首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mantle xenoliths in alkali basaltic lavas (with ocean-island basalt chemical signatures) and cinder cones occur in several areas of Patagonia. A representative suite of mantle xenoliths was collected in the region between latitudes 40° and 52°S and longitudes 67° and 71°W in the Río Negro, Chubut, and Santa Cruz provinces, Argentina. Mantle xenoliths in Patagonia display distinguishing peculiarities compared with those of other worldwide occurrences. The lithospheric mantle beneath Patagonia, as inferred from chemical variation diagrams, has experienced only minor melt extractions in the garnet peridotite field and more extensive melt extractions in the spinel lherzolite field. Variably intensive cryptic and modal metasomatism affected the lithospheric mantle in this region. Textural evidence shows that the mantle is moderately to strongly tectonized and recrystallized on both the local and the regional scale, with an overall predominance of deformed textural types. Mineral equilibrium indicates a strongly elevated geotherm similar to the southeast Australia and oceanic geotherms, which is not normal for a continental intraplate tectonic setting. Therefore, the properties of the Patagonian samples are probably related to the presence of rising mantle plume(s) in an extensional tectonic setting.  相似文献   

2.
Fluid inclusions in mantle xenoliths   总被引:23,自引:0,他引:23  
Fluid inclusions in olivine and pyroxene in mantle-derived ultramafic xenoliths in volcanic rocks contain abundant CO2-rich fluid inclusions, as well as inclusions of silicate glass, solidified metal sulphide melt and carbonates. Such inclusions represent accidentally trapped samples of fluid- and melt phases present in the upper mantle, and are as such of unique importance for the understanding of mineral–fluid–melt interaction processes in the mantle. Minor volatile species in CO2-rich fluid inclusions include N2, CO, SO2, H2O and noble gases. In some xenoliths sampled from hydrated mantle-wedges above active subduction zones, water may actually be a dominant fluid species. The distribution of minor volatile species in inclusion fluids can provide information on the oxidation state of the upper mantle, on mantle degassing processes and on recycling of subducted material to the mantle. Melt inclusions in ultramafic xenoliths give information on silicate–sulphide–carbonatite immiscibility relationships within the upper mantle. Recent melt-inclusion studies have indicated that highly silicic melts can coexist with mantle peridotite mineral assemblages. Although trapping-pressures up to 1.4 GPa can be derived from fluid inclusion data, few CO2-rich fluid inclusions preserve a density representing their initial trapping in the upper mantle, because of leakage or stretching during transport to the surface. However, the distribution of fluid density in populations of modified inclusions may preserve information on volcanic plumbing systems not easily available from their host minerals. As fluid and melt inclusions are integral parts of the phase assemblages of their host xenoliths, and thus of the upper mantle itself, the authors of this review strongly recommend that their study is included in any research project relating to mantle xenoliths.  相似文献   

3.
Peridotite mantle xenoliths collected north of Gobernador Gregores, Patagonia, affected by cryptic and modal metasomatism bear melt pockets of unusually large size. Melt pockets consist of second generation olivine (ol2), clinopyroxene (cpx2) and spinel (sp2) ± relict amphibole (amph) immersed in a yellowish vesicular glass matrix. Amphibole breakdown was responsible for melt pocket generation as suggested by textural evidence and proved by consistent mass-balance calculations: amph  cpx2 + ol2 + sp2 + melt. Composition of calculated amphibole in amphibole-free melt pockets is very similar to that measured in amphibole-bearing melt pockets from the same xenolith, i.e. amphibole was consumed in the melt pocket generation process. In melt pockets devoid of relict amphibole, mass-balance calculations show remarkable differences between the calculated amphibole and the measured amphibole compositions in melt pockets from the same xenolith. The participation of minor proportions of a consumed reactant phase could be a reasonable explanation. In some samples the calculated phase proportion of glass is in excess compared to modal estimations based on backscattered electron images, probably because a portion of the generated melt was able to migrate out of the melt pockets. Compositional inhomogeneity of cpx2 and variable Ti Kd in cpx2 vs. glass in the same melt pocket reflect fast nucleation and growth and disequilibrium crystallisation, respectively. This and the difference between forsterite content in calculated equilibrium olivine and second generation olivine, suggest that mineral equilibrium was inhibited by rapid quenching of melt pockets.  相似文献   

