首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical models are used to estimate the meridional overturning and transports along the paths of two hydrographic cruises, carried out in 1997 and 2002 from Greenland to Portugal. We have examined the influence of the different paths of the two cruises and found that it could explain 0.4 to 2 Sv of difference in overturning (the precise value is model-dependent). Models show a decrease in the overturning circulation between 1997 and 2002, with different amplitudes. The CLIPPER ATL6 model reproduces well the observed weakening of the overturning in density coordinates between the cruises; in the model, the change is due to the combination of interannual and high-frequency forcing and internal variability associated with eddies and meanders. Examination of the -coordinate overturning reveals model–data discrepancies: the vertical structure in the models does not change as much as the observed one. The East Greenland current variability is mainly wind-forced in the ATL6 model, while fluctuations due to eddies and instabilities explain a large part of the North Atlantic Current variability. The time-residual transport of dense water and heat due to eddy correlations between currents and properties is small across this section, which is normal to the direction of the main current.  相似文献   

2.
Transport of salt in the Irminger Current, the northern branch of the Atlantic Subpolar Gyre coupling the eastern and western subpolar North Atlantic, plays an important role for climate variability across a wide range of time scales. High-resolution ocean modeling and observations indicate that salinities in the eastern subpolar North Atlantic decrease with enhanced circulation of the North Atlantic subpolar gyre (SPG). This has led to the perception that a stronger SPG also transports less salt westward. In this study, we analyze a regional ocean model and a comprehensive global coupled climate model, and show that a stronger SPG transports more salt in the Irminger Current irrespective of lower salinities in its source region. The additional salt converges in the Labrador Sea and the Irminger Basin by eddy transports, increases surface salinity in the western SPG, and favors more intense deep convection. This is part of a positive feedback mechanism with potentially large implications for climate variability and predictability.  相似文献   

3.
This paper aims to provide a comprehensive review of previous studies and concepts concerning the North Atlantic Oscillation. The North Atlantic Oscillation (NAO) and its recent homologue, the Arctic Oscillation/Northern Hemisphere annular mode (AO/NAM), are the most prominent modes of variability in the Northern Hemisphere winter climate. The NAO teleconnection is characterised by a meridional displacement of atmospheric mass over the North Atlantic area. Its state is usually expressed by the standardised air pressure difference between the Azores High and the Iceland Low. ThisNAO index is a measure of the strength of the westerly flow (positive with strong westerlies, and vice versa). Together with the El Niño/Southern Oscillation (ENSO) phenomenon, the NAO is a major source of seasonal to interdecadal variability in the global atmosphere. On interannual and shorter time scales, the NAO dynamics can be explained as a purely internal mode of variability of the atmospheric circulation. Interdecadal variability maybe influenced, however, by ocean and sea-ice processes.  相似文献   

4.
The ocean meridional overturning circulation (MOC) plays a central role for the climate in the Atlantic realm. Since scenarios for future climate change indicate a significant reduction of the MOC under global warming, an assessment of variations and trends of the real MOC is important. Using observations at ocean weather ship (OWS) stations and along oceanic sections, we examine the hydrographic information that can be used to determine MOC trends via its signature in water mass properties obtained from model simulations with the climate model ECHAM5/MPI-OM. We show that temperature trends at mid-latitudes provide useful indirect measure of large-scale changes of deep circulation: A mid-depth warming is related to MOC weakening and a cooling to MOC strengthening. Based on our model experiments, we argue that a continuation of measurements at key OWS sites may contribute to a timely detection of a possible future MOC slowdown and to separate the signal from interannual-to-multidecadal MOC variability. The simulations suggest that the subsurface hydrographic information related to MOC has a lower variability than the MOC trend measured directly. Based on our model and the available long-term hydrographic data, we estimate non-significant MOC trends for the last 80 years. For the twenty-first century, however, the model simulations predict a significant MOC decline and accompanied mid-depth warming trend.  相似文献   

5.
The equatorial undercurrent (EUC), the shallow meridional overturning cells feeding it, and their role in El Niño and decadal variability in the equatorial Pacific are studied using both in situ data and an ocean general circulation model. Using temperature and current data from the TAO/TRITON moorings at the equator, their data gaps are filled and it was shown that continuous time series of mass transport, temperature, depth, and kinetic energy of the EUC could be constructed for the period 1980–2002 with an excellent accuracy. This dataset was analysed and used to validate the output from an oceanic general circulation model (OGCM). The OGCM was then used to find that variations in the strength of the EUC, shallow meridional overturning (pycnocline convergence and surface divergence), and equatorial upwelling had the same variations in mass transport on interannual and longer time scales within the period 1951–1999. These variations are all caused by variations of the zonal wind stress zonally integrated, in agreement with simple linear and steady dynamics theories. Impact of these mass transport variations and of temperature variations on heat budgets in the entire equatorial band of the Pacific and in its eastern part are quantified.  相似文献   

