首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physics of the two processes (saltation and sandblasting) leading to fine mineral dust emissions by wind erosion in arid or semi-arid areas has been detailed and modeled. The combination of these two models has led to a physically explicit Dust Production Model (DPM). In this work, sensitivity tests are performed with the DPM to determine the nature of the main soil parameters that control dust emissions by sandblasting. It is found that the soil roughness length and the dry size distribution of the soil aggregates constituting the loose wind erodible fraction of the topsoil have the greatest influence on the soil potential for mineral dust production. Contrary to what is often assumed, soil texture is not a relevant parameter.In the light of these new findings, results of vertical flux measurements performed over a wide variety of sources in Niger and the US south west (14 soils) have been reanalyzed. Results show (1) that for the tested soils the DPM, and hence sandblasting, explain all dust emissions, and (2) that 13 of the 14 soils that had been selected a priori for their high potential for dust emissions contained a fine soil-aggregate component. This is consistent with the sensitivity tests indicating that the presence of such a component could enhance dust emissions by one order of magnitude. Finally, it can be concluded that most of the apparent scatter in the experimental results was in large part due to an inappropriate choice of soil parameters to interpret them.  相似文献   

2.
若干风蚀粉尘释放模型述评   总被引:6,自引:1,他引:6  
粉尘气溶胶对大气、陆地和海洋多方面的影响促进了粉尘释放的模拟研究。Gillette和美国FPA的粉尘释放模型相对地比较简单,主要考虑了摩阻速度和土壤质地对粉尘释放的影响,没有考虑粉尘释放过程的微观机制;邵亚平和Alfaro等人的DPM粉尘释放模型都通过土壤粒度分布、粗糙度和起动摩阻速度等参数表达了地表特征对粉尘释放的影响,且都描述了粉尘释放的微观机制。20多年来粉尘释放的模拟研究取得了重要进展,主要表现在通过室内和野外实验证实了粉尘释放的主要机制为跃移颗粒的冲击,并分别从粉尘的结合能与跃移颗粒动能及跃移颗粒产生的弹坑体积角度来描述这个微观机制。然而所有的模拟工作只是从某一方面反映了粉尘释放过程,对粉尘释放机制还没有完全了解清楚,特别的是目前关于粉尘结合能研究还有很大的不确定性,这也是粉尘释放模型需要改进的地方。  相似文献   

3.
Wind erodibility of major soils in the farming-pastoral ecotone of China   总被引:2,自引:0,他引:2  
Wind erosion and desertification are severe problems in China's farming-pastoral ecotone. In this study, wind erodibility of five major soils in both uncultivated and simulated cultivated conditions, were determined through wind tunnel tests at nine wind speeds ranging from 10 to 26 m s−1. The average wind erosion rate (g m−2 min−1) under the uncultivated condition (q0) for the five soils could be set in the order: chestnut soil (28.5)>brown soil (24.8)>sierozem (21.8)>chernozem (19.9)>fixed sandy soil (11.4). The highest natural wind erosion might take place in the semi-arid steppe zone where the Chestnut soils predominate. Cultivation can significantly accelerate wind erosion, the mean wind erosion rate under the cultivated condition (qc) for all five soils was 743.7 g m−2 min−1 in the following order: sandy soil (3313.2)>brown soil (227.2)>chernozem (221.8)>sierozem (85.1)>chestnut soil (81.2). For both the uncultivated and cultivated soil samples, the relationship between wind erosion rate (q) and wind speed (U) could be expressed in general as q=A eBU (A and B are constant coefficients). There was a critical wind speed for each soil type except for the sandy soil. Below the critical wind speed, cultivation reduced wind erosion rate possibly due to soil clodiness and roughness effects. Above the critical speed, cultivation greatly intensified wind erosion rates due to the break down of the original soil structure. The critical wind speed measured at 20 cm above the soil surface was 20 m s−1 for the brown soil, 14 m s−1 for chernozem and the chestnut soils, and 10 m s−1 for the sierozem. Among the five tested soils, the high wind erosion rate of the cultivated sandy soil showed its extreme sensitivity to cultivation, possibly because of the structureless nature of the loose sand. The “effect of cultivation on wind erosion” index, η (=qc/q0), increased exponentially with the increase of wind speed, indicating that under higher wind speed conditions, cultivation could result in more severe wind erosion.  相似文献   

