首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Highway–Reward massive sulphide deposit is hosted by a silicic volcanic succession in the Cambro-Ordovician Seventy Mile Range Group, northeastern Australia. Three principal lithofacies associations have been identified in the host succession: the volcanogenic sedimentary facies association, the primary volcanic facies association and the resedimented syn-eruptive facies association. The volcanogenic sedimentary facies association comprises volcanic and non-volcanic siltstone and sandstone turbidites that indicate submarine settings below storm wave base. Lithofacies of the primary volcanic facies association include coherent rhyolite, rhyodacite and dacite, and associated non-stratified breccia facies (autoclastic breccia and peperite). The resedimented volcaniclastic facies association contains clasts that were initially formed and deposited by volcanic processes, but then redeposited by mass-flow processes. Resedimentation was more or less syn-eruptive so that the deposits are essentially monomictic and clast shapes are unmodified. This facies association includes monomictic rhyolitic to dacitic breccia (resedimented autoclastic facies), siltstone-matrix rhyolitic to dacitic breccia (resedimented intrusive hyaloclastite or resedimented peperite) and graded lithic-crystal-pumice breccia and sandstone (pumiceous and crystal-rich turbidites). The graded lithic-crystal-pumice breccia and sandstone facies is the submarine record of a volcanic centre(s) that is not preserved or is located outside the study area. Pumice, shards, and crystals are pyroclasts that reflect the importance of explosive magmatic and/or phreatomagmatic eruptions and suggest that the source vents were in shallow water or subaerial settings.The lithofacies associations at Highway–Reward collectively define a submarine, shallow-intrusion-dominated volcanic centre. Contact relationships and phenocryst populations indicate the presence of more than 13 distinct porphyritic units with a collective volume of 0.5 km3. Single porphyritic units vary from <10 to 350 m in thickness and some are less than 200 m in diameter. Ten of the porphyritic units studied in the immediate host sequence to the Highway–Reward deposit are entirely intrusive. Two of the units lack features diagnostic of their emplacement mechanism and could be either lavas and intrusions. Direct evidence for eruption at the seafloor is limited to a single partly extrusive cryptodome. However, distinctive units of resedimented autoclastic breccia indicate the presence nearby of additional lavas and domes.The size and shape of the lavas and intrusions reflect a restricted supply of magma during eruption/intrusion, the style of emplacement, and the subaqueous emplacement environment. Due to rapid quenching and mixing with unconsolidated clastic facies, the sills and cryptodomes did not spread far from their conduits. The shape and distribution of the lavas and intrusions were further influenced by the positions of previously or concurrently emplaced units. Magma preferentially invaded the sediment, avoiding the older units or conforming to their margins. Large intrusions and their dewatered envelope may have formed a barrier to the lateral progression and ascent of subsequent batches of magma.  相似文献   

2.
The October, 1902, eruption of Santa Maria Volcano, Guatemala, was one of the largest this century. It was preceded by a great earthquake on April 19 centered at the volcano, as well as numerous other major earthquakes. The 18–20 hour-long plinian eruption on October 25 produced a column at least 28 km high, reaching well into the stratosphere.The airfall pumice deposit covered more than 1.2 million km2 with a trace of ash and was only two meters thick at the vent. White dacitic pumice, dark gray scoriaceous basalt (with physically and chemically mixed intermediate pumice) and loose crystals of plagioclase, hornblende, hypersthene, biotite and magnetite make up the juvenile components of the deposit. Lithic fragments are of volcanic, plutonic, and metamorphic origin. The plinian deposit is a fine-grained, crystal-rich, single pumice fall unit and shows inverse grading. Mapping of the deposit gives a volume of 8.3 km3 within the one mm isopach. Crystal concentration studies show that the true volume erupted was at least 20 km3 (equivalent to 8.5 km3 of dense dacite) and that 90% of the ejecta was less than 2 mm in diameter.The plinian volume eruption rate averaged 1.2 × 105 m3s−1 and the average gas muzzle velocity of the column exceeded 270 ms−1. A total of 8.3 × 1018 J of energy were released by the eruption. A knowledge of both theoretically derived eruption parameters and contemporary information allows a detailed analysis of eruption mechanisms.This eruption was the major stratospheric aerosol injection in the 1902–1903 period. However, mid- to low- latitude northern hemisphere temperature deviation data for the years following the eruption show no significant temperature decrease. This may be explained by the sulfur-poor nature of dacite magmas, suggesting that volatile composition, rather than mass of volatiles, is the controlling parameter in climatic response to explosive eruptions.  相似文献   