4.
Summary In an attempt to investigate metasomatic processes in the subcontinental upper mantle beneath Northern Patagonia, melt and fluid inclusions trapped in spinel lherzolite and harzburgite xenoliths have been studied. The xenoliths contain three types of genetically related inclusions hosted by olivine, orthopyroxene, clinopyroxene and spinel: silicate glass inclusions, multiphase silicate melt inclusions and C02 fluid inclusions. CO2 densities of early fluid inclusions (0.93–1.02 g/cm3) and homogenization temperatures of melt inclusions (1220 °C) indicate that they were trapped at uppermantle depths.Silicate melt inclusions occur as isolated inclusions as trails along fractures and decorating lamellae deformation. They are composed of glass, or of glass with daughter crystals of clinopyroxene, amphibole, apatite and ilmenite. Glass inclusions are characterized by high contents of silica, alumina and alkali elements. The nature and chemistry of the daughter minerals indicate that melt inclusions can be considered as trapped metasomatic melts. Moreover, glass inclusions show chemical variations from high silica (68 wt%) melts trapped as isolated inclusions in olivine Fog, towards less siliceous (60 wt%) melts trapped as secondary inclusions in olivine FO89-90, orthopyroxene and spinel. This chemical evolution cannot be reconciled with magmatic processes, like fractional crystallization or different degrees of partial melting. The existence of two stages in their evolution, could reflect the heterogenous nature of the mantle source of the melts and the presence of a deep-seated fluid phase during melting.
Les inclusions vitreuses riches en silice: témoignages du métasomatisme du manteau subcontinental de la province de Rio Negro (Patagonie septentrionale, Argentine)
Résumé Les inclusions fluides et vitreuses piégées dans les minéraux des xénolithes de lherzolite á spinelle et de harzburgite ont fait l'objet d'études thermométriques et barochimiques afin de mieux cerner les processus métasomatiques qui ont affecté le manteau supérieur subcontinental du nord de la Patagonie. Les xénolithes contiennent trois types d'inclusions génétiquement reliées entre elles et piégées dans l'olivine, l'orthopyroxène, le clinopyroxène et les spinelles: 1) inclusions vitreuses, 2) inclusions vitreuses multiphasées, 3) inclusions fluides á CO2. La densité des inclusions fluides précoces (0.93 á 1.02g/c3) et la température d'homogénéisation des inclusions vitreuses (Th = 1220°C) indiquent que les inclusions ont été piégées dans le manteau supérieur.Les inclusions vitreuses sont soit en individus isolés, soit en alignements disposés selon des fractures et des lamelles de déformation (inclusions secondaires). Elles sont formées par du verre et par une bulle pouvant contenir du CO2 auxquels peuvent s'associer des minéraux fils (clinopyroxènes, amphiboles, apatites et ilménites). La phase vitreuse, caractérisée par une composition riche en silice, alumine, alcalins et volatils élevés et la nature des minéraux fils indiquent que les inclusions vitreuses résultent du piégeage de liquides métasomatiques.La composition des inclusions vitreuses varie. La teneur en SiO2 atteint 68% en poids dans les inclusions isolées des Fo 91, elle est par contre proche de 60% dans les inclusions secondaires des Fo 89-90, de l'orthopyroxène et du spinelle. La composition chimique des différents types d'inclusions ne peut être expliquée par les processus classiques de différenciation magmatique tels que la cristallisation fractionnée ou la fusion partielle. L'existence d'une bimodalité dans les compositions chimiques et dans les niveaux de piégeage plaident en faveur d'une source mantellique hétérogène et de l'intervention de fluides profonds lors du processus de fusion ayant généré les liquides métasomatiques.
  相似文献   