4.
风蚀影响因子的敏感性试验   总被引:3,自引:0,他引:3  
 对风蚀模式的各重要影响因子进行了敏感性试验,结果表明:①随风力的增大,跃动沙粒的粒径范围迅速增大,从而会使更多、更大的尘粒因受到更强烈的撞击作用而释放于空中。但随土壤水分和植被覆盖度的增加,跃动沙粒粒径范围会变窄,较大的粒子很难被激发到空中。②各种土壤沙流通量及尘粒释放率随粒径的变化趋势Q(d)和F(d)与相应的地表土壤有效粒度分布Ps(d)具有相似的特征,说明前人用近地层沙尘粒度分布来代表地表土壤的有效粒度分布是合理的。③若以总沙流通量Q>0.5 g·m-1·s-1为风蚀过程开始发生的标准,在干燥、裸露的情况下,沙土、沙壤土、壤土、黏土和粉黏土表面发生风蚀的临界摩擦速度都约为0.3 m·s-1。相同风力条件下(u*=0.6 m·s-1),若地表干燥(w=0)并忽略小于0.1 g·m-1·s-1的总沙流通量,则抑制5种土壤发生风蚀的最小植被覆盖度分别约为:沙土0.35、沙壤土0.45、壤土0.45、黏土0.55、粉黏土0.55;若地表裸露,抑制风蚀发生的最小水分含量分别为:沙土0.15、沙壤土0.18、壤土0.3、黏土0.36和粉黏土0.33。④通常情况下沙土最不易起尘,它在各个粒径的尘粒释放率比其他土壤均约小3~5个量级。粉黏土最易起尘,且粒径较小,较容易传输到下游很远处。⑤总尘粒释放率F和总沙流通量Q随风力、地表条件的变化一般是同相的,即Q增大,F也会增大。⑥一般情况下F随摩擦速度u*的增大或植被覆盖度cf和土壤水分w的减小而增大;土壤拖曳系数sx和弹性压力垂直分量pye的增加会大大降低尘粒释放率。⑦通常风蚀情况下,5种土壤中粉黏土和沙壤土因聚合粒子破碎产生的尘粒释放率Fc最大,Fc随风力、地表条件变化的敏感度也最强;沙土的Fc最小,其对风力、地表条件的敏感度也最弱。  相似文献   

5.
The flux profile of a blowing sand cloud: a wind tunnel investigation   总被引:11,自引:0,他引:11  
The flux profile of a blowing sand cloud, or the variation of blown sand flux with height, is the reflection of blown sand particles that move in different trajectories, and also the basis for checking drifting sand. Here we report the wind tunnel results of systematic tests of the flux profiles of different sized sands at different free-stream wind velocities. The results reveal that within the 60-cm near-surface layer, the decay of blown sand flux with height can be expressed by an exponential function: qh=aexp(−h/b), where, qh is the blown sand transport rate at height h, a and b are parameters that vary with wind velocity and sand size. The significance of coefficient a and b in the function is defined: a represents the transport rate in true creep and b implies the relative decay rate with height of the blown sand transport rate. The true creep fraction, the ratio of the sand transported on the surface (h=0) to the total transport varies widely, decreasing with both sand size and wind speed. The flux profiles are converted to straight lines by plotting sand transport rate, qh, on a log-scale. The slope of the straight lines that represents the relative decay rate with height of sand transport rate decreases with an increase in free-stream wind velocity and sand grain size, implying that relatively more of the blown sand is transported to greater heights as grain size and wind speed increase. The average saltating height represented by the height where 50% of the cumulative flux percentage occurs increases with both wind speed and grain size, implying that saltation becomes more intense as grain size and/or wind velocity increase.  相似文献   