3.
The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age.The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75×35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption.  相似文献   

4.
Size distributions of plagioclase crystals in series of recent porphyritic dacite lavas from Kameni volcano, Greece, can be modelled by mixing two populations of crystals, each with overlapping linear crystal size distributions (CSD)—termed microlites and megacrysts. The magmas bearing the microlites and megacrysts started to crystallise 6–13 and 24–96 years, respectively, before each eruption. The dates of initiation of crystallisation of the megacrysts indicate that they are left-overs of earlier injections of new magma into a shallow chamber: some magma remains after each eruption and continues to crystallise. New magma with few or no crystals is then introduced and the microlites crystallise from the mixed magma. Eruption followed 6–13 years after mixing. Such a model would suggest that some porphyritic magmas are products of a shallow magma chamber that is never completely emptied, just topped up from time to time.  相似文献   

5.
Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (>1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite–dacite–andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff – one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province – provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates.The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02±0.04 Ma in and around the coeval White Rock caldera which has an unextended north–south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase>quartz≈hornblende>biotite>Fe–Ti oxides≈sanidine>titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63–71 wt% SiO2) is poorly correlated with phenocryst abundance.These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that convective mixing in a sill-like magma chamber precluded development of a zoned chamber with a rhyolitic top or of a zoned pyroclastic deposit. Chemical variations in the Lund Tuff are consistent with equilibrium crystallization of a parental dacitic magma followed by eruptive mixing of compositionally diverse crystals and high-silica rhyolite vitroclasts during evacuation and emplacement. This model contrasts with the more systematic withdrawal from a bottle-shaped chamber in which sidewall crystallization creates a marked vertical compositional gradient and a substantial volume of capping-evolved rhyolite magma. Eruption at exceptionally high discharge rates precluded development of an underlying plinian deposit.The generation of the monotonous intermediate Lund magma and others like it in the middle Tertiary of the western USA reflects an unusually high flux of mantle-derived mafic magma into unusually thick and warm crust above a subducting slab of oceanic lithosphere.  相似文献   

6.
The Etendeka Formation of north-western Namibia consists of a sequence of interbedded quartz latites and tholeiitic basalts and forms part of the Karoo Igneous Province in southern Africa. The age of the Etendeka Formation is approximately 130–135 Ma. The quartz latites make up a significant proportion of the stratigraphic succession (<25% of the total stratigraphic thickness) and form as much as 60% of the outcrop area in the southern Etendeka. Apart from some systematic differences between pitchstones and devitrified quartz latite, largely explained by alteration processes, individual quartz latite units exhibit remarkably uniform compositions with no significant vertical or lateral variation. Geochemistry can be used as a primary criterion for the correlation of major quartz latite units over much of the southern Etendeka area enabling the reconstruction of the Etendeka Formation stratigraphy in this region. Individual quartz latite units occur as voluminous (400–2600 km3), widespread (up to 8800 km2), sheet-like deposits typically between 40 and 300 m thick. Each unit consists of basal, main and upper zones. The main zone generally constitutes over 70% of the thickness of the unit and typically consists of texturally featureless devitrified quartz latite. In contrast the basal and upper zones of the flow are characterised by flow banding, pitchstone lenses and breccia, with rare occurrences of pyroclastic textures. The quartz latites are sparsely porphyritic (<10% phenocrysts) with glassy or devitrified groundmass textures. The phenocrysts consist of plagioclase, pyroxene, titanomagnetite and rare ilmenite. Pyroxene geothermometry indicates high (1000–1100°C) temperatures of crystallisation which, coupled with the absence or primary hydrous phases, indicates that the quartz latites were relatively hot, H2O-undersaturated magmas. The quartz latites display features common to both rhyolite lavas and ignimbrites and are clearly the products of an unusual eruption style. The local preservation of pyroclastic textures and the broad areal extent of these units lead to the conclusion that the quartz latites are high-temperature rheomorphic ignimbrites (i.e. rheoignimbrites). A combination of high eruption temperature and relatively low viscosity helps to explain the often completely welded and homogeneous textures observed in most quartz latite outcrops in the Etendeka area.  相似文献   