5.
Fluid and solid inclusions have been studied in selected samples from a series of spinel-bearing Crdiopside-and Al-augite-series ultramafic (harzburgites, lherzolites, and olivine-clinopyroxene-rich rocks), and gabbroic xenoliths from Hierro, Canary Islands. In these samples several generations of fluid inclusions and ultramafic-and mafic-glass inclusions may be texturally related to different stages of crystal growth. The fluid inclusions consist of pure, or almost pure, CO2. The solid inclusions in the ultramafic xenoliths comprise early inclusions of devitrified ultramafic glass, sulphide inclusions, as well as polyphase inclusions (spinel+clinopyroxene±glass±other silicates) believed to have formed from trapped basaltic melts. Vitreous basaltic glass±CO2±sulphide±silicates are common as secondary inclusions in the ultramafic xenoliths, and as primary inclusions in the gabbroic xenoliths. Microthermometry gives minimum trapping temperatures of 1110° C for the early ultramafic-and mafic-glass inclusions, and a maximum of 1260–1280° C for late inclusions of host basaltic glass. In most samples the CO2 inclusions show a wide range in homogenization temperatures (-40 to +31° C) as a result of decrepitation during ascent. The lowest homogenization temperatures of about-40° C, recorded in some of the smallest CO2 inclusions, indicate a minimum depth of origin of 35 km (12 kbar) for both the Cr-diopside-and Al-augite-series xenoliths. The gabbroic xenoliths originate from a former magma chamber at a depth of 6–12 km.Contribution no. 100 of the Norwegian programme of the International Lithosphere Project  相似文献   

6.
7.
Mantle-derived xenoliths of spinel lherzolite, spinel pyroxenite, garnet pyroxenite and wehrlite from Bullenmerri and Gnotuk maars, southwestern Victoria, Australia contain up to 3 vol.% of fluids trapped at high pressures. The fluid-filled cavities range in size from fluid inclusions (1–100 m) up to vugs 11/2 cm across, lined with euhedral high-pressure phases. The larger cavities form an integral part of the mosaic microstructure. Microthermometry and Raman laser microprobe analysis show that the fluids are dominantly CO2. Small isolated inclusions may have densities 1.19 g/cm3, but most inclusions show microstructural evidence of partial decrepitation during eruption, and these have lower fluid densities. Mass-spectrometric analysis of gases released by crushing or heating shows the presence of He, N2, Ar, H2S, COs and SO2 in small quantities; these may explain the small freezing-point depressions observed in some inclusions. Petrographic, SEM and microprobe studies show that the trapped fluids have reacted with the cavity walls (in clinopyroxene grains) to produce secondary amphiboles and carbonates. The trapped CO2 thus represents only a small residual proportion of an original volatile phase, which has undergone at least two stages of modification — first by equilibration with spinel lherzolite to form amphibole (±mica±apatite), then by limited reaction with the walls of the fluid inclusions. The inferred original fluid was a CO2-H2O mixture, with significant contents of (at least) Cl and sulfur species. Generation of this fluid phase in the garnet-peridotite stability field, followed by its migration to the spinel peridotite stability field, would provide an efficient mechanism for metasomatic enrichment of the upper mantle in LIL elements. This migration could involve either a volatile flux or transport in small volumes of silicate melt that crystallize in the spinel peridotite field. These observations suggest that some portions of the subcontinental upper mantle contain large reservoirs of free fluid CO2, which may be liberated during episodes of rifting or magmatism, to induce granulite-facies metamorphism of the lower crust.  相似文献   

