNSS应变率场结果显示青藏高原西部地区(92.5°E以西)呈现明显的EW向拉张变形特征,青藏高原东部(92.5°E~100°E)则表现为显著的EW向挤压应变积累。②GNSS旋转率场显示中国大陆西部呈现由南向北逐渐衰减的交替旋转变形现象,藏南地区为大范围顺时针旋转变形特征,旋转率极值达4.5×10-8rad/a;柴达木地块表现为逆时针旋转变形特征,极值达-1.0×10-8rad/a;塔里木地块表现为顺时针旋转变形特征,极值达1.0×10-8rad/a。③2001~2018年中国大陆西部的7次M≥7.0强震均发生在与其构造背景一致的应变积累高值区边缘,呈现一定的孕震晚期特征。因此,最大剪应变率高值区边缘和大型走滑断裂交界部位、张应变率高值区边缘与大型正断层的交界部位、压应变率高值区边缘与大型逆断层交界部位是未来强震需要关注的地点。④2001年昆仑山口西地震导致了青藏高原东部地区较大尺度EW向挤压应变增强现象,在一定程度上反映了巴颜喀拉地块东向运动增强引起的变形调整过程,有利于汶川地震、芦山地震的孕育发生。  相似文献   

16.
六盘山断裂带及其邻区地壳结构   总被引:3,自引:1,他引:3       下载免费PDF全文
新生代期间,中国大陆西部受印度一欧亚板块碰撞和青藏高原隆升影响,以地壳缩短、增厚、陆内造山和强烈地震活动等为主要特征.在青藏高原东北边缘,高原物质侧向移动被鄂尔多斯地块所阻,在六盘山地区发育了一系列左旋斜冲断裂.断裂带周缘构造变形强烈,地震活动频繁,是研究青藏高原横向扩展控制大陆内部弥散变形的理想场所.本文对穿越青藏高原东北缘一六盘山断裂带一鄂尔多斯地块的宽角反射与折射地震资料使用层析成像和射线反演算法进行成像,获得了研究区地壳速度结构模型,其结果反映出六盘山断裂带两侧地壳结构、构造特征差异显著:1)上地壳层析成像结果显示鄂尔多斯盆地一侧地壳上部速度较低,等值线呈近水平状,具有典型的沉积盆地特征,而青藏高原东北缘一侧上地壳速度相对较高,横向变化剧烈,呈褶皱状,二者的分界为海原一六盘山逆冲走滑断裂;2)全地壳射线反演结果显示鄂尔多斯地块地壳速度梯度大,下地壳底部速度高由铁镁质物质组成,具有典型稳定古老克拉通的特征,青藏高原东北缘地壳速度总体较低,主要由长英质及长英-铁镁质过渡物质组成,具有典型造山带的特征,而六盘山断裂带下方地壳速度结构复杂,层面呈拱形,部分层出现速度逆转,为两个构造单元的接触过渡带;3)青藏高原东北缘一侧地壳厚度~50 km,鄂尔多斯地块地壳厚度~42 km,六盘山断裂带下方莫霍面发生叠置,揭示出青藏高原东北缘、鄂尔多斯地壳在六盘山下汇聚,较薄且刚性的鄂尔多斯地壳挤入较厚且塑性的青藏高原东北缘地壳中的构造模式.  相似文献   

17.
中国陆地现今水平形变状况及其驱动机制   总被引:1,自引:0,他引:1  
陈小斌 《中国科学D辑》2007,37(8):1056-1064
根据933个GPS测点速度场数据, 利用普通克里金插值和形函数求导原则获得球坐标下中国陆地的应变率场. 通过对所获得应变率场及前人结果的对比研究, 发现中国陆地内部连续形变和块体运动变形模式均有存在. 青藏高原和天山地区的变形以连续变形为主要特征, 构造变形广泛分布于全区域; 华南、准噶尔、塔里木、鄂尔多斯、东北等地块内部变形较弱, 变形主要发生在块体边缘的断裂带上, 表现为较为典型的块体运动的变形模式; 其他如阴山-燕山地块、华北平原地块、鲁东-黄海地块等则介于两者之间. 此外, 还发现中国陆地自西南向东北存在三条较为明显的北西向的膨胀条带. 这些结果表明, 印度板块的北北东向的推挤是中国陆地内部形变的主要推动力, 其不仅造成了青藏高原的隆升以及地壳的水平缩短和垂向增厚, 同时还引起了物质的放射式挤出. 这些挤出的物质, 一部分推动着其他块体的“逃逸”, 在周围环境的联合作用下, 造成中国西部的汇聚压缩和中国东部广泛分布的引张环境和局部复杂的变形状况, 另一部分则沿着川滇地块和滇南地块, 在华南地块和青藏高原之间挤出一条通道, 往东南方面流向缅甸山弧, 填补那里因板块俯冲的弧后拉张所造成的物质空缺.  相似文献   