7.
Fragments of unaltered andesite found at all levels in the deposits of the catastrophic flank-failure, directed-blast eruption of the Soufrière of Guadeloupe in 3100 bp are thought to be remnants of the cryptodome. They were observed in analytical transmission electron microscopy for clues to the evolution of the intrusion prior to the eruption. Several features that could potentially be used as temperature markers were identified, among which the angle between microexsolutions of magnetite in augite phenocrysts was used to find an upper boundary of the temperature of the intrusion before the eruption: 600–700°C. Calculation of the time a dyke or sphere-shaped intrusion may have taken to cool from the emplacement temperature down to the temperature of exsolution of the magnetite leads to an estimate of the time between emplacement of the intrusion and the eruption, which could not have been less than a few tens of years. It therefore seems probable that the emplacement of the magmatic intrusion was not the immediate cause of the flank destabilization and catastrophic eruption of the Soufrière in 3100 bp.  相似文献   

8.
The Christmas Mountains caldera complex developed approximately 42 Ma ago over an elliptical (8×5 km) laccolithic dome that formed during emplacement of the caldera magma body. Rocks of the caldera complex consist of tuffs, lavas, and volcaniclastic deposits, divided into five sequences. Three of the sequences contain major ash-flow tuffs whose eruption led to collapse of four calderas, all 1–1.5 km in diameter, over the dome. The oldest caldera-related rocks are sparsely porphyritic, rhyolitic, air-fall and ash-flow tuffs that record formation and collapse of a Plinian-type eruption column. Eruption of these tuffs induced collapse of a wedge along the western margin of the dome. A second, more abundantly porphyritic tuff led to collapse of a second caldera that partly overlapped the first. The last major eruptions were abundantly porphyritic, peralkaline quartz-trachyte ash-flow tuffs that ponded within two calderas over the crest of the dome. The tuffs are interbedded with coarse breccias that resulted from failure of the caldera walls. The Christmas Mountains caldera complex and two similar structures in Trans-Pecos Texas constitute a newly recognized caldera type, here termed a laccocaldera. They differ from more conventional calderas by having developed over thin laccolithic magma chambers rather than more deep-seated bodies, by their extreme precaldera doming and by their small size. However, they are similar to other calderas in having initial Plinian-type air-fall eruption followed by column collapse and ash-flow generation, multiple cycles of eruption, contemporaneous eruption and collapse, apparent pistonlike subsidence of the calderas, and compositional zoning within the magma chamber. Laccocalderas could occur else-where, particularly in alkalic magma belts in areas of undeformed sedimentary rocks.  相似文献   

9.
The Pollara tuff-ring resulted from two explosive eruptions whose deposits are separated by a paleosol 13 Ka old. The oldest deposits (LPP, about 0.2 km3) consist of three main fall units (A, B, C) deposited from a subplinian column whose height (7–14 km) increased with time from A to C, as a consequence of the increased magma discharge rate during the eruption (1–8x106 kg/s). A highly variable juvenile population characterizes the eruption. Black, dense, highly porphyritic, mafic ejecta (SiO2=50–55%) almost exclusively form A deposits, whereas grey, mildly vesiculated, mildly porphyritic pumice (SiO2=56–67%) and white, highly vesiculated, nearly aphyric pumice (SiO2=66–71%) predominate in B and C respectively. Mafic cumulates are abundant in A, while crystalline lithic ejecta first appear in B and increase upward. The LPP result from the emptying of an unusual and unstable, compositionally zoned, shallow magma chamber in which high density mafic melts capped low density salic ones. Evidence of the existence of a short crystal fractionation series is found in the mafic rocks; the andesitic pumice results from complete blending between rhyolitic and variously fractionated mafic melts (salic component up to 60 wt%), whereas bulk dacitic compositions mainly result from the presence of mafic xenocrysts within rhyolitic glasses. Viscosity and composition-mixing diagrams show that blended liquids formed when the visosities of the two end members had close values. The following model is suggested: 1. A rhyolitic magma rising through the metamorphic basement enterrd a mafic magma chamber whose souter portions were occupied by a highly viscous, mafic crystal mush. 2. Under the pressure of the rhyolitic body the nearly rigid mush was pushed upwards and mafic melts were squeezed against the walls of the chamber, beginning roof fracturing and mingling with silicic melts. 3. When the equilibrium temperature was reached between mafic and silicic melts, blended liquids rapidly formed. 4. When fractures reached the surface, the eruption began by the ejection of the mafic melts and crystal mush (A), followed by the emission of variously mingled and blended magmas (B) and ended by the ejection of nearly unmixed rhyolitic magma (C).  相似文献   