8.
Rheology of the upper mantle: Inferences from peridotite xenoliths   总被引:1,自引:0,他引:1  
Stress estimates as a function of depth are obtained for peridotite xenoliths from the upper mantle of three types of tectonic environments by applying revised recrystallizedgrain-size paleopiezometry and pyroxene thermobarometry. The general increase in grain size with depth and hence decrease in deviatoric stress, observed previously, is confirmed but reversals in these trends are now established and remain enigmatic. Stresses and temperatures obtained are combined with a representative creep-flow law to calculate strainrate and viscosity profiles that appear to be physically reasonable. Profiles for the highthermal-gradient rift/ridge environments show a complexity that is interpreted as.a rheological discontinuity resulting from the emplacement of asthenospheric diapirs during late stages of continental rifting. Profiles for broad continental extension zones (C.E.Z.), believed to be most representative of oceanic upper mantle, fluctuate between 50 and 80 km, with a general small increase in strain rate and decrease in viscosity with depth; deepest samples apparently come from the base of the lithosphere. Profiles for the infracratonic mantle of southern Africa show nearly a uniform increase in strain rate to values greater than 10−14/sec, and a decrease in viscosity to lower than 1021 poise, at a depth of 230 km. These profiles may transect the mechanically defined lithosphere—asthenosphere transition at about 200 km and, if so, there is no evidence for a mechanical discontinuity at the boundary. This observation, coupled with evidence that the sense of shear is homogeneous for all mantle profiles constructed, clearly favors a model whereby lithospheric plates are dragged by thermal convection of the asthenosphere below. Sea-floor spreading rates and relative plate-velocity estimates are consistent with this interpretation but do not independently permit a definitive choice between the two favored models advanced to explain the driving force for plate motions.  相似文献   

9.
徐九华  谢玉玲 《岩石学报》2007,23(1):117-124
Mantle xenoliths are common in the Cenozoic basalts of the Changbaishan District,Jilin Province,China.Sulfide assemblages in mantle minerals can be divided into three types:isolated sulfide grains,sulfide-meh inclusions and filling sulfides in fractures.Sulfide-meh inclusions occur as single-phase sulfides,sulfide-silicate melt,and CO_2-sulfide-silicate melt inclusions. Isolated sulfide grains are mainly composed of pyrrhotite,but cubanite was found occasionally.Sulfide-meh inclusions are mainly composed of pontlandite and MSS,with small amounts of chalcopyrite and talnakhite.The calculated distribution coefficient K_(D3)for lherzolite are similar to that of mean experimental value.The bulk sulfides in lherzolite were in equilibrium with the enclosing minerals, indicating immiscible sulfide melts captured in partial melting of upper mantle.Sulfide in fractures has higher Ni/Fe and(Fe Ni)/S than those of sulfide melt inclusions.They might represent later metasomatizing fluids in the mantle.Ni/Fe and(Fe Ni)/S increase from isolated grains,sulfide inclusions to sulfides in fractures.These changes were not only affected by temperature and pressure,hut by geochemistry of Ni,Fe and Cu,and sulfur fugacity as well.  相似文献   

10.
The spinel peridotite xenoliths of Group I in Quaternary basanites from Nushan,Anhui province,can be classified as two suites:a hydrous suite characterized by the ubiquitous occurrence of (Ti-) pargasite and an anhydrous suite.The nineral chemistry reveals that the anhydrous suite and one associated phlogopite-bearing lherzolite are equilibrated under temperature conditions of 1000-1100℃,whereas amplhibole-bearing peridotites display distinct disequilibrum features,indicating partial reequilibration from 1050 to 850℃ and locally down to 750℃. The amplhbole-bearing peridotites were probably the uppermost part of the high temperature anhydrous suite which was modally modifed by fractionating H2O-rich metasomatic agent during regional upwelling.This relatively recent lithospheric uplift event followed an older uplift event recognized from pyroxene unmixing of domains in local equilibrium,as well as the dominant deformation texture in the anhydrous suite.The first thermal disturbance can be linked with the regional extension and widespread basaltic volcanism in Jiangsu-Anhui provinces since Early Tertiary and the formation of the nearby Subei(North Jiangsu) fault-depression basin during the Eocene,while the second event in association with the formation of amphiboles probably indicates the continuation but diminution of upwared mantle flux since Neogene in response to the change in tectonic regime for eastern china.  相似文献   