6.
The Atlantic meridional overturning circulation (AMOC), an important component of the climate system, has only been directly measured since the RAPID array’s installation across the Atlantic at 26°N in 2004. This has shown that the AMOC strength is highly variable on monthly timescales; however, after an abrupt, short-lived, halving of the strength of the AMOC early in 2010, its mean has remained?~?15% below its pre-2010 level. To attempt to understand the reasons for this variability, we use a control systems identification approach to model the AMOC, with the RAPID data of 2004–2017 providing a trial and test data set. After testing to find the environmental variables, and systems model, that allow us to best match the RAPID observations, we reconstruct AMOC variation back to 1980. Our reconstruction suggests that there is inter-decadal variability in the strength of the AMOC, with periods of both weaker flow than recently, and flow strengths similar to the late 2000s, since 1980. Recent signs of weakening may therefore not reflect the beginning of a sustained decline. It is also shown that there may be predictive power for AMOC variability of around 6 months, as ocean density contrasts between the source and sink regions for the North Atlantic Drift, with lags up to 6 months, are found to be important components of the systems model.  相似文献   

7.
A global in situ analysis and a global ocean simulation are used jointly to study interannual to decadal variability of temperature in the Bay of Biscay, from 1965 to 2003. A strong cooling is obtained at all depths until the mid-1970's, followed by a sustained warming over ~30 years. Strong interannual fluctuations are superimposed on this slow evolution. The fluctuations are intensified at the surface and are weakest at ~500 m. A good agreement is found between the observed and simulated temperatures, in terms of mean values, interannual variability and time correlations. Only the decadal trend is significantly underestimated in the simulation. A comparison to satellite sea surface temperature (SST) data over the last 20 years is also presented. The first mode of interannual variability exhibits a quasi-uniform structure and is related to the inverse winter North Atlantic Oscillation (NAO) index. Regarding the vertical structure, most cool and warm anomalies are generated at the surface, with the strongest ones penetrating down to 700 m and lasting up to 5 years. The complete heat budget from 1965 to 2004 is presented, including the contributions of vertical transport, freshwater flux and surface elevation. Interannual anomalies are mainly generated by the surface heat flux, while oceanic transports may become more important at longer time scales.  相似文献   

8.
Wang  Xuezhu  Wang  Qiang  Sidorenko  Dmitry  Danilov  Sergey  Schr&#;ter  Jens  Jung  Thomas 《Ocean Dynamics》2012,62(10):1471-1486

The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.

  相似文献   

9.
Much of the knowledge about ocean circulation stems from rather simple analytical models. The behavior of the meridional overturning and, more specifically, the thermohaline-induced part of the global ocean circulation, under changing surface conditions, is often judged by the bifurcation structure of box models with very low (low-order) resolution. The present study proposes a new low-order model of the thermohaline-driven circulation, which is constructed by severe truncation of a spectral decomposition of the two-dimensional equations of motion (vorticity and heat/salt balances). The physical ingredients of the new model are superior to box models because it has a continuous lateral and vertical representation of the fields and finite diffusion coefficients for heat and salt. The building of the spectral model involves much mathematical labor because the structure functions must be constructed in accordance with the boundary conditions for conservation of momentum, mass, heat, and salt. Furthermore, a number of complicated coupling coefficients must be evaluated. Like the box models, the spectral model is a dynamical system with mathematical complexity, but in most of the versions that we analyze, it still can be handled by standard analytical procedures. These versions are the spectral counterparts of the classical box models of Stommel, Rooth, and Welander, adjusted to the Atlantic overturning. A detailed comparison of the model types reveals a similar bifurcation pattern of box and spectral low-order configurations under symmetric and asymmetric forcing conditions and slight perturbations thereof (we use mixed boundary conditions for heat and salt and the surface freshwater flux as a continuation parameter). Comparison of the spectral low-order models with models towards a higher resolved range, namely, the two-dimensional overturning models for the meridional plane, reveals a close resemblance as well. A major difference of box and spectral models is the appearance of parameter windows in the latter, where only unstable steady states exist. The spectral models then show limit cycles, as well as chaotic trajectories with time scales of thousands of years.  相似文献   