10.
 On 30 March 1956 a catastrophic directed blast took place at Bezymianny volcano. It was caused by the failure of 0.5 km3 portion of the volcanic edifice. The blast was generated by decompression of intra-crater dome and cryptodome that had formed during the preclimactic stage of the eruption. A violent pyroclastic surge formed as a result of the blast and spread in an easterly direction effecting an area of 500 km2 on the lower flank of the volcano. The thickness of the deposits, although variable, decreases with distance from the volcano from 2.5 m to 4 cm. The volume of the deposit is calculated to be 0.2–0.4 km3. On average, the deposits are 84% juvenile material (andesite), of which 55% is dense andesite and 29% vesicular andesite. On a plot of sorting vs median diameter (Inman coefficients) the deposits occupy the area between the fall and flow fields. In the proximal zone (less than 19 km from the volcano) three layers can be distinguished in the deposits. The lower one (layer A) is distributed all over the proximal area, is very poorly sorted, enriched in fragments of dense juvenile andesite and contains an admixture of soil and uncharred plant remains. The middle layer (layer B) is distributed in patches tens to hundreds of metres across on the surface of layer A. Layer B is relatively well sorted as a result of a very low content of fine fractions, and it contains rare charred plant remains. The uppermost layer (layer C) forms still smaller patches on the surface of layer B. Layer C is characterized by intermediate sorting, is enriched in vesicular juvenile andesitic fragments, and contains a high percentage of the fine fraction and very rare plant remains which are thoroughly charred. Maximum clast size decreases from layer A to layer C. The absence of internal cross bedding is a characteristic of all three layers. In the distal zone (more than 19 km from the volcano) stratigraphy changes abruptly. Deposit here consists of one layer 26 to 4 cm in thickness, is composed of wavy laminated sand with a touch of gravel, is well sorted and contains uncharred plant remains. The Bezymianny blast deposits are not analogous with known types of pyroclastic surges, with the exception of the directed blast deposits of the Mount St.Helens eruption of 18 May 1980. The peculiarities of deposits from these two eruptions allow them to be separated into a special type: blast surge. This type of surge is formed when failure of volcanic edifice relieves the pressure from an inter-crater dome and/or cryptodome. A model is proposed to explain the peculiarities of the formation, transportation and emplacement of the Bezymianny blast surge deposits. Received: 19 December 1994 / Accepted: 12 December 1995  相似文献   

11.
We have characterized pumice products belonging to the climactic phase of the 800-year-b.p. Quilotoa eruption. Bulk rock compositions, petrography, mineral, and glass chemistry and textural investigations were performed on the three end-member pumice types, namely white, gray, and mingled pumices. All the investigated pumice clasts are dacites characterized by the same bulk rock composition and mineralogical assemblage, but glass compositions and bulk textures change according to different pumice types. White pumice has higher crystallinity (~48 wt%), abundant euhedral pheno/microphenocrysts, no groundmass microlites, the most evolved glass compositions (74–78 wt% SiO2), and heterogeneous vesicle populations marked by deformed and highly coalesced vesicles with thin walls. Gray pumice exhibits lower crystallinity (29–36 wt%), abundant broken and/or resorbed crystals, ubiquitous groundmass phenocryst fragments and microlites, the widest range of glass compositions (69–78 wt% SiO2), and quite homogeneous poorly deformed and coalesced vesicles with thicker walls. Mingled pumices are characterized by the alternation of bands or patches with white and gray pumice compositional and textural characteristics. We attribute heterogeneities in glass compositions and crystal and vesicle textures to processes occurring within volcanic conduits as magma is ascending to the surface. In particular, the above observations and results are consistent with an origin of a gray magma by heating of the original white magma in a strongly sheared region of the conduit because of a mechanism of viscous dissipation and crystal grinding and resorption at the conduit walls. The less viscous gray magma, therefore, would enable the onset and preservation of a high mass flux of the eruption otherwise difficult to explain for highly viscous crystal-rich dacitic magmas.Editorial responsibility: D. Dingwell  相似文献   