6.
Z.S. Li  D.J. Feng  S.L. Wu  A.G.L. Borthwick  J.R. Ni   《Geomorphology》2008,100(3-4):484-493
Size frequency distributions of sediment particles in a wind tunnel containing a bed of non-uniform sand are investigated by re-interpreting existing experimental data using particle-size analysis. Each particle sample is classified into one of eight groups according to its size grading. The analysis reveals that the modal shape of the particle-size frequency distributions of the saltating sand at different elevations or longitudinal distances is similar to that of the mixed sand in the bed once the boundary layer is fully developed. The standard deviation of the grain-size frequency distribution increases with increasing elevation above the bed then stays constant, whereas its skewness decreases. The mean grain size decays exponentially with elevation. The aeolian sand mass flux is determined for each size grading at different vertical and horizontal measurement locations. The vertical profile of aeolian horizontal mass flux depends on the size grading. The distribution of the sand transport rate according to the mean grain size in each grading fits the normal distribution. A parameter wi is defined to reflect the likelihood of saltation for sand particles of the i-th size grading, and the mean sand size corresponding to the maximum value of wi is found to be 0.2 mm. In addition, wind velocity strongly influences the magnitudes of the particle-size distribution and the sand mass flux distribution in both vertical and longitudinal directions.  相似文献   

7.
It is usually recognized that relatively large amounts of soil particles cannot be transported by raindrop splashes under windless rain. However, the splash-saltation process can cause net transportation in the prevailing wind direction since variations in splash-saltation trajectory due to the wind are expected in wind-driven rain. Therefore, determining the combined effect of rain and wind on the process should enable improvement of the estimation of erosion for any given prediction technique. This paper presents experimental data on the effects of slope aspect, slope gradient, and horizontal wind velocity on the splash-saltation trajectories of soil particles under wind-driven rain. In a wind tunnel facility equipped with a rainfall simulator, the rains driven by horizontal wind velocities of 6, 10, and 14 m s−1 were allowed to impact three agricultural soils packed into 20×55 cm soil pans placed at both windward and leeward slopes of 7%, 15%, and 20%. Splash-saltation trajectories were measured by trapping the splashed particles at distances downwind on a 7-m uniform slope segment in the upslope and downslope directions, respectively, for windward and leeward slopes. Exponential decay curves were fitted for the mass distribution of splash-saltation sediment as a function of travel distance, and the average splash-saltation trajectory was derived from the average value of the fitted functions. The results demonstrated that the average trajectory of a raindrop-induced and wind-driven soil particle was substantially affected by the wind shear velocity, and it had the greatest correlation (r=0.96 for all data) with the shear velocity; however, neither slope aspect nor slope gradient significantly predicted the splash-saltation trajectory. More significantly, a statistical analysis conducted with nonlinear regression model of C1(u*2/g) showed that average trajectory of splash saltation was approximately three times greater than that of typical saltating sand grain.  相似文献   

8.
乌兰布和沙漠东北缘地表风沙流结构特征   总被引:13,自引:4,他引:9  
在国家林业局磴口荒漠生态站长期监测的基础上,利用多种积沙仪,对乌兰布和沙漠东北缘流动沙丘、油蒿半固定沙丘、白刺半固定沙丘、油蒿固定沙丘、白刺固定沙丘5种典型下垫面近地面(0~100 cm)的风沙流输沙量进行了实地观测和对比分析。结果表明:(1) 输沙率(q)随高度(h)增加呈幂函数(q=ah-b,R2≥0.8409)规律衰减,随风速(v)增大呈幂函数(q=avb,R2≥0.9256)规律增加,42.8%~70.7%的输沙量分布在10 cm高度内,67.6%~90.0%的输沙量分布于30 cm高度内。当地表植被盖度达到40%以上时,输沙率下降至无植被覆盖地表输沙率的6.6%以下,可有效阻止地表风蚀。(2) 沙物质主要由粒径为50~250 μm的细沙和极细沙构成,各高度层风蚀物粒度组成服从单峰态分布,峰值在100~250 μm。随高度增加,风蚀物粒径范围趋于变窄,粒径趋于更细。(3) 起沙风多出现在WSW和NW方向,占全年起沙风的53.19%。风沙流中跃移输沙、蠕移输沙的空间分布在理论上应与风向频率分布基本一致,差异性主要由各方位风的强度和持续时间等因素导致。研究结果可为该区域防沙工程设计提供理论参考。  相似文献   

