首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To investigate controls on phytoplankton production along the Louisiana coastal shelf, we mapped salinity, nutrient concentrations (dissolved inorganic nitrogen (DIN) and phosphorus (Pi), silicate (Si)), nutrient ratios (DIN/Pi), alkaline phosphatase activity, chlorophyll and 14C primary productivity on fine spatial scales during cruises in March, May, and July 2004. Additionally, resource limitation assays were undertaken in a range of salinity and nutrient regimes reflecting gradients typical of this region. Of these, seven showed Pi limitation, five revealed nitrogen (N) limitation, three exhibited light (L) limitation, and one bioassay had no growth. We found the phytoplankton community to shift from being predominately N limited in the early spring (March) to P limited in late spring and summer (May and July). Light limitation of phytoplankton production was recorded in several bioassays in July in water samples collected after peak annual flows from both the Mississippi and Atchafalaya Rivers. We also found that organic phosphorus, as glucose-6-phosphate, alleviated P limitation while phosphono-acetic acid had no effect. Whereas DIN/Pi and DIN/Si ratios in the initial water samples were good predictors of the outcome of phytoplankton production in response to inorganic nutrients, alkaline phosphatase activity was the best predictor when examining organic forms of phosphorus. We measured the rates of integrated primary production (0.33?C7.01 g C m?2 d?1), finding the highest rates within the Mississippi River delta and across Atchafalaya Bay at intermediate salinities. The lowest rates were measured along the outer shelf at the highest salinities and lowest nutrient concentrations (<0.1 ??M DIN and Pi). The results of this study indicate that Pi limitation of phytoplankton delays the assimilation of riverine DIN in the summer as the plume spreads across the shelf, pushing primary production over a larger region. Findings from water samples, taken adjacent the Atchafalaya River discharge, highlighted the importance of this riverine system to the overall production along the Louisiana coast.  相似文献   

2.
Phytoplankton nutrient limitation experiments were performed from 1994 to 1996 at three stations in the Cape Fear River Estuary, a riverine system originating in the North Carolina piedmont. Nutrient addition bioassays were conducted by spiking triplicate cubitainers with various nutrient combinations and determining algal response by analyzing chlorophyll a production and 14C uptake daily for 3 d. Ambient chlorophyll a, nutrient concentration, and associated physical data were collected throughout the estuary as well. At a turbid, nutrient-rich oligohaline station, significant responses to nutrient additions were rare, with light the likely principal factor limiting phytoplankton production. During summer at a mesohaline station, phytoplankton community displayed significant nitrogen (N) limitation, while both phosphorus (P) and N were occasionally limiting in spring with some N+P co-limitation. Light was apparently limiting during fall and winter when the water was turid and nutrient-rich, as well as during other months of heavy rainfall and runoff. A polyhaline station in the lower estuary had clearer water and displayed significant responses to nutrient additions during all enrichment experiments. At this site N limitation occurred in summer and fall, and P limitation (with strong N+P co-limitation) occurred in winter and spring. The data suggest there are two patterns controlling phytoplankton productivity in the Cape Fear system: 1) a longitudinal pattern of decreasing light limitation and increasing nutrient sensitivity along the salinity gradient, and 2) a seasonal alternation of N limitation, light limitation, and P limitation in the middle-to-lower estuary. Statistical analyses indicated upper watershed precipitation events led to increased flow, turbidity, light attenuation, and nutrient loading, and decreased chlorophyll a and nutrient limitation potential in the estuary. Periods of low rainfall and river flow led to reduced estuarine turbidity, higher chlorophyll a, lower ambient nutrients, and more pronounced nutrient limitation.  相似文献   

3.
Trends in phytoplankton monitoring data (1976–2008) from the Gulf of Riga were investigated and linked to environmental factors. Annual means of spring phytoplankton biomass correlated to phosphorus input from land and shifts between diatoms and dinoflagellates were attributed to potential Si limitation and time of sampling relative to the spring phytoplankton succession. The summer phytoplankton biomass, which more than doubled over the study period, was related to the abundance of summer copepods that similarly declined. Cyanobacterial blooms proliferated in summer and the proportion of diatoms similarly declined when the winter–spring inorganic N/P ratio was low. The chlorophyte proportion in summer increased over the study period, and this was linked to increasing temperatures favoring their higher growth rates. The dinoflagellate proportion appeared to decrease with temperatures above a threshold of 15.5°C. Although nutrient inputs and their ratios are important factors for the phytoplankton community, this study suggests that climate change and overfishing could be equally important.  相似文献   