12.
The 35 × 20 km Cerro Galán resurgent caldera is the largest post-Miocene caldera so far identified in the Andes. The Cerro Galán complex developed on a late pre-Cambrian to late Palaeozoic basement of gneisses, amphibolites, mica schists and deformed phyllites and quartzites. The basement was uplifted in the early Miocene along large north-south reverse faults, producing a horst-and-graben topography. Volcanism began in the area prior to 15 Ma with the formation of several andesite to dacite composite volcanoes. The Cerro Galán complex developed along two prominent north-south regional faults about 20 km apart. Dacitic to rhyodacitic magma ascended along these faults and caused at least nine ignimbrite eruptions in the period 7-4 Ma (K-Ar determinations). These ignimbrites are named the Toconquis Ignimbrite Formation. They are characterised by the presence of basal plinian deposits, many individual flow units and proximal co-ignimbrite lag breccias. The ignimbrites also have moderate to high macroscopic pumice and lithic contents and moderate to low crystal contents. Compositionally banded pumice occurs near the top of some units. Many of the Toconquis eruptions occurred from vents along a north-south line on the western rim of the young caldera. However, two of the ignimbrites erupted from vents on the eastern margin. Lava extrusions occurred contemporaneously along these north-south lines. The total D.R.E. volume of Toconquis ignimbrite exceeds 500 km3.Following a 2-Ma dormant period a single major eruption of rhyodacitic magma formed the 1000-km3 Cerro Galán ignimbrite and the caldera. The ignimbrite (age 2.1 Ma on Rb-Sr determination) forms a 30–200-m-thick outflow sheet extending up to 100 km in all directions from the caldera rim. At least 1.4 km of welded intracaldera ignimbrite also accumulated. The ignimbrite is a pumice-poor, crystal-rich deposit which contains few lithic clasts. No basal plinian deposit has been identified and proximal lag breccias are absent. The composition of pumice clasts is a very uniform rhyodacite which has a higher SiO2 content but a lower K2O content than the Toconquis ignimbrites. Preliminary data indicate no evidence for compositional zonation in the magma chamber. The eruption is considered to have been caused by the catastrophic foundering of a cauldron block into the magma chamber.Post-caldera extrusions occurred shortly after eruption along both the northern extension of the eastern boundary fault and the western caldera margin. Resurgence also occurred, doming up the intracaldera ignimbrite and sedimentary fill to form the central mountain range. Resurgent doming was centred along the eastern fault and resulted in radial tilting of the ignimbrite and overlying lake sediments.  相似文献   

13.
Usu volcano has erupted nine times since 1663. Most eruptive events started with an explosive eruption, which was followed by the formation of lava domes. However, the ages of several summit lava domes and craters remain uncertain. The petrological features of tephra deposits erupted from 1663 to 1853 are known to change systematically. In this study, we correlated lavas with tephras under the assumption that lava and tephra samples from the same event would have similar petrological features. Although the initial explosive eruption in 1663 was not accompanied by lava effusion, lava dome or cryptodome formation was associated with subsequent explosive eruptions. We inferred the location of the vent associated with each event from the location of the associated lava dome and the pyroclastic flow deposit distribution and found that the position of the active vent within the summit caldera differed for each eruption from the late 17th through the 19th century. Moreover, we identified a previously unrecognized lava dome produced by a late 17th century eruption; this dome was largely destroyed by an explosive eruption in 1822 and was replaced by a new lava dome during a later stage of the 1822 event at nearly the same place as the destroyed dome. This new interpretation of the sequence of events is consistent with historical sketches and documents. Our results show that petrological correlation, together with geological evidence, is useful not only for reconstructing volcanic eruption sequences but also for gaining insight into future potential disasters.  相似文献   