9.
Wind erosion of soil is an appreciable but unstudied event following fires in cold desert. We examined aeolian transport of sediment for 1 year following fire in semi-arid shrub steppe on loess soils in southern Idaho, USA. Sediment collectors were used to determine horizontal mass transport of soil and saltation sensors and anemometers were used to determine saltation activity (fraction of time having saltation) and threshold wind speed in an area burned in August and an unburned control site. Horizontal mass transport (per 30-day period) was negligible in the unburned area, but in the burned area was 5.40 kg m?1 in October and decreased to 2.80 kg m?1 in November and 0.32 kg m?1 in December. Saltation activity was high enough to determine threshold wind speeds only in the burn site during fall, when values ranged from 10.0 to 10.6 m s?1. Sediment flux and saltation activity in the burned site became much less pronounced following the emergence of herbaceous vegetation in the spring. Post-fire sediment flux in the shrub steppe we examined was of greater magnitude but shorter duration than post-fire fluxes in warm deserts or sandier regions that experience more frequent wind erosion.  相似文献   

10.
Loessial sandy loam soils are the major soil categories in the northern Loess Plateau, China. Owing to a dry, windy climate and sparse surface cover, wind erosion is a serious problem and dust (sand) storms occur frequently. Soil moisture is one of the most important factors influencing resistance to wind erosion. The influence of moisture content on the erodibility of sandy loam soils was investigated through wind tunnel simulations. Results showed that the threshold velocity for soil particle movement by wind increases with increasing soil moisture by a power function. The intrinsic factor in the increase in soil resistance due to moisture content is the cohesive force of soil water. Cohesive forces of the film and capillary water are different; the influence of soil moisture on threshold velocity was shown to follow a step-like pattern. The wind erosion modulus of sandy loam was directly proportional to the cube of the wind velocity or the square of the effective wind velocity (V−Vt). There existed a negative exponential relationship between the wind erosion rate and soil moisture content. Initially, as soil moisture increased the decrease in the wind erosion rate was rather rapid. When the moisture content reached more than 4%, the rate of decrease in erosion slowed and became almost constant with successive increments of moisture. This suggests that different soil moisture contents can prevent wind erosion at different levels. Four percent soil moisture could only reduce the erodibility of the sandy loam soil by a small degree.  相似文献   

11.
A portable wind tunnel was used to test the contribution of biological and physical elements to overall soil aggregation on a soil dominated by biological soil crusts in south-eastern Australia. After moderate disturbance and simulated wind erosion, 90% of surface aggregates on the loamy soil and 76% on the sandy soil were dominated by biological elements (cryptogams). Lower levels of biological bonding were observed on the severely disturbed treatment. Linear regression indicated a significant positive relationship (r2=0·72) between biological soil crust cover and dry aggregation levels greater than 0·85mm. To maintain sediment transport below an erosion control target of 5gm−1s−1 for a 65kmh−1 wind at 10m height, a crust cover of approximately 20% is required. When a multiple regression model which sequentially fitted biological crust cover and dry aggregation greater than 0·85mm was applied to the data, dry aggregation accounted for more of the variation in sediment transport rate than biological crust cover. These data were used to develop a conceptual model which integrates crust cover and dry aggregation, and provides a useful framework within which to predict the likely impacts of changes in soil crust cover and aggregation.  相似文献   

12.
Piñon (Pinus edulis)-juniper (Juniperus monosperma)-ecosystems increased substantially in the western USA during the 20th century. Sustainability of these ecosystems primarily depends on soil quality and water availability. This study was undertaken with the objective of assessing the effect of tree species on soil physical quality in a semi-arid region in the western part of Sugarite Canyon, northeast of Raton, Colfax County, NM (37°56′32″N and 104°23′00″W) USA. Three cores and three bulk soil samples were obtained from the site under the canopy of three juniper, Gambel oak (Quercus gambelii) and piñon trees for 0–10 and 10–20 cm depths. These samples were analyzed for particle size distribution, soil bulk density (ρb), water stable aggregation (WSA), mean weight diameter (MWD) of aggregates, pH, electrical conductivity (EC) and soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks. Sand content was greater under juniper (48%) than oak (32%), whereas clay content followed the opposite trend. The ρb, WSA, MWD, pH and EC were similar under juniper, piñon, oak canopies for both depths. Estimated (from Philip and Green and Ampt infiltration models) and measured water infiltration parameters did not vary among these sites and were in accord with the values for ρb, WSA and MWD. The SOC concentrations and stocks were greater under oak (43.1 Mg ha−1 for 0–10 and 37.5 Mg ha−1 for 10–20 cm depths) than piñon (23.3 Mg ha−1 for 0–10 and 18.5 Mg ha−1 for 10–20 cm depths). The TN concentrations were greater under oak (3.4 g kg−1) than piñon (1.7 g kg−1) for the 0–10 cm depth only. Accumulation of detritus material under tree canopies reduced soil compaction and crusting caused by raindrop impact and increased SOC, and TN concentrations, and water infiltration. Coefficients of variation ranged from low to moderate for most soil properties except infiltration rate at 2.5 h, which was highly variable. Overall, soil quality for each site was good and soil aggregation, water infiltration and SOC concentrations were high, and soil ρb was low.  相似文献   

13.
Detailed wind tunnel tests were carried out to establish the mean downwind velocity and transport rate of different-sized loose dry sand at different free-stream wind velocities and heights, as well as to investigate the vertical variation in the concentration of blowing sand in a cloud. Particle dynamic analyzer (PDA) technology was used to measure the vertical variation in mean downwind velocity of a sand cloud in a wind tunnel. The results reveal that within the near-surface layer, the decay of blown sand flux with height can be expressed using an exponential function. In general, the mean downwind velocity increases with height and free-stream wind velocity, but decreases with grain size. The vertical variation in mean downwind velocity can be expressed by a power function. The concentration profile of sand within the saltation layer, calculated according to its flux profile and mean downwind profile, can be expressed using the exponential function: cz=ae−bz, where cz is the blown sand concentration at height z, and a and bare parameters changing regularly with wind velocity and sand size. The concentration profiles are converted to rays of straight lines by plotting logarithmic concentration values against height. The slope of the straight lines, representing the relative decay rate of concentration with height, decreases with an increase in free-stream wind velocity and grain size, implying that more blown sand is transported to greater heights as grain size and wind speed increase.  相似文献   

14.
黄河内蒙古段土壤风蚀特征模拟   总被引:1,自引:0,他引:1  
采集黄河内蒙古段风沙土、灰漠土、棕钙土和灌淤土,在室内进行土壤理化性质测定和风洞模拟试验。对比分析了4种土壤的理化性质和不同风速及含水量条件下的风蚀特征,并量化了不同土壤的风蚀强度与土壤理化性质间关系。结果表明:(1)相对于棕钙土和灌淤土,风沙土和灰漠土易蚀性颗粒含量较大,团聚体、有机质和碳酸钙含量较低,但相同风速和含水量条件下平均风蚀强度风沙土>棕钙土>灰漠土>灌淤土。(2)不同土壤风蚀强度与风速均呈较好的幂函数关系(R2≥0.85,P<0.05),尤其是风沙土和棕钙土,幂函数关系明显优于指数函数。(3)除灰漠土,土壤风蚀强度与土壤含水量均呈较好指数函数关系(R2>0.90,P<0.05),风沙土和灰漠土的风蚀强度突降的含水量临界点在4.5%左右,灌淤土和棕钙土无明显临界点。(4)不同土壤输沙率均随距地表高度的增加而急剧减少。在距地表10 cm范围内,不同土壤输沙率占总输沙率比例风沙土(82.67%)>灰漠土(80.77%)>灌淤土(74.07%)>棕钙土(73.77%),当距地表大于30 cm后,集沙仪中基本收集不到风沙土和灰漠土风蚀颗粒。当轴心风速为16 m·s-1时,不同土壤风沙流结构均表现为单峰曲线。(5)不同土壤风蚀强度与风速、含水量、团聚体、易蚀性颗粒和黏粒含量均呈较强的非线性相关关系(R2=0.76,P<0.05)。易蚀性颗粒含量是影响风蚀强度最主要的土壤属性,其次是干团聚体和黏粒含量。  相似文献   