4.
Net remineralization rates of organic matter and bacterial growth rates were observed in dark-bottle incubation experiments conducted in July–August and February with water samples collected from sites in the Mississippi River plume of the Gulf of Mexico. Our objectives were to measure site-specific degradation rates of labile dissolved and particulate organic matter, quantify the potential importance of bacteria in these processes, and examine the kinetics of degradation over time. Unfiltered samples, and samples treated to remove (or dilute out) particles larger than bacteria, were enclosed in 9-1 bottles and incubated in the dark for 3–5 d. Respiration rates and inorganic compound accumulation rates were higher in summer than in winter and were highest in unfiltered surface samples at sites of intermediate salinities where phytoplankton were most abundant. The ratio of ammonium accumulation to oxygen removal in summer experiments suggested that the mineralized organic material resembled “Redfield” stoichiometry. Chemical fluxes were greater in bottles containing large (>1–3 μm) particles than in the bottles with these particles removed, but bacterial activities were generally similar in both treatments. These results suggest that particle consumers were an important component of total organic matter degradation. However, these experiments may have underestimated natural bacterial degradation rates because the absence of light could affect the production of labile organic substrates by phytoplankton. In agreement, with this hypothesis, bacterial growth rates tended to decrease over time in summer in surface plume waters where phytoplankton were abundant. In conjunction with other data, our results indicate that heterotrophic processes in the water column are spatially and temporally dependent on phytoplankton production.  相似文献   

5.
The Diyadin Geothermal area, located in the eastern part of Anatolia (Turkey) where there has been recent volcanic activity, is favorable for the formation of geothermal systems. Indeed, the Diyadin geothermal system is located in an active geodynamic zone, where strike-slip faults and tensional cracks have developed due to N–S regional compression. The area is characterized by closely spaced thermal and mineralized springs, with temperatures in the range 30–64 °C, and flowrates 0.5–10 L/s. Thermal spring waters are mainly of Ca(Na)-HCO3 and Ca(Mg)-SO4 types, with high salinity, while cold groundwater is mostly of Ca(Na, Mg)-HCO3 type, with lower salinity. High contents of some minor elements in thermal waters, such as F, B, Li, Rb, Sr and Cs probably derive from enhanced water–rock interaction.Thermal water samples collected from Diyadin are far from chemical equilibrium as the waters flow upward from reservoirs towards spring vents and possibly mix with cooler waters. The temperatures of the deep geothermal reservoirs are estimated to be between 92 and 156 °C in Diyadin field, based on quartz geothermometry, while slightly lower estimates are obtained using chalcedony geothermometers. The isotopic composition of thermal water (δ18O, δ2H, δ3H) indicates their deep-circulating meteoric origin. The waters are likely to have originated from the percolation of rainwater along fractures and faults to the deep hot reservoir. Subsequent heating by conduction due to the presence of an intrusive cupola associated with the Tendurek volcano, is followed by the ascent of deep waters to the surface along faults and fractures that act as hydrothermal conduits.Modeling of the geothermal fluids indicates that the fluid is oversaturated with calcite, aragonite and dolomite, which matches travertine precipitation in the discharge area. Likewise, the fluid is oversaturated with respect to quartz, and chalcedony indicating the possibility of siliceous precipitation near the discharge areas. A conceptual hydro-geochemical model of the Diyadin thermal waters based on the isotope and chemical analytical results, has been constructed.  相似文献   