14.
The 26.5 ka Oruanui eruption, from Taupo volcano in the central North Island of New Zealand, is the largest known ‘wet’ eruption, generating 430 km3 of fall deposits, 320 km3 of pyroclastic density–current (PDC) deposits (mostly ignimbrite) and 420 km3 of primary intracaldera material, equivalent to 530 km3 of magma. Erupted magma is >99% rhyolite and <1% relatively mafic compositions (52.3–63.3% SiO2). The latter vary in abundance at different stratigraphic levels from 0.1 to 4 wt%, defining three ‘spikes’ that are used to correlate fall and coeval PDC activity. The eruption is divided into 10 phases on the basis of nine mappable fall units and a tenth, poorly preserved but volumetrically dominant fall unit. Fall units 1–9 individually range from 0.8 to 85 km3 and unit 10, by subtraction, is 265 km3; all fall deposits are of wide (plinian) to extremely wide dispersal. Fall deposits show a wide range of depositional states, from dry to water saturated, reflecting varied pyroclast:water ratios. Multiple bedding and normal grading in the fall deposits show the first third of the eruption was very spasmodic; short-lived but intense bursts of activity were separated by time breaks from zero up to several weeks to months. PDC activity occurred throughout the eruption. Both dilute and concentrated currents are inferred to have been present from deposit characteristics, with the latter being volumetrically dominant (>90%). PDC deposits range from mm- to cm-thick ultra-thin veneers enclosed within fall material to >200 m-thick ignimbrite in proximal areas. The farthest travelled (90 km), most energetic PDCs (velocities >100 m s−1) occurred during phase 8, but the most voluminous PDC deposits were emplaced during phase 10. Grain size variations in the PDC deposits are complex, with changes seen vertically in thick, proximal accumulations being greater than those seen laterally from near-source to most-distal deposits. Modern Lake Taupo partly infills the caldera generated during this eruption; a 140 km2 structural collapse area is concealed beneath the lake, while the lake outline reflects coeval peripheral and volcano–tectonic collapse. Early eruption phases saw shifting vent positions; development of the caldera to its maximum extent (indicated by lithic lag breccias) occurred during phase 10. The Oruanui eruption shows many unusual features; its episodic nature, wide range of depositional conditions in fall deposits of very wide dispersal, and complex interplay of fall and PDC activity.  相似文献   

15.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   

16.
The Hekla eruption cloud on 26–27 February 2000 was the first volcanic cloud to be continuously and completely monitored advecting above Iceland, using the C-band weather radar near the Keflavík international airport. Real-time radar observations of the onset, advection, and waning of the eruption cloud were studied using time series of PPI (plan-position indicator) radar images, including VMI normal, Echotop, and Cappi level 2 displays. The reflectivity of the entire volcanic cloud ranges from 0 to >60 dBz. The eruption column above the vent is essentially characterised by VMI normal and Cappi level 2 values, >30 dBz, due to the dominant influence of lapilli and ash (tephra) on the overall reflected signal. The cloud generated by the column was advected downwind to the north-northeast. It is characterised by values between 0 and 30 dBz, and the persistence of these reflections likely result from continuing water condensation and freezing on ash particles. Echotop radar images of the eruption onset document a rapid ascent of the plume head with a mean velocity of ~30 to 50 m s–1, before it reached an altitude of ~11–12 km. The evolution of the reflected cloud was studied from the area change in pixels of its highly reflected portions, >30 dBz, and tied to recorded volcanic tremor amplitudes. The synchronous initial variation of both radar and seismic signals documents the abrupt increase in tephra emission and magma discharge rate from 18:20 to 19:00 UTC on 26 February. From 19:00 the >45 dBz and 30–45 dBz portions of the reflected cloud decrease and disappear at about 7 and 10.5 h, respectively, after the eruption began, indicating the end of the decaying explosive phase. The advection and extent of the reflected eruption cloud were compared with eyewitness accounts of tephra fall onset and the measured mass of tephra deposited on the ground during the first 12 h. Differences in the deposit map and volcanic cloud radar map are due to the fact that the greater part of the deposit originates by fallout off the column margins and from the base of the cloud followed by advection of falling particle in lower level winds.Editorial responsibility: P. Mouginis-Mark  相似文献   