10.
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.  相似文献   

11.
Mechanisms of the meridional heat transport in the Southern Ocean   总被引:1,自引:0,他引:1  
The Southern Ocean (SO) transports heat towards Antarctica and plays an important role in determining the heat budget of the Antarctic climate system. A global ocean data synthesis product at eddy-permitting resolution from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project is used to estimate the meridional heat transport (MHT) in the SO and to analyze its mechanisms. Despite the intense eddy activity, we demonstrate that most of the poleward MHT in the SO is due to the time-mean fields of the meridional velocity, V, and potential temperature, θ. This is because the mean circulation in the SO is not strictly zonal. The Antarctic Circumpolar Current carries warm waters from the region south of the Agulhas Retroflection to the lower latitudes of the Drake Passage and the Malvinas Current carries cold waters northward along the Argentinian shelf. Correlations between the time-varying fields of V and θ (defined as transient processes) significantly contribute to the horizontal-gyre heat transport, but not the overturning heat transport. In the highly energetic regions of the Agulhas Retroflection and the Brazil-Malvinas Confluence the contribution of the horizontal transient processes to the total MHT exceeds the contribution of the mean horizontal flow. We show that the southward total MHT is mainly maintained by the meridional excursion of the mean geostrophic horizontal shear flow (i.e., deviation from the zonal average) associated with the Antarctic Circumpolar Current that balances the equatorward MHT due to the Ekman transport and provides a net poleward MHT in the SO. The Indian sector of the SO serves as the main pathway for the poleward MHT.  相似文献   

12.
This paper addresses the impact of atmospheric variability on ocean circulation in tidal and non-tidal basins. The data are generated by an unstructured-grid numerical model resolving the dynamics in the coastal area, as well as in the straits connecting the North Sea and Baltic Sea. The model response to atmospheric forcing in different frequency intervals is quantified. The results demonstrate that the effects of the two mechanical drivers, tides and wind, are not additive, yet non-linear interactions play an important role. There is a tendency for tidally and wind-driven circulations to be coupled, in particular in the coastal areas and straits. High-frequency atmospheric variability tends to amplify the mean circulation and modify the exchange between the North and the Baltic Sea. The ocean response to different frequency ranges in the wind forcing is area-selective depending on specific local dynamics. The work done by wind on the oceanic circulation depends strongly upon whether the regional circulation is tidally or predominantly wind-driven. It has been demonstrated that the atmospheric variability affects the spring-neap variability very strongly.  相似文献   

13.
CFC-11是评估全球海洋环流模式的一个重要工具,海水中溶解的CFC-11被用来分析全球海洋模式的通风模拟.本文在中国气象局国家气候中心发展的40层全球海洋环流模式(MOM4_L40)增加了示踪物CFC-11模块,然后利用该模式研究了CFC-11在全球海洋中的分布,并评估了模式的通风能力.对CFC-11的海表浓度、柱总含量以及大洋剖面的垂直浓度分布和渗透深度进行了分析,结果表明,与观测相比,模式较好地再现了CFC-11在海洋表面的水平分布特征,CFC-11主要储存区位于西北大西洋、副热带北太平洋及南大洋,其浓度分布与温度分布梯度相反.沿三个大洋的5个剖面的CFC-11垂直分布模拟也与观测基本吻合.模式模拟的CFC-11分布情况与全球平均经向流函数吻合,在南大洋模拟效果更加接近观测值,深海模拟效果较好,渗透深度接近观测.同时,模拟与观测相比也存在偏差.比如在北大西洋主要的存储区域,模式低估了CFC-11的吸收,这与高纬的CFC-11向低纬过度输送有关,可能是受温盐环流和强迫资料的影响.总体来说,MOM_L40模式模拟大洋吸收的CFC-11总量是理想的,通过模拟被动示踪物CFC-11很好地再现了海洋的通风能力.  相似文献   

14.
The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200?km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias.  相似文献   

15.
The deep overflow through the Luzon Strait drives the cyclonic deep circulation in the South China Sea (SCS). In the mean time, the intruding Pacific deep water transforms and upwells due to enhanced diapycnal mixing in the SCS. Both processes greatly contribute to the SCS meridional overturning circulation (SCSMOC). At the same time, both the deep circulation and meridional overturning circulation are modulated by rough topography in the SCS. Furthermore, the spatial structure of the SCSMOC infers a link between the upper-layer circulation and deep circulation in the SCS. This paper reviews recent advances in the SCS deep circulation and meridional overturning circulation, including the driving mechanism of the SCS deep circulation and its modulation by topography, as well as the spatial structure of the SCSMOC and its dynamical mechanism.  相似文献   

16.
We examine the equilibrated and time-evolving adjoint solutions of an ocean general circulation model. Adjoint models calculate the sensitivity of a diagnostic, (here, the strength of the meridional overturning) to all forcing fields in a single integration. The time evolution of the sensitivity patterns demonstrates the validity of the adjoint modeling approach over climatological time scales in coarse-resolution ocean models. Our objective is to identify the principle adjustment mechanisms through which the meridional overturning strength adapts to perturbations in wind and buoyancy forcing. The adjoint approach is shown to be a valuