首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We review and discuss horizontal branch (HB) stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC—an argument which, due to its strong reliance on the ancient RR Lyrae stars, is essentially independent of the chemical evolution of these systems after the very earliest epochs in the Galaxy’s history. Convenient analytical fits to isochrones in the HB type–[Fe/H] plane are also provided. In this sense, a rediscussion of the second-parameter problem is also presented, focusing on the cases of NGC 288/NGC 362, M13/M3, the extreme outer-halo globular clusters with predominantly red HBs, and the metal-rich globular clusters NGC 6388 and NGC 6441. The recently revived possibility that the helium abundance may play an important role as a second parameter is also addressed, and possible constraints on this scenario discussed. We critically discuss the possibility that the observed properties of HB stars in NGC 6388 and NGC 6441 might be accounted for if these clusters possess a relatively minor population of helium-enriched stars. A technique is proposed to estimate the HB types of extragalactic globular clusters on the basis of integrated far-UV photometry. The importance of bright type II Cepheids as tracers of faint blue HB stars in distant systems is also emphasized. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyr, is also revisited. Taking into due account the evolutionary status of RR Lyr, the derived relation implies a true distance modulus to the LMC of (mM)0=18.44±0.11. Techniques providing discrepant slopes and zero points for the M V (RRL)–[Fe/H] relation are briefly discussed. We provide a convenient analytical fit to theoretical model predictions for the period change rates of RR Lyrae stars in globular clusters, and compare the model results with the available data. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are also investigated. M. Catelan is John Simon Guggenheim Memorial Foundation Fellow.  相似文献   

2.
Most of the radio galaxies with z > 3 have been found using the red-shift spectral index correlation. We have started a programme with the Giant Metrewave Radio Telescope (GMRT) to exploit this correlation at flux density levels about 100 times deeper than the known high-redshift radio galaxies, with an aim to detect candidate high-redshift radio galaxies. Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, 610 and 1412 MHz with the Westerbork Synthesis Radio Telescope (WSRT) and at 1400 and 4860 MHz with the Very Large Array (VLA). We find about 150 radio sources with spectra steeper than 1. About two-thirds of these are not detected in Sloan Digital Sky Survey (SDSS), hence are strong candidate high-redshift radio galaxies, which need to be further explored with deep infra-red imaging and spectroscopy to estimate the red-shift.  相似文献   

3.
Using the Australia Telescope Compact Array (ATCA), ATLAS (Australia Telescope Large Area Survey) is imaging two fields totalling 7 square degrees down to 10 μJy beam − 1 at 1.4 GHz. We have found 6 wide-angle tail galaxies (WATs), 4 of which have sufficient data to identify associated galaxy overdensities. The largest WAT, at a red-shift of 0.22, appears to be associated with an overdensity of galaxies that is spread over an unusually large extent of 12 Mpc, with a velocity range of 4500 km s − 1. Here we present the WATs in ATLAS and discuss the implications of these observations for future large-scale radio surveys such as ASKAP-EMU.  相似文献   

4.
We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015–2025 planning cycle. SPACE aims to produce the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts for more than half a billion galaxies at 0 < z < 2 down to AB~23 over 3π sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB~26 and at 2 < z < 10 +. These goals are unreachable with ground-based observations due to the ≈500 times higher sky background (see e.g. Aldering, LBNL report number LBNL-51157, 2001). To achieve the main science objectives, SPACE will use a 1.5 m diameter Ritchey-Chretien telescope equipped with a set of arrays of Digital Micro-mirror Devices covering a total field of view of 0.4 deg2, and will perform large-multiplexing multi-object spectroscopy (e.g. ≈6000 targets per pointing) at a spectral resolution of R~400 as well as diffraction-limited imaging with continuous coverage from 0.8 to 1.8 μm. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover. SPACE will also place high accuracy constraints on the dark energy equation of state parameter and its evolution by measuring the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, and high-z galaxy clusters. The datasets from the SPACE mission will represent a long lasting legacy for the whole astronomical community whose data will be mined for many years to come.
A. CimattiEmail:
  相似文献   

5.
R. P. Kane 《Solar physics》2007,243(2):205-217
For many purposes (e.g., satellite drag, operation of power grids on Earth, and satellite communication systems), predictions of the strength of a solar cycle are needed. Predictions are made by using different methods, depending upon the characteristics of sunspot cycles. However, the method most successful seems to be the precursor method by Ohl and his group, in which the geomagnetic activity in the declining phase of a sunspot cycle is found to be well correlated with the sunspot maximum of the next cycle. In the present communication, the method is illustrated by plotting the 12-month running means aa(min ) of the geomagnetic disturbance index aa near sunspot minimum versus the 12-month running means of the sunspot number Rz near sunspot maximum [aa(min ) versus Rz(max )], using data for sunspot cycles 9 – 18 to predict the Rz(max ) of cycle 19, using data for cycles 9 – 19 to predict Rz(max ) of cycle 20, and so on, and finally using data for cycles 9 – 23 to predict Rz(max ) of cycle 24, which is expected to occur in 2011 – 2012. The correlations were good (∼+0.90) and our preliminary predicted Rz(max ) for cycle 24 is 142±24, though this can be regarded as an upper limit, since there are indications that solar minimum may occur as late as March 2008. (Some workers have reported that the aa values before 1957 would have an error of 3 nT; if true, the revised estimate would be 124±26.) This result of the precursor method is compared with several other predictions of cycle 24, which are in a very wide range (50 – 200), so that whatever may be the final observed value, some method or other will be discredited, as happened in the case of cycle 23.  相似文献   

6.
R. Wachter  J. Schou 《Solar physics》2009,258(2):331-341
We present a method to infer small-scale flatfields for imaging solar instruments using only regular-observation intensity images with a fixed field of view. The method is related to the flatfielding method developed by Kuhn, Lin, and Loranz (Publ. Astron. Soc. Pac. 103, 1097 – 1108, 1991), but does not require image offsets. Instead, it takes advantage of the fact that the solar image is changing in the CCD reference frame due to solar rotation. We apply the method to data sets of MDI filtergrams and compare the results to flat fields derived with other methods. Finally, we discuss the planned implementation of this method in the data processing for Helioseismic and Magnetic Imager on the Solar Dynamics Observatory.  相似文献   

7.
In this paper, the holographic dark energy model with new infrared cut-off proposed by Granda and Oliveros has been investigated in spatially non flat universe. The dependency of the evolution of equation of state, deceleration parameter and cosmological evolution of Hubble parameter on the parameters of new HDE model are calculated. Also, the statefinder parameters r and s in this model are derived and the evolutionary trajectories in sr plane are plotted. We show that the evolutionary trajectories are dependent on the model parameters of new HDE model. Eventually, in the light of SNe + BAO + OHD + CMB observational data, we plot the evolutionary trajectories in sr and qr planes for best fit values of the parameters of new HDE model.  相似文献   

8.
We present a multi-frequency and multi-instrument study of the 20 January 2005 event. We focus mainly on the complex radio signatures and their association with the active phenomena taking place: flares, CMEs, particle acceleration, and magnetic restructuring. As a variety of energetic-particle accelerators and sources of radio bursts are present, in the flare – ejecta combination, we investigate their relative importance in the progress of this event. The dynamic spectra of ARTEMIS-IV – Wind/Waves – HiRAS, with 2000 MHz – 20 kHz frequency coverage, were used to track the evolution of the event from the low corona to the interplanetary space; these were supplemented with SXR, HXR, and γ-ray recordings. The observations were compared with the expected radio signatures and energetic-particle populations envisaged by the Standard Flare – CME model and the reconnection outflow termination shock model. A proper combination of these mechanisms seems to provide an adequate model for the interpretation of the observational data.  相似文献   

9.
High sensitivity observations of radio halos in galaxy clusters at frequencies ν ≤ 330 MHz are still relatively rare, and very little is known compared to the classical 1.4 GHz images. The few radio halos imaged down to 150–240 MHz show a considerable spread in size, morphology and spectral properties. All clusters belonging to the GMRT Radio Halo Survey with detected or candidate cluster-scale diffuse emission have been imaged at 325 MHz with the GMRT. Few of them were also observed with the GMRT at 240 MHz and 150 MHz. For A 1682, imaging is particularly challenging due to the presence of strong and extended radio galaxies at the center. Our data analysis suggests that thew radio galaxies are superposed to very low surface brightness radio emission extended on the cluster scale, which we present here.  相似文献   