18.
在青藏高原东边缘沿冕宁—宜宾进行了大地电磁探测研究,剖面西起康滇地轴,向东穿过大凉山地块,终止于四川盆地.利用带地形的NLCG(非线性共轭梯度)方法对资料进行了反演,得到沿剖面的二维电性结构.康滇地轴和大凉山地块地壳中存在向上拱起的高导层(HCL),顶面埋深为10~15 km,最浅处不足10 km,厚度大约15~25 km,最小电阻率小于10 Ωm.四川盆地中下地壳不存在高导层.和该剖面北侧的石棉—乐山剖面的地壳电性结构对比分析表明,高导层在南北方向上可能连续延伸,长度大于100 km.壳内高导层的高导电性与岩石的部分熔融有关,并可能含有百分之几的含盐流体,易于流动和变形.青藏高原东部地壳内的可流动层在向东或东南方向流动过程中,由于受到四川盆地的阻挡,转向南或南南东方向,大体沿着大凉山地块的走向.在东西方向,壳内高导层自川滇地块向东运动,穿过大凉山地块西边界的安宁河断裂和则木河断裂,在大凉山地块东部,向四川盆地深部倾俯.本文对于壳内可流动层的存在及其与青藏高原东边缘的变形和地震活动性的关系进行了探讨.  相似文献   

19.
青藏高原东南缘南段现今变形特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以青藏高原东南缘南段1999—2017年的GPS速度场为主,结合小震分布、历史地震和活断层探测等资料,首先,基于Okada断层位错模型反演了研究区域主要活断层的滑动速率;其次,以断层滑动速率和GPS速度场观测资料作为约束,利用DEFNODE负位错方法反演了研究区域的块体内部变形及主要活断层的闭锁程度和滑动亏损;最后,计算研究区域现今应变率场,并结合Pms和XKS剪切波分裂结果,探讨分析了青藏高原东南缘的动力学特征.研究结果表明:(1)红河断裂带现今滑动速率明显低于南华—楚雄—建水断裂和无量山断裂;(2)红河断裂带的元江—元阳段、鹤庆—洱源段和小江断裂带北段处于强闭锁状态,南华—楚雄—建水断裂带和无量山断裂带中—北段的闭锁程度强于南段;(3)青藏高原东南缘南段现今地壳变形表现为近E-W向的拉张和近N-S向的挤压,最大剪切方向与Pms和XKS剪切波分裂的快波方向呈一定角度,表明地壳与地幔处于完全解耦状态,而中-下地壳低速层可能是壳幔解耦的主要原因之一;(4)青藏高原东南缘的整体变形受控于印度板块的推挤、印缅俯冲带的深源俯冲以及缅甸微板块与巽他板块的后撤/回退的共同作用.  相似文献   

20.
利用GPS大地测量数据,借助最小二乘配置方法构建位移与应变间的偏导关系,探讨了鄂尔多斯地块西南缘地震空区近10年尺度地壳运动速度场、应变场的动态演化特征,分析了研究区域较少发生地震的成因。结果表明:地壳物质流在阿拉善地块、鄂尔多斯地块与西秦岭构造区的复杂地质构造交汇处,地壳内部物质流加速东移,板块间应力积累特征不显著;六盘山断裂、陇县—宝鸡断裂带以西,显示了EW向或NE向的压应变,而沿断裂走向则以拉应变为主,表明西侧地壳物质沿鄂尔多斯地块西南缘东迁顺时针旋转的运动状态;在岐山至扶风一带,出现了面膨胀的特征,释放了地壳内部的压应力,但构造内部运动并无闭锁现象出现,这可能降低了研究区域地震孕育与发生的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号