15.
Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with limited size, this gradient is required to maintain the movement of the saltation cloud. Attempts are made to investigate the effects of the downwind air pressure gradient on the wind-saltation interaction in a saltation boundary layer based on the experimental results from a wind tunnel with a relatively small cross-sectional area. The wind-saltation interaction is characterized by airborne stress, grain-borne stress, and the force exerted on the wind by the saltation cloud. Basic equations were developed for wind-saltation interactions without and with a downwind air pressure gradient. The results reveal that unacceptable values of negative grain-borne stress and negative force exerted on the wind by the saltation cloud are obtained if the downwind air pressure gradient is ignored. When this air pressure gradient is defined using the measured wind velocity profiles in the presence of saltation and the downwind air pressure gradient is taken into account, reasonable values for grain-borne stress and the force exerted on the wind by the saltation cloud are obtained. These results suggest that attention must be paid to the effects of downwind air pressure gradients when studying the wind-saltation interaction in a wind tunnel. Consideration of the downwind air pressure gradient, inertial forces, and other unidentified variables will provide a more thorough understanding of the interactions within a saltation boundary layer.  相似文献   

16.
A fundamental feature of any wind-eroding surface is its threshold — the lowest wind speed (or friction velocity) at which soil movement is initiated. Many theoretical equations and numerical models of the saltation process include threshold as an important basic parameter. The question addressed here is whether or not the averaging time of a wind speed measurement affects the observed wind speed threshold. Using wind speed data taken at 1 Hz and simultaneously measuring saltation activity with a piezoelectric saltation sensor it was possible to calculate threshold. Threshold was then recalculated using the same data set averaged over periods of 2, 5, 10, 20, 30, and 60 s. The results reveal that, under typical field conditions with gusty turbulent winds, long averaging times produce an apparent threshold that is considerably lower than the true wind speed at which saltation is initiated. This result suggests that high-frequency sampling of wind speed and saltation activity is critical to the accurate determination of the true threshold of a wind-eroding surface.  相似文献   

17.
Despite more than 40 yr of research attributing temporal changes in streambank erosion rates to subaerial processes, little quantitative information is available on the relationships between streambank erodibility (kd) and critical shear stress (τc) and the environmental conditions and processes that enhance streambank erosion potential. The study goal was to evaluate temporal changes in kd and τc from soil desiccation and freeze–thaw cycling. Soil erodibility and τc were measured monthly in situ using a multiangle, submerged jet test device. Soil moisture, temperature, and bulk density as well as precipitation, air temperature, and stream stage were measured continuously to determine changes in soil moisture content and state. Pairwise Mann–Whitney tests indicted kd was 2.9 and 2.1 times higher (p < 0.0065) during the winter (December–March) than in the spring/fall (April–May, October–November) and the summer (June–September), respectively. Regression analysis showed 80% of the variability in kd was explained by freeze–thaw cycling alone. Study results also indicated soil bulk density was highly influenced by winter weather conditions (r2 = 0.86): bulk density was inversely related to both soil water content and freeze–thaw cycling. Results showed that significant changes in the resistance of streambank soils to fluvial erosion can be attributed to subaerial processes. Water resource professionals should consider the implications of increased soil erodibility during the winter in the development of channel erosion models and stream restoration designs.  相似文献   