10.
We present a spectral atlas of 4 B and A stars containing spectra in a poorly studied spectral range of 305–452 nm. The atlas is based on high resolution (R=60 000) spectra obtained with the 6 meter telescope (SAO, Russia) combined with the NES-spectrograph. The procedure of spectral lines identification and compilation of the atlas is discussed in detail. Using the spectral data we thoroughly investigated the velocity field in expanding atmospheres and envelopes of hot evolved stars β Ori, α Cyg and supergiant KS Per with the extreme hydrogen deficiency. The complete atlas and list of the identified spectral lines will be available via the astronomical database SIMBAD.  相似文献   

11.
Comparisons of solar magnetic-field measurements made in different spectral lines are very important, especially in those lines in which observations have a long history or (and) specific diagnostic significance. The spectral lines Fe i 523.3 nm and Fe i 525.0 nm belong to this class. Therefore, this study is devoted to a comprehensive analysis using new high-precision Stokes-meter full-disk observations. The disk-averaged magnetic-field strength ratio R=B(523.3)/B(525.0) equals 1.97±0.02. The center-to-limb variation (CLV) is R=1.74−2.43μ+3.43μ 2, where μ is the cosine of the center-to-limb angle. For the disk center, we find R=2.74, and for near-limb areas with μ=0.3, R equals 1.32. There is only a small dependence of R on the spatial resolution. Our results are rather close to those published three decades ago, but differ significantly from recent magnetographic observations. An application of our results to the important SOHO/MDI magnetic data calibration issue is discussed. We conclude that the revision of the SOHO/MDI data, based only on the comparison of magnetic-field measurements in the line pair Fe i 523.3 nm and Fe i 525.0 nm (increasing by a factor of 1.7 or 1.6 on average according to recent publications) is not obvious and new investigations are urgently needed.  相似文献   

12.
In the present study, the short-term periodicities in the daily data of the sunspot numbers and areas are investigated separately for the full disk, northern, and southern hemispheres during Solar Cycle 23 for a time interval from 1 January 2003 to 30 November 2007 corresponding to the descending and minimum phase of the cycle. The wavelet power spectrum technique exhibited a number of quasi-periodic oscillations in all the datasets. In the high frequency range, we find a prominent period of 22 – 35 days in both sunspot indicators. Other quasi-periods in the range of 40 – 60, 70 – 90, 110 – 130, 140 – 160, and 220 – 240 days are detected in the sunspot number time series in different hemispheres at different time intervals. In the sunspot area data, quasi-periods in the range of 50 – 80, 90 – 110, 115 – 130, 140 – 155, 160 – 190, and about 230 days were noted in different hemispheres within the time period of analysis. The present investigation shows that the well-known “Rieger periodicity” of 150 – 160 days reappears during the descending phase of Solar Cycle 23, but this is prominent mainly in the southern part of the Sun. Possible explanations of these observed periodicities are delivered on the basis of earlier results detected in photospheric magnetic field time series (Knaack, Stenflo, and Berdyugina in Astron. Astrophys. 438, 1067, 2005) and solar r-mode oscillations.  相似文献   

13.
Since 4 December 2006, the SECCHI instrument suites onboard the two STEREO A and B probes have been imaging the solar corona and the heliosphere on a wide range of angular scales. The EUVI telescopes have a plate scale of 1.7 arcseconds pixel−1, while that of the HI2 wide-angle cameras is 2.15 arcminutes pixel−1, i.e. 75 times larger, with the COR1 and COR2 coronagraphs having intermediate plate scales. These very different instruments, aimed at studying Coronal Mass Ejections and their propagation in the heliosphere, create a data visualization challenge. This paper presents FESTIVAL, a SolarSoftware package originally developed to be able to map the SECCHI data into dynamic composite images of the sky as seen by the STEREO and SOHO probes. Data from other imaging instruments can also be displayed. Using the mouse, the user can quickly and easily zoom in and out and pan through these composite images to explore all spatial scales from EUVI to HI2 while keeping the native resolution of the original data. A large variety of numerical filters can be applied, and additional data (i.e. coordinate grids, stars catalogs, etc.) can be overlaid on the images. The architecture of FESTIVAL is such that it is easy to add support for other instruments and these new data immediately benefit from the already existing capabilities. Also, because its mapping engine is fully 3D, FESTIVAL provides a convenient environment to display images from future out-of-the-Ecliptic solar missions, such as Solar Orbiter or Solar Probe.  相似文献   