6.
Phytoplankton uptake rates of ammonium (NH4 +), nitrate (NO3 ), and urea were measured at various depths (light levels) in Hong Kong waters during the summer of 2008 using 15N tracer techniques in order to determine which form of nitrogen (N) supported algal growth. Four regions were sampled, two differentially impacted by Pearl River discharge, one impacted by Hong Kong sewage discharge, and a site beyond these influences. Spatial differences in nutrient concentrations, ratios, and phytoplankton biomass were large. Dissolved nutrient ratios suggested phosphorus (P) limitation throughout the region, largely driven by high N loading from the Pearl River in summer. NH4 + and urea made up generally ≥50% of the total N taken up and the f ratio averaged 0.26. Even at the river-impacted site where concentrations of NO3 were >20 μM N, NH4 + comprised >60% of the total N uptake. Inhibition experiments demonstrated that NO3 uptake rates were reduced by 40% when NH4 + was >5 μM N. The relationship between the total specific uptake rates of N (sum of all measured substrates, V, per hour) and the chlorophyll a-specific rates (micromolars of N per microgram of Chl a per hour) varied spatially with phytoplankton biomass. Highest uptake rates and biomass were observed in southern waters, suggesting that P limitation and other factors (i.e., flushing rate) controlled production inshore and that the unincorporated N (mainly NO3 ) was transported offshore. These results suggest that, at the beginning of summer, inshore algal blooms are fueled primarily by NH4 + and urea, rather than NO3 , from the Pearl River discharge. When NH4 + and urea are depleted, then NO3 is taken up and can increase the magnitude of the bloom.  相似文献   

7.
《Applied Geochemistry》2004,19(11):1655-1686
Water samples from short-screen monitoring wells installed along a 90-km transect in southwestern Kansas were analyzed for major ions, trace elements, isotopes (H, B, C, N, O, S, Sr), and dissolved gases (He, Ne, N2, Ar, O2, CH4) to evaluate the geochemistry, radiocarbon ages, and paleorecharge conditions in the unconfined central High Plains aquifer. The primary reactions controlling water chemistry were dedolomitization, cation exchange, feldspar weathering, and O2 reduction and denitrification. Radiocarbon ages adjusted for C mass transfers ranged from <2.6 ka (14C) B.P. near the water table to 12.8 ± 0.9 ka (14C) B.P. at the base of the aquifer, indicating the unconfined central High Plains aquifer contained a stratified sequence of ground water spanning Holocene time. A cross-sectional model of steady-state ground-water flow, calibrated using radiocarbon ages, is consistent with recharge rates ranging from 0.8 mm/a in areas overlain by loess to 8 mm/a in areas overlain by dune sand. Paleorecharge temperatures ranged from an average of 15.2 ± 0.7 °C for the most recently recharged waters to 11.6 ± 0.4 °C for the oldest waters. The temperature difference between Early and Late Holocene recharge was estimated to be 2.4 ± 0.7 °C, after taking into account variable recharge elevations. Nitrogen isotope data indicate NO3 in paleorecharge (average concentration=193 μM) was derived from a relatively uniform source such as soil N, whereas NO3 in recent recharge (average concentration=885 μM) contained N from varying proportions of fertilizer, manure, and soil N. Deep water samples contained components of N2 derived from atmospheric, denitrification, and deep natural gas sources. Denitrification rates in the aquifer were slow (5 ±  10−3 μmol N L−1 a−1), indicating this process would require >10 ka to reduce the average NO3 concentration in recent recharge to the Holocene background concentration.  相似文献   

8.
One of the most serious threats to freshwater and marine ecosystems is high rates of anthropogenic nutrient loading, particularly nitrogen (N) and phophorus (P). One of the major freshwater sources of nutrients to Long Island Sound (LIS) is the Housatonic River (HR). Current management plans that call for reducing N inputs without reducing P inputs may change the N: P ratio in the water column and the pattern of algal nutrient limitation and species composition in the tidal portion of the river. To assess the current pattern of algal nutrient limitation in the HR estuary, nutrient bioassays were conducted in spring, summer, and fall at 5 sites throughout the tidal portion and adjacent LIS. Diatoms were a dominant taxon at all sites throughout the sampling period. Other seasonally important taxa include cyanobacteria, cryptophytes, and euglenoids. Phytoplankton in LIS were always strongly N limited and were co-limited by P in spring. During low flow (summer), phytoplankton in the lower HR estuary were N limited. Phytoplankton in the middle reaches showed no evidence of N or P limitation and were likely limited by other factors. In spring, phytoplankton in the upper HR estuary were P limited. Periods of N or P limitation were better correlated with periods of lower concentrations of nitrate or phosphate than with differences in N: P ratio. These results suggest that decreases in N concentration could increase the prevalence of N limitation throughout the estuary that in turn may reduce phytoplankton biomass and alter species composition of the phytoplankton.  相似文献   