18.
The central problem of a combined analysis of digital terrain models (DTMs) and other landscape data is determination of a DTM grid size (w) providing a correct study of relationships between topographic variables and landscape properties. Generally, an adequate w is determined by an expert estimate, and solutions are largely subjective. We developed an experimental statistical method to determine an adequate w for DTMs applied to landscape studies. The method includes the following steps: (a) derivation of a DTM set using a series of wi , (b) performance of a correlation analysis of data on a landscape property and a topographic variable estimated with various wi , (c) plotting of correlation coefficients obtained versus w, and (d) determination of smoothed plot portions indicating intervals of an adequate w. We applied the method developed to study the ifluence of topography on the spatial distribution of soil moisture (M) at a micro-scale. We investigated the dependence of M on gradient (G), horizontal (kh ), vertical (kv ), and mean (H) landsurface curvatures. For DTM derivation, we used 13 values of wi from 1 to 7m. An interval of adequate wi for M falls between 2.25 and 3.25m in the given terrain conditions. In absolute magnitudes, correlation coefficients are largest within this interval; correlation coefficients of M with G, kh , kv and H are 0.28, 0.52, 0.50 and 0.60, respectively, for w = 3m. The results obtained demonstrate that the method actually works to identify an adequate w at a micro-scale. The method developed allows estimation of an adequate area of landform which realise a topographic control of landscape properties.  相似文献   

19.
《Geomorphology》2004,57(1-2):117-127
Detailed wind tunnel tests were conducted to examine the fetch effect of a sandy surface on a sand cloud blowing over it. The results suggest that the fetch length of a sandy surface has a significant effect on both the vertical flux profile and total horizontal flux. The sand flux over a sandy surface increases with height in the very near surface layer, but then decays exponentially. In agreement with the widely accepted conclusion, the decay function can be expressed by q=aexp(−h/b), where q is the sand flux at height h. Coefficient a that tends to increase with wind speed implies the influence of wind, while coefficient b that defines the relative decay rate shows the influence of both the fetch and wind. The relative decay rate increases with fetch when the fetch length is short, then becomes constant when the fetch reaches a certain length. The threshold fetch length over which the relative decay rate keeps constant increases with wind speed. The average saltation height generally increases with fetch. Both the relative decay rate and average saltation height show that the fetch effect on the flux profile becomes more significant when the wind speed increases. The total sand transport equation for the total fetch can be expressed by Q=C(1−Ut/U)2U3(ρ/g), where Q is the total sand transport rate, U and Ut are the wind velocity and threshold wind velocity at the centerline height of the wind tunnel, respectively, g is gravitational acceleration, ρ is the density of air, and C is a proportionality coefficient that increases with the fetch length, implying that the total sand flux increases with the fetch length.  相似文献   

20.
Wind erosion has major impacts on dune growth, desertification, and architecture on sea coasts. The deflation threshold shear velocity is a crucial parameter in predicting erosion, and surface moisture greatly affects this threshold and thus sand stability. Wind tunnel studies have shown that reduced moisture contents decrease entrainment thresholds and increase wind erosion, but field and wind tunnel test data is lacking for tropical humid coastal areas. In this study, we investigated the influence of surface moisture contents (at 1 mm depth) on sand entrainment and erosion using tropical humid coastal sands from southern China. Shear velocities were deduced from velocity profiles above the sand. The threshold shear velocity increased linearly with increasing ln100M (M, gravimetric moisture content). The increase was steepest below a moisture content of 0.0124 (i.e., at M1.5, the moisture content in the sand at a matric potential of − 1.5 MPa). We compared several popular models that predict threshold shear velocity of moisture sediment, and found substantial differences between their predicted results. At a surface moisture content of 0.0124, the predicted increase in the wet threshold shear velocity compared with the dry threshold shear velocity ranged from 34% to 195%. The empirical model of Chepil and Selah simulated the data well for M < 0.0062 (i.e., 0.5M1.5), whereas Belly's empirical model simulated the data best for > 0.0062. Wind erosion modulus increased with increasing effective wind velocity following a power function with a positive exponent at all moisture contents, but decreased with increasing surface moisture content following a power function with a negative exponent. When wind speed and moisture content varied simultaneously, wind erosion modulus was proportional to the 0.73 power of effective wind velocity, but inversely proportional to the 1.48 power of M. The increase in resistance to erosion at low moisture contents probably results from cohesive forces in the water films surrounding the sand particles. At a moisture content near M1.5, wind erosion ceases nearly for all wind velocities that we tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号