11.
Anhydrous spinel lherzolite and harzburgite xenoliths from Tres Lagos, situated inboard of the Volcanic Arc Gap (VAG) in southernmost Patagonia, are samples of a depleted lithospheric mantle and can be divided into two major groups: metasomatized and non-metasomatized. Metasomatized samples, which are the minority, are partly mylonitized and their metasomatism is related to this tectonic process. A group of non-metasomatized samples have enriched whole rock LREE-abundances that are not consistent with the depleted LREE-abundances in their clinopyroxenes. Intergranular host basalt infiltration could be responsible for the whole rock LREE enrichments. Their Sr- and Nd-isotopic ratios have also been affected by host basalt infiltration, whereas their high Sr-isotopic ratios point to subsequent contamination by ground-water and/or Ca-rich surface solutions. Similar contamination is thought to cause the decoupling of Sr- and Nd-isotopes (high Sr- and Nd-isotopic ratios) observed in the non-metasomatized samples with depleted whole rock LREE. A two-stage partial melting process could be responsible for the origin of the Tres Lagos xenoliths. Model calculations have shown that in the first stage, 2% of batch melting took place in the garnet peridotite field and subsequently the residue experienced 2–8% batch melting in the spinel peridotite field. The Tres Lagos peridotites have not been affected by subduction-related metasomatic processes and they could represent an old lithospheric mantle.  相似文献   

12.
Amphibole ± phlogopite ± apatite-bearing mantle xenoliths at Gobernador Gregores display modal, bulk-rock and phase geochemical characteristics held as indicators of carbonatitic metasomatism. However, part of these xenoliths has high TiO2/Al2O3 and those displaying the most pronounced carbonatitic geochemical markers modally trend towards harzburgite. Bulk-rock, clinopyroxene and amphibole show Zr, Hf and Ti negative anomalies, which increase at decreasing Na2O and high field strength elements (HFSE) concentrations. Steady variation trends between xenoliths which have and do not have carbonatitic characteristics suggest a control by reactive porous flow of only one agent, inferred to be initially a ne-normative hydrous basalt (because of the presence of wehrlites) evolving towards silica saturation. Variation trends exhibit cusps when amphibole appears in the mode. Appearance of amphibole may explain the Ti anomaly variations, but not those of Zr and Hf. Numerical modelling [Plate Model (Vernières et al. in J Geophys Res 102:24771–24784, 1997)] gives results consistent with the observed geochemical features by assuming the presence of loveringite. Modest HFSE anomalies in the infiltrating melt may be acquired during percolation in the garnet-facies.In memory of Carlo Rivalenti  相似文献   

13.
Cerro Redondo is an ancient cinder cone now almost completely eroded, sited over a sill that corresponds to a sub-volcanic magma chamber, in Santa Cruz province, Patagonia, Argentina. It is composed of Pliocene-Pleistocene alkaline basalt containing spinel-facies lherzolite and harzburgite mantle xenoliths. Core compositions of pyroxenes indicate temperatures of 823 °C to 1043 °C and pressures of 12.4 kb to 21.4 kb. Based on PT estimates, petrographic, geochemical, and isotopic characteristics, we propose that Cerro Redondo xenoliths come from a thick homogeneous mantle column (36 km to 63 km depth), and present different degrees of basalt infiltration. A simple mixing model based on Sr isotopes was used to quantify the host basalt infiltration, and contamination values of 0.0%, 0.2%, 3%, and 12% were obtained for samples X-F, X-D, X-C, and X-B, respectively. For unknown reasons, samples X-G and X-E suffered selective isotopic and trace element modification, respectively, associated with 1% of basalt infiltration. Sample X-F best represents the sub-continental lithospheric mantle column, conserving primary equilibrium textures with sharp grain boundaries, and having TiO2, CaO, Na2O, K2O, and P2O5 contents lower than average spinel lherzolite, flat chondrite-normalized REE pattern, and 87Sr/86Sr and 143Nd/144Nd ratios of 0.70519 and 0.51297, respectively. This sample records a decoupling of the Sr–Nd system where Sr ratios increase at constant Nd ratios, possibly caused by chromatographic processes. Its 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios are 17.987, 15.556, and 37.959, respectively. As the interaction with the host basalt increases, xenoliths show a gradual increase of disequilibrium textures such as reaction rims and exsolution lamellae in orthopyroxene and clinopyroxene, and increase of TiO2, CaO, Al2O3, Na2O, K2O, P2O5, LREE, and incompatible element concentrations. The Sr–Nd system shows an unusual positive trend from the unmodified sample X-F toward the host basalt isotope composition with 87Sr/86Sr and 143Nd/144Nd ratios of 0.70447 and 0.51279, respectively, while 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios tend to increase toward those of the host basalt (18.424, 15.648, and 38.728, respectively) as the xenolith–basalt interaction increases. The basalt–xenolith reaction probably started during the transport of the xenoliths to the surface, and continued during the residence of xenoliths in the sub-volcanic magma chamber of Cerro Redondo.  相似文献   