9.
We examined heterotrophic bacterial nutrient limitation at four sites in Florida Bay, U. S. in summer 1994 and winter 1995. Bacterial growth and biomass production in this system were most limited by inorganic phosphorus (P) in the eastern and southern regions of the bay. Nutrient additions stimulated productivity and biomass accumulation mostly in summer. The magnitude of growth responses (thymidine incorporation) to nutrient additions was nearly an order of magnitude less in winter than summer. Biomass-normalized alkaline phosphatase activity in the northeast and south-central region was 5–20 times greater than in the northwest and north-central regions, suggesting that P is most limiting to planktonic growth in those areas. Chlorophyll levels were higher in the northwest and north-central regions and P-uptake into particles >1 μm, primarily phytoplankton, was also higher in these regions. Consistent with these observations, others have observed that P is advected into the bay primarily in the northwestern region. Abundant seagrasses in Florida Bay may promote heterotrophic bacterial production relative to phytoplankton production by releasing dissolved organic carbon that makes bacteria more competitive for limiting quantities of inorganic phosphate, especially in the eastern bay where turbidity is low, P is most limiting, and light levels reaching the benthic plants are high.  相似文献   

10.
The Oylat spa is located 80 km southeast of Bursa and 30 km south of Ineg?l in the Marmara region. With temperature of 40°C and discharge of 45 l/s, the Oylat main spring is the most important hot water spring of the area. Southeast of the spa the Forest Management spring has a temperature of 39.4°C and discharge of 2 l/s. The G?z spring 2 km north of the spa, which is used for therapy of eye disease, and cold waters of the Saadet village springs with an acidic character are the further important water sources of the area. EC values of Main spring and Forest Management hot spring (750–780 μS/cm) are lower than those of Saadet and G?z spring waters (2,070–1,280 μS/cm) and ionic abundances are Ca > Na + K > Mg and SO4 > HCO3 > Cl. The Oylat and Sızı springs have low Na and K contents but high Ca and HCO3 concentrations. According to AIH classification, these are Ca–SO4–HCO3 waters. Based on the results of δ18O, 2H and 3H isotope analyses, the thermal waters have a meteoric origin. The meteoric water infiltrates along fractures and faults, gets heated, and then returns to surface through hydrothermal conduits. Oylat waters do not have high reservoir temperatures. They are deep, circulating recharge waters from higher enhanced elevations. δ13CDIC values of the Main spring and Forest Management hot spring are −6.31 and −4.45‰, respectively, indicating that δ13C is derived from dissolution of limestones. The neutral pH thermal waters are about +18.7‰ in δ34S while the sulfate in the cold waters is about +17‰ (practically identical to the value for the neutral pH thermal waters). However, the G?z and Saadet springs (acid sulfate waters) have much lower δ34S values (~+4‰).  相似文献   

11.
Chemical and isotopic compositions of three hot springs and one cold spring in the Kirkgecit geothermal field, located 15 km southwest of Canakkale-Biga in the northwest of Turkey, were monitored five times during 2005 and 2007. The physico-chemical characteristics of the hot springs are average discharge 3–3.5 L/s, surface temperature 45–52°C, pH 8.9–9.3, and electrical conductivity (EC) 620–698 μS/cm. The cold spring has a temperature of 12–13°C, pH 7.5–8.3, and EC 653–675 μS/cm. The hot waters are Na-SO4 type, whereas the cold water is Ca-HCO3 type. Chemical geothermometers suggest that the reservoir temperature is around 80–100°C. The isotopic data (oxygen-18, deuterium and tritium) indicate that the thermal waters are formed by local recharge and deep circulation of meteoric waters.  相似文献   

12.
From March 2002 to until April 2003 we investigated the seasonal nutrient and phytoplankton dynamics in the central Bornholm Basin (Baltic Sea) within the framework of the German GLOBEC Project. We choose a nested approach consisting of vertical fluorescence profiles, phytoplankton counts and nutrient analyses. The Fluoroprobe (MultiProbe, BBE Moldaenke) is capable of distinguishing four algal groups (Cryptophyceae, Cyanophyceae, Chlorophyceae, Bacillariophyceae + Dinophyceae). Winter nutrient concentrations were about 5 μM NO3 and 0.5 μM PO4 in the central Basin. The spring phytoplankton bloom was dominated by the diatom Skeletonema sp. and reached a maximum of about 270 μg C/l before the onset of the seasonal stratification. Protozooplankton was dominated by the Mesodinium rubrum (a phototrophic ciliate = Myrionecta rubra) and reached a maximum biomass of about 200–300 μg C/l about 2 weeks after the demise of the diatom spring bloom. During summer, the water column was stratified and a subsurface maximum developed near the thermocline consisting of Bacillariophyceae, Cryptophycea and other phototrophic flagellates. Phytoplankton and protozooplankton biomass was generally low. Nutrient concentrations point towards a nitrogen limitation during this period. The stratification period ended during September and surface nutrient concentrations increased again. Protozooplankton reached a second maximum during September. With the Fluoroprobe small scale structures in the plankton community could be detected like a subsurface Cryptophyceae maximum near the thermocline that however, could not be confirmed by cell counts. The chlorophyll a estimate of the Fluoroprobe was in good agreement with the phytoplankton biomass estimated from counts. We conclude that only by combining modern sensing technology with microscopy, the small-scale dynamics and taxonomic spectrum of the plankton can be fully captured.  相似文献   