17.
A model for the numerical simulation of tephra fall deposits   总被引:4,自引:2,他引:4  
A simple semianalytical model to simulate ash dispersion and deposition produced by sustained Plinian and sub-Plinian eruption columns based on the 2D advection–dispersion equation was applied. The eruption column acts as a vertical line source with a given mass distribution and neglects the complex dynamics within the eruption column. Thus, the use of the model is limited to areas far from the vent where the dynamics of the eruption column play a minor role. Vertical wind and diffusion components are considered negligible with respect to the horizontal ones. The dispersion and deposition of particles in the model is only governed by gravitational settling, horizontal eddy diffusion, and wind advection. The model accounts for different types and size classes of a user-defined number of particle classes and changing settling velocity with altitude. In as much as wind profiles are considered constant on the entire domain, the model validity is limited to medium-range distances (about 30–200 km away from the source).The model was used to reconstruct the tephra fall deposit from the documented Plinian eruption of Mt. Vesuvius, Italy, in 79 A.D. In this case, the model was able to broadly reproduce the characteristic medium-range tephra deposit. The results support the validity of the model, which has the advantage of being simple and fast to compute. It has the potential to serve as a simple tool for predicting the distribution of ash fall of hypothetical or real eruptions of a given magnitude and a given wind profile. Using a statistical set of frequent wind profiles, it also was used to construct air fall hazard maps of the most likely affected areas around active volcanoes where a large eruption is expected to occur.  相似文献   

18.
Cas  R A F  Allen  R L  Bull  S W  Clifford  B A  Wright  J V 《Bulletin of Volcanology》1990,52(3):159-174
The relics of two Late Devonian subaqueous rhyolitic dome-top tuff and pumice cone successions are preserved in the Bunga Beds outlier of the Boyd Volcanic Complex, southeastern Australia. These cone successions and other rhyolitic volcanics of the Bunga Beds are associated with turbidite and other deep-water massflow sedimentary rocks. The two cone successions have a generally similar stratigraphy. At the base, flow-banded, variably autobrecciated and quench-fragmented rhyolite, representing an intrusive to extrusive dome, is overlain by rhyolitesediment breccia, representing extrusion of the dome through the deep-water sediment pile and resedimentation down its flanks. In the northern cone succession an overlying, succession of bedded pumiceous crystal-rich to crystal-poor tuffs represents the onset of pyroclastic activity and growth of a tuff cone. An overyling debris flow deposit represents degradation of part of the cone. The topmost unit, a stratified pumice succession, is thought to represent another cone-building eruptive phase, and is separated from the underlying strata by a major slide surface. The southern cone succession contains less tuff and abundant pumice, and is also terminated by a debris-flow deposit, indicating cone degradation. A modern analogue for the inferred eruptive style and sequence is the 1953–1957 rhyolite eruption that formed the Tuluman Island lava-tuff cone complex in the Bismarck Sea. The eruptions were often cyclical consisting of an initial inferred submarine-lava-forming stage, passing into a pumicecone-forming stage, in some cases a subaeriallava-forming stage, and a final stage, following the cessation of volcanism, during which the cones collapsed gravitationally or were destroyed by wave erosion. Using observations from both the Tuluman Island eruptions and the preserved stratigraphies of the Devonian tuff cones, a dynamic model is proposed for the formation of subaqueous rhyolitic dome-top tuff and pumice cones.  相似文献   

19.
New Zealand's biggest and most destructive volcanic eruption of historical times was that of Tarawera in 1886. The resulting scoria fall has a dispersal very similar in extent to that of the Vesuvius A.D. 79 pumice fall and is one of the few known examples of a basaltic deposit of plinian type. A new estimate of the volume (2 km3) is significantly greater than previous estimates. The basalt came mainly from a 7-km length of fissure, and emission and exit velocity were fairly uniform along at least 4 km of it, this is one of the few documented examples of a plinian eruption from a fissure vent. Primary welding of the scoria fall resulted where the accumulation rate exceeded about 250 mm min−1. A model of the eruption dynamics is proposed which leads to an estimate of 28 km for the height of the eruption cloud and implies a magma volatile fraction of 1.5–3%. Violent phreatic explosions occurred in the southwestern extension of the fissure across the Rotomahana geothermal field, and it is thought that some of the water responsible for the power of the plinian eruption came from this source, though its amount was not sufficient to turn the eruption into a phreatoplinian one.  相似文献   

20.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号