14.
赋存于碱性玄武岩中被岩浆带到地表的地幔橄榄岩捕掳体中发育有大量的包裹体,这些包裹体为地幔流体研究提供了直接信息。本文对江苏六合地区地幔捕掳体中的CO2包裹体开展了详细的岩相学、显微测温学及激光拉曼光谱学工作,并对获得的数据进行计算分析。结果显示地幔橄榄岩矿物中发育有两类流体包裹体:早期原生CO2包裹体,晚期次生CO2包裹体。本次研究通过对这两类包裹体的分析,初步探讨了CO:包裹体的成因,并对六合地区及中国东部上地幔岩石圈演化提供了进一步的P—T限制:早期包裹体捕获于≥0.83GPa(对应28km深处)压力,晚期包裹体形成于6~18km深处的再平衡过程。  相似文献   

15.
In this study the sedimentology, micromorphology and structure of four deformation es in end moraines or near-end moraine settings are presented. Micromorphology has proven be a powerful tool in the interpretation of the sediments. The four sites are related to three of the four major glaciations known from this part of Patagonia: Nahuel Huapi, Anfiteatro and Pichileufú. All four sites are characterised by glaciolacustrine vironments in which sedimentation occurred at least partly on and/or against dead ice. With the exception of one section in the San Martin de los Andes area, where deformation occurred active ice-push, all major disturbances (faults and folds) are the result of dead ice collapse. Comparison with micromorphological observations on basal tills shows that the sediments all lack clear subglacial imprint.  相似文献   

16.
Phlogopite-amphibole-pyroxenite xenoliths contained in the alkali basic-ultrabasic subvolcanic complex in Langao, Shaanxi Province, are composed of diopside, Ti-rich pargasite, phlogopite apatite, sphene and ilmenite, which have subsolidus metamorphism-deformation textures such as triple-points, cataclastic boundaries and kink-bands. Mineral chemical characteristics show that the diposide, Ti-rich paragasite and phlogopite are derived from the mantle and are the products of mantle metasomatism. Compared with normal mantle-derived spinel-lherzolites, the xenoliths are enriched in TiO2, Fe2O3, CaO, Na2O and K2O, with apparent depletion in MgO. Chondrite-normalized REE patterns and primordial-mantle normalized trace elements data show that they are enriched in REE (especially LREE) and incompatible trace elements. The petrographic, mineralogical and petrochemical characteristics indicate that the xenoliths are metasomatized mantle xenoliths, which offers the evidence for mantle metasomatism and represents the anomalous mantle beneath the Early Paleozoic rift in northern Daba Mountains. The agents of mantle metasomatism are probably derived from the rising of mantle hot plumes. The processes of metasomatism varied from limited-range fluid metasomatism in deep mantle (>90 km) to pervasive metasomatism of silicate melt. This project was financially supported by the National Natural Science Foundation of China (No. 49402035).  相似文献   