13.
Seasonal phosphorus limitation occurs on the Louisiana continental shelf as a result of high nitrogen loads in the spring and early summer. Prior studies have assessed such nutrient limitation by laborious and time-consuming nutrient analyses, enzyme assays, and nutrient addition bioassays. We undertook surface (0.5–1 m) mapping of fast repetition rate fluorescence (FRRF) parameters to assess nutrient limitation in real time on the Louisiana continental shelf and Mississippi River plume from 29 June to 08 July, 2002 in an effort to further understand phytoplankton productivity in this region, as well as to better inform effective nutrient management strategies. Surface nutrient concentrations (NO3, NO2, NH4+, PO43−), chlorophyll a biomass, alkaline phosphatase (AP) activity, and four FRRF parameters: the maximum quantum yield of photochemistry (F v /F m ), the functional absorption cross section for PSII, the time constant for Q A reoxidation, and the connectivity factor, were measured during continuous underway mapping. Results from traditional methods to assess phytoplankton nutrient stress indicated widespread phosphorus limitation from the Mississippi River plume to the Atchafalaya River, manifested as high inorganic N/P ratios and elevated AP activities associated with phytoplankton biomass. The FRRF data indicated complex patterns of phytoplankton physiology that were likely driven by the rapidly changing conditions in local surface waters and heterogeneous phytoplankton community structure. Correlations of nutrient data and enzyme assays with FRRF parameters were significant but low, potentially due to differences in the manner and time scale with which nutrient limitation affects the different techniques used, indicating that further work is needed to interpret FRRF parameters in large, heterogeneous environments such as estuaries and continental shelves.  相似文献   

14.
Western tropical Pacific sea surface temperatures and Pacific Deep Water temperatures during Marine Isotope Stage 3 have been reconstructed from the δ18O and Mg/Ca of planktonic and benthic foraminifera from Marion Dufresne core MD98-2181. This 36 m marine core was collected at 6.3°N from a water depth of 2114 m. With sediment accumulation rates of up to 80 cm/ky, it provides a decadally resolved history of ocean variability during the Last Glacial period. Surface temperatures and salinities at this site varied in close association with millennial-scale atmospheric temperature swings at high northern latitudes as reflected in the GISP2 ice core. At times of colder atmospheric temperatures over Greenland, the western Pacific was more saline and summer season SSTs were ~2 °C colder. These millennial-scale changes within the tropics are attributed to a southward displacement of the summer season ITCZ in response to steeper meridional temperature gradients within the Pacific. The benthic δ18O record from MD98-2181 documents upper Pacific Deep Water temperature and salinity variability. Benthic δ18O variations of 0.3–0.5‰ during MIS 3 indicate deep waters within the Pacific were varying by ~1–1.5 °C, with the possibility that some of the variability was due to changing salinity and minor glacial–eustatic changes. The observed deep-water variability correlates to changes in Antarctic surface temperatures and thus reflects changes in Southern Ocean temperatures at the site of Pacific Deep Water formation. The combined planktonic and benthic records from MD98-2181 thus provide a northern and southern hemispheric climate record of anti-phased variability during MIS 3 as has been inferred previously from ice core records. Furthermore, the deep sea temperature excursions appear to have led millennial variations in atmospheric CO2 as recorded in the EDML ice core by ~1 kyr.  相似文献   