14.
This contribution is a follow-up to the recent paper of Kuznetsov et al. (Contrib. Astron. Obs. Skalnaté Pleso 36, 85, 2006) on the ground level enhancement (GLE) on 20 January 2005. We focused on a study of Forbush decrease (FD) of 17 – 18 and 21 – 22 January 2005, respectively. The data from the neutron monitor at Lomnicky Štít (1 min counts) and from the Geomagnetic Observatory in Hurbanovo, both in Slovakia, were used as the basis for our investigation. The data on magnetic field and solar wind from GOES 10 and 12, SOHO-CELIAS, ACE and WIND satellites were used for better understanding of the global evolution of the event. The magnetic field is transformed to the RTN (Radial – Tangential – Normal) system where only the disturbed part of the field is compared, i.e., daily variations and a constant part are subtracted. The field reduction method is described. Our results are temporal vector diagrams of variation of all parameters at all positions from where we used the data. The amplitudes of |B| exceed 100 nT and variations during the arrival of the wavefront of CME take place simultaneously at the ground-based station and at GOES satellites. The character of the variations is as if there would be regions with the dominant electric charge of opposite signs, or electric currents with different orientations in the CME. On the basis of the values v p and n p and using certain assumptions we determined the mass of CME on 17 January and 21 January, respectively, of 1012 kg. A decrease of the cosmic ray level runs suddenly (during 10 minutes), starting, however, about two hours after a sudden change of the magnetic field.  相似文献   

15.
R. P. Kane 《Solar physics》2008,249(2):355-367
The 12-month running means of the conventional sunspot number Rz, the sunspot group numbers (SGN) and the frequency of occurrence of Coronal Mass Ejections (CMEs) were examined for cycle 23 (1996 – 2006). For the whole disc, the SGN and Rz plots were almost identical. Hence, SGN could be used as a proxy for Rz, for which latitude data are not available. SGN values were used for 5° latitude belts 0° – 5°, 5° – 10°, 10° – 15°, 15° – 20°, 20° – 25°, 25° – 30° and > 30°, separately in each hemisphere north and south. Roughly, from latitudes 25° – 30° N to 20° – 25° N, the peaks seem to have occurred later for lower latitudes, from latitudes 20° – 25° N to 15° – 20° N, the peaks are stagnant or occur slightly earlier, and then from latitudes 15° – 20° N to 0° – 5° N, the peaks seem to have occurred again later for lower latitudes. Thus, some latitudinal migration is suggested, clearly in the northern hemisphere, not very clearly in the southern hemisphere, first to the equator in 1998, stagnant or slightly poleward in 1999, and then to the equator again from 2000 onwards, the latter reminiscent of the Maunder butterfly diagrams. Similar plots for CME occurrence frequency also showed multiple peaks (two or three) in almost all latitude belts, but the peaks were almost simultaneous at all latitudes, indicating no latitudinal migration. For similar latitude belts, SGN and CME plots were dissimilar in almost all latitude belts except 10° – 20° S. The CME plots had in general more peaks than the SGN plots, and the peaks of SGN often did not match with those of CME. In the CME data, it was noticed that whereas the values declined from 2002 to 2003, there was no further decline during 2003 – 2006 as one would have expected to occur during the declining phase of sunspots, where 2007 is almost a year of sunspot minimum. An inquiry at GSFC-NASA revealed that the person who creates the preliminary list was changed in 2004 and the new person picks out more weak CMEs. Thus a subjectivity (overestimates after 2002) seems to be involved and hence, values obtained before and during 2002 are not directly comparable to values recorded after 2002, except for CMEs with widths exceeding 60°.  相似文献   

16.
We performed a detailed analysis of 27 slow coronal mass ejections (CMEs) whose heights were measured in at least 30 coronagraphic images and were characterized by a high quality index (≥4). Our primary aim was to study the radial evolution of these CMEs and their properties in the range 2 – 30 solar radii. The instantaneous speeds of CMEs were calculated by using successive height – time data pairs. The obtained speed – distance profiles [v(R)] are fitted by a power law v = a(Rb) c . The power-law indices are found to be in the ranges a=30 – 386, b=1.95 – 3.92, and c=0.03 – 0.79. The power-law exponent c is found to be larger for slower and narrower CMEs. With the exception of two events that had approximately constant velocity, all events were accelerating. The majority of accelerating events shows a v(R) profile very similar to the solar-wind profile deduced by Sheeley et al. (Astrophys. J. 484, 472, 1997). This indicates that the dynamics of most slow CMEs are dominated by the solar wind drag.  相似文献   