17.
Henry O.A. Meyer 《Earth》1977,13(3):251-281
The importance of ultramafic and eclogitic xenoliths in kimberlite as representing the rocks and minerals of the upper mantle has been widely perceived during the last decade. Studies of the petrology and mineral chemistry of these mantle fragments as well as of inclusions in diamond, have led to significant progress in our understanding of the mineralogy and chemistry of the upper mantle. For example, it is now known that textural differences in the ultramafic xenoliths (lherzolite, harzburgite, pyroxenite and websterite) are partially reflected in chemical differences. Thus xenoliths that display a ‘fluidal’ texture, indicative of intense deformation are less depleted in Ca, Al, Na, Fe and Ti than those xenoliths in which granular textures are predominant. It is believed this relative depletion may indicate the sheared (fluidal texture) xenoliths are representative of primary, undifferentiated mantle. This material on partial melting would produce ‘basaltic-type’ material, and leave a residuum whose chemistry and mineralogy is reflected by the granular xenoliths.Also present in kimberlite are large single phase xenoliths that may be either one single crystal (xenocryst, megacryst) or an aggregate of several crystals of the same mineral (discrete xenolith, or discrete nodule). These large single phase samples consist of similar minerals to those occurring in the ultramafic xenoliths but chemically they are distinct in being generally more Fe-rich. The relation between these xenocrysts to their counterparts in the ultramafic xenoliths is unknown. Also unknown, at the present time, is the exact relation between diamond and kimberlite. Evidence obtained from study of the mineral inclusions in diamond suggests that diamond forms in at least two chemically distinct environments in the mantle; one eclogitic, the other, ultramafic. Interestingly, this suggestion is true for diamonds from worldwide localities.The mineral-chemical results of studies on xenoliths and inclusions in diamond have been convincingly interpreted in the light of experimental studies. It is now possible based on several different geothermometers and barometers to determine relatively reasonable physical conditions for the final genesis of many of these mantle rocks. For the most part the final equilibration temperatures range between 1000 and 1400°C and pressure in the region 100–200 km. These conditions are consistent with an upper mantle origin. Future studies will undoubtedly attempt to more concisely, and accurately, define these conditions, as well as understand better the chemical and spatial relationship of the rock-types in the mantle.  相似文献   

18.
地幔岩中流体包裹体研究   总被引:3,自引:2,他引:3  
卢焕章 《岩石学报》2008,24(9):1954-1960
地幔岩石中的流体包裹体代表地幔流体的样品。地幔流体包裹体可以存在从地幔来的金刚石,地幔捕虏体和岩浆碳酸岩中。研究这些岩石和矿物中的流体包裹体可以得出其所代表的地幔流体的温度、压力、成分和同位素。我们目前见到的这三类地幔岩石的包裹体主要可在橄榄石、辉石、金刚石、方解石和磷灰石中见到。这些包裹体可以粗略地分为CO2包襄体和硅酸盐熔融体包裹体。又可细分为四类包裹体:(1)富碳酸盐的硅酸盐熔融包裹体。这种包裹体在金刚石、地幔岩捕虏体和岩浆碳酸盐岩中见到,它又可分为结晶质熔融包裹体和玻璃包裹体。(2)CO2包裹体。这种包裹体大多见于地幔捕虏体中,在金刚石和岩浆碳酸岩中也可见到。(3)含硫化物的包裹体。这种包裹体见于地幔捕虏体中,与纯CO2包裹体和含CO2的熔融包裹体共存。(4)高密度的流体包裹体。这种包裹体见于金刚石中,是一种高盐度、高密度的含K、Cl和H2O的流体包裹体,又可分为高卤水包裹体和含卤水的富硅的碳酸盐岩浆包裹体。从对金刚石、地幔捕虏体和岩浆碳酸盐岩中流体包裹体的研究表明,地幔流体存在不均匀性和不混溶性。  相似文献   