15.
Phosphorus (P) is the limiting macronutrient for primary production in most lakes. Sediment characteristics are strongly correlated to the internal P loading in lakes. This study investigated speciation of P, Fe, Al, and Ca in sediments of six sampling sites with varying trophic status in Baiyangdian Lake of North China during the period of July 2008 and March 2009. The results of sequential extraction experiments of the top sediments showed that total extractable P ranged approximately from 13 to 28 μmol g−1 for all sampling sites and the rank order of P-fractions was HCl–P > NaOH85–P > NaOH25–P > BD–P > NH4Cl–P. BD–P and BD–Fe had a consistent change with seasons. Their concentrations were both much higher in early spring and mid-autumn. BD–Fe, Al extracted with NaOH at 25°C and 85°C affected corresponding P concentration in sediments, while high concentration of extractable Ca from sediments showed no direct effects. According to the Kopáček et al. model of the molar ratios of Al:Fe and [NaOH25–Al]:[NH4Cl–P + BD–P], there was potential P release from sediments twice a year for some hypereutrophic sites in early spring and mid-autumn, especially in the former season.  相似文献   

16.
Kamer  Krista  Fong  Peggy  Kennison  Rachel  Schiff  Kenneth 《Estuaries and Coasts》2004,27(2):201-208
We conducted a laboratory experiment to quantify nutrient (nitrogen and phosphorus) limitation of macroalgae collected along a gradient in water column nutrient availability in Upper Newport Bay estuary, a relatively nutrient-rich system in southern California, United States. We collectedEnteromorpha intestinalis and water for use in the experiment from five sites ranging from the lower end of the estuary to the head. Initial algal tissue N and P concentrations and molar N∶P ratios—as well as water column NO3 and total Kjeldahl nitrogen (TKN)—increased along a spatial gradient from the lower end toward the head. Water column soluble reactive phosphorus (SRP) varied among sites as well but did not follow a pattem of increasing from the seaward end toward the head. Algae from each site were assigned to one of four experimental treatments: control (C), nitrogen enrichment (+N), phosphorus enrichment (+P), and nitrogen and phosphorus enrichment (+N+P). Each week for 3 wk we replaced the water in each unit with the appropriate treatment water to mimic a poorly flushed estuary. After 3 wk, the degree of nutrient limitation ofE. intestinalis varied spatially with distance from the head of the estuary. Growth ofE. intestinalis collected from several sites increased with N enrichment alone and increased further when P was added in combination with N This indicated that N was limiting and that when N was sufficient, P became limiting. Sites from whichE. intestinalis exhibited nutrient limitation spanned the range of background water column NO3 (12.9±0.4 to 55.2±2.1 μM) and SRP (0.8±0.0 to 2.9±0.2 μM) concentrations. Algae that were N limited had initial tissue N levels ranging from 1.18±0.03 to 2.81±0.08% dry weight and molar N∶P ratios ranging from 16.75±0.39 to 26.40±1.98.  相似文献   

17.
Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay   总被引:1,自引:0,他引:1  
The scales on which phytoplankton biomass vary in response to variable nutrient inputs depend on the nutrient status of the plankton community and on the capacity of consumers to respond to increases in phytoplankton productivity. Overenrichment and associated declines in water quality occur when phytoplankton growth rate becomes nutrient-saturated, the production and consumption of phytoplankton biomass become uncoupled in time and space, and phytoplankton biomass becomes high and varies on scales longer than phytoplankton generation times. In Chesapeake Bay, phytoplankton growth rates appear to be limited by dissolved inorganic phosphorus (DIP) during spring when biomass reaches its annual maximum and by dissolved inorganic nitrogen (DIN) during summer when phytoplankton growth rates are highest. However, despite high inputs of DIN and dissolved silicate (DSi) relative to DIP (molar ratios of N∶P and Si∶P>100), seasonal accumulations of phytoplankton biomass within the salt-intruded-reach of the bay appear to be limited by riverine DIN supply while the magnitude of the spring diatom bloom is governed by DSi supply. Seasonal imbalances between biomass production and consumption lead to massive accumulations of phytoplankton biomass (often>1,000 mg Chl-a m?2) during spring, to spring-summer oxygen depletion (summer bottom water <20% saturation), and to exceptionally high levels of annual phytoplankton production (>400 g m?2 yr?1). Nitrogen-dependent seasonal accumulations of phytoplankton biomass and annual production occur as a consequence of differences in the rates and pathways of nitrogen and phosphorus cycling within the bay and underscore the importance of controlling nitrogen inputs to the mesohaline and lower reaches of the bay.  相似文献   