17.
We have derived the velocities of meridional flows by measuring the latitudinal motions (or drifts) of umbrae of spot groups classified into three categories of area: 0 – 5 μ, 5 – 10 μ, and >10 μ (μ area in millionths of the solar hemisphere). The latitudinal drifts (or the meridional flows) in all three categories are directed equatorward in both the northern and southern hemispheres. By sorting the spot groups into three area classes, we are able to relate the respective latitudinal drifts with the three depths in the convection zone where the footpoints of the flux loops of the spot groups of each area class are anchored. We obtain estimates of the anchor depths through a comparison of the rotation rates of the spot groups of each area class with the rotation-rate profiles from helioseismic inversions. The equatorward drifts obtained provide estimates of the meridional flows at the three depths in the convection zone and thereby suggest the presence of return meridional flows as envisaged in the flux-transport dynamo models, which have remained undetected so far. The data sources for this study are measurements of positions and areas of umbrae of sunspots from the photographic white-light images of the Sun of the Kodaikanal Observatory archives for the period 1906 – 1987 and a very similar, but independent, data set from the Mt. Wilson Observatory archives for the period 1917 – 1985.  相似文献   

18.
We study variations of the lifetimes of high- solar p modes in the quiet and active Sun with the solar activity cycle. The lifetimes in the degree range =300 – 600 and ν=2.5 – 4.5 mHz were computed from SOHO/MDI data in an area including active regions and quiet Sun using the time – distance technique. We applied our analysis to the data in four different phases of solar activity: 1996 (at minimum), 1998 (rising phase), 2000 (at maximum), and 2003 (declining phase). The results from the area with active regions show that the lifetime decreases as activity increases. The maximal lifetime variations are between solar minimum in 1996 and maximum in 2000; the relative variation averaged over all values and frequencies is a decrease of about 13%. The lifetime reductions relative to 1996 are about 7% in 1998 and about 10% in 2003. The lifetime computed in the quiet region still decreases with solar activity, although the decrease is smaller. On average, relative to 1996, the lifetime decrease is about 4% in 1998, 10% in 2000, and 8% in 2003. Thus, measured lifetime increases when regions of high magnetic activity are avoided. Moreover, the lifetime computed in quiet regions also shows variations with the activity cycle.  相似文献   

19.
We use the method of time – distance analysis to measure lifetimes of solar p modes in the range =100 − 600 and ν=3.0 − 4.5 mHz with data taken with the Taiwan Oscillation Network (TON). The lifetimes of p modes are determined by the changes in the amplitude and width of the cross-correlation function of a wave packet with the number of skips. The amplitude of the cross-correlation function decreases exponentially with the number of skips as in previous work. This decrease has been interpreted as the effect of the finite p-mode lifetime. In this study, we find that the width of the cross-correlation function increases with the number of skips. We interpret this phenomenon as the effect of the dispersion of the wave packet. We include this effect in the determination of the lifetime of the wave packet. The lifetime increases after the dispersion is taken into account. We also study the change in lifetime between solar minimum and maximum.  相似文献   

20.
We present the first in-depth statistical survey of flare source heights observed by RHESSI. Flares were found using a flare-finding algorithm designed to search the 6 – 10 keV count-rate when RHESSI’s full sensitivity was available in order to find the smallest events (Christe et al. in Astrophys. J. 677, 1385, 2008). Between March 2002 and March 2007, a total of 25 006 events were found. Source locations were determined in the 4 – 10 keV, 10 – 15 keV, and 15 – 30 keV energy ranges for each event. In order to extract the height distribution from the observed projected source positions, a forward-fit model was developed with an assumed source height distribution where height is measured from the photosphere. We find that the best flare height distribution is given by g(h)∝exp (−h/λ) where λ=6.1±0.3 Mm is the scale height. A power-law height distribution with a negative power-law index, γ=3.1±0.1 is also consistent with the data. Interpreted as thermal loop-top sources, these heights are compared to loops generated by a potential-field model (PFSS). The measured flare heights distribution are found to be much steeper than the potential-field loop height distribution, which may be a signature of the flare energization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号