19.
Summary Peridotitic xenoliths from melanephelinites of Sal Island, Cape Verde Archipelago, have a compositional range from moderately depleted Iherzolites to refractory harzburgites. Most xenoliths have protogranular textures but porphyroclastic and mylonitic textures are not uncommon. Small amounts of glass are present in the intergranular space of these rocks which possibly, at least in part, represent quenched silicate melt which invaded these rocks just before they were excavated. These glasses contain microphenocrysts of olivine, clinopyroxene, and spinel, as well as small grains of sulphides and metallic Fe-Ni alloys. Metallic phases were most likely produced by the desulphurization of sulfides, which also resulted in very low oxygen fugacities (several logarithmic units below QFM buffer) in the interstitial glasses and associated microphenocrysts. This is reflected in the chemical composition of the newly formed spinels which are characterised by low amounts of ferric iron. In contrast, primary spinel-bearing mineral assemblages of the peridotites were formed at much higher fO2. which were similar to those estimated for the host nephelinites which have high titanomagnetite contents.
Glasführende Xenolithe von Kap Verde: Evidenz für einen heißen Erdmantel Diapir
Zusammenfassung Die ultramafischen Xenolithe aus den Melanepheliniten von der Kap Verde Insel Sal sind Spinell-Lherzolithe und Spinell-Harzburgite. Am verbreitesten sind Xenolithe mit protogranularer Textur, aber auch Xenolithe mit porphyroklastischer und mylonitischer Textur treten häufig auf. Die Xenolithe enthalten kleine Mengen von intergranularem Glas, welches, wenigstens zum Teil, abgeschreckte silikatische Schmelzen repräsentiert, welche die Gesteine vor ihrem Aufstieg aus dem Erdmantel durchdrungen haben. Dieses Glas enthält Mikrophenokristalle von Olivin, Klinopyroxen und Orthopyroxen, sowie auch kleinere Körner von Sulfiden und metallischen Fe-Ni Legierungen. Metallische Phasen sind sehr wahrscheinlich durch Entschwefelung von Sulfiden unter sehr niedrigem fO2 (einige Größenordnungen unter dem QFM Buffer) entstanden. Das wirkt sich auf die Zusammensetzung der neu gebildeten Spinelle aus, die durch einen niederen Gehalt an Fe3+ charakterisiert sind. Die Xenolithe wurden jedoch unter viel höhere fO2 gebildet. Ihre foe sind ähnlich der für die Wirtsnephelinite berechneten fO2, die hohe Titanomagnetit-Gehalte aufweisen.
  相似文献   

20.
Three groups of ultramafix xenoliths were collected from alkali basalt in the island of Hierro, Canary Islands: (1) Cr-diopside series (spinel harzbugite, lherzolite, dunite); (2) Al-augite series xenoliths (spinel wherlite, olivine clinopyroxenite, dunite, olivine websterite); (3) gabbroic xenoliths. The main textures are granoblastic, porphyroclastic and granular, but poikilitic textures, and symplectitic intergrowths of clinopyroxene (cpx) + spinel (sp)±orthopyroxene (opx)±olivine (ol) (in rare cases cpx+opx), occur locally. Textural relations and large inter- and intra-sample mineral chemical variations testify to a complex history of evolution of the mantle source region, involving repeated heating, partial melting, and enrichment associated with infiltration by basaltic melts. The oldest assemblage in the ultramafic xenoliths (porphyroclasts of ol+opx±sp±cpx) represents depleted abyssal mantle formed within the stability field of spinel lherzolite. The neoblast assemblage [ol+cpx+ sp±opx±plagioclase (plag)±ilmenite (il)±phlogopite (phlog)] reflect enrichment in CaO+Al2O3+Na2O+ FeO±TiO2±K2O±H2O through crystal/liquid separation processes and metasomatism. The Al-augite-series xenoliths represent parts of the mantle where magma infiltration was much more extensive than in the source region of the Cr-diopside series rocks. Geothermometry indicates temperature fluctuations between about 900–1000 and 1200°C. Between each heating event the mantle appears to have readjusted to regional geothermal gradient passing 950°C at about 12 kbar. The gabbroic xenoliths represent low-pressure cumulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号