18.
Amino acids and the bacterial biomarkers muramic acid and d-amino acids were quantified in the ultrafiltered dissolved, particulate and sedimentary organic matter (UDOM, POM and SOM) of the St. Lawrence system (Canada). The main objectives were to better describe the fate of terrigenous and marine organic matter (OM) in coastal zones and to quantify the bacterial contributions to OM composition and diagenesis. Regardless of their origin, the carbon (C) content of the particles substantially decreased with depth, especially near the water-sediment interface. Major diagenetic transformations of organic nitrogen (N) were revealed and important differences were observed between terrigenous and marine OM. Amino acid contents of particles decreased by 66-93% with depth and accounted for 12-30% of the particulate C losses in marine locations. These percentages were respectively 18-56% and 7-11% in the Saguenay Fjord where terrigenous input is important. A preferential removal of particulate N and amino acids with depth or during transport was measured, but only in marine locations and for N-rich particles. This leads to very low amino acid yields in deep marine POM. However, these yields then increased to a level up to three times higher after deposition on sediments, where SOM showed lower C:N ratios than deep POM. The associated increase of bacterial biomarker yields suggests an active in situ resynthesis of amino acids by benthic bacteria. The N content of the substrate most likely determines whether a preferential degradation or an enrichment of N and amino acid are observed. For N-poor OM, such as terrigenous or deep marine POM, the incorporation of exogenous N by attached bacteria can be measured, while the organic N is preferentially used or degraded in N-rich OM. Compared to the POM from the same water samples, the extracted UDOM was poor in N and amino acids and appeared to be mostly made of altered plant and bacterial fragments. Signs of in situ marine production of UDOM were observed in the most marine location. The POM entering the St. Lawrence Upper Estuary and the Saguenay Fjord appeared made of relatively fresh vascular plant OM mixed with highly altered bacterial debris from soils. In contrast, the POM samples from the more marine sites appeared mostly made of fresh planktonic and bacterial OM, although they were rapidly degraded during sinking. Based on biomarker yields, bacterial OM represented on average ∼20% of bulk C and approximately 40-70% of bulk N in POM and SOM, with the exception of deep marine POM exhibiting approximately two times lower bacterial contributions.  相似文献   

19.
The aim of the study was to examine microbiological risk of public water system of Tefenni (Burdur) region, which is located in southwest of Turkey. The important pollutants of the study area are cattle breeding, use of animal manure for agricultural activities and unsanitary water supply system and water tank. The microbiological condition was assessed using total coliform bacteria in water samples, which was collected from springs, wells and water supply system of Tefenni county and villages during the period January 2009 and December 2009. Microbiological analyses indicate that failure rate (positive samples) was 43% for sampling period. There was greater consistency among failures of total coliform indicator standards during spring and winter than during autumn and summer. This observation was explained partially by a significant positive correlation with the rainfall amount (r Pearson = 0.70, P = 0.01). In addition, the microbiological risk assessment was made using modified sanitary inspection forms and prepared final score map. Compared with final score and microbial pollutant maps of the study area, it has been shown that water resources having high risk score were directly proportional with pollutants related to land use.  相似文献   

20.
The Jifei hot spring emerges in the form of a spring group in the Tibet–Yunnan geothermal zone, southwest of Yunnan Province, China. The temperatures of spring waters range from 35 to 81°C and are mainly of HCO3–Na·Ca type. The total discharge of the hot spring is about 10 L/s. The spring is characterized by its huge travertine terrace with an area of about 4,000 m2 and as many as 18 travertine cones of different sizes. The tallest travertine cone is as high as 7.1 m. The travertine formation and evolution can be divided into three periods: travertine terrace deposition period, travertine cone formation period and death period. The hydrochemical characteristics of the Jifei hot spring was analyzed and compared with a local non-travertine hot spring and six other famous travertine springs. The results indicate that the necessary hydrochemical conditions of travertine and travertine cones deposition in the Jifei area are (1) high concentration of HCO3 and CO2; (2) about 52.9% deep source CO2 with significantly high value; (3) very high milliequivalent percentage of HCO3 (97.4%) with not very high milliequivalent percentage of Ca2+ (24.4%); and (4) a large saturation index of calcite and aragonite of the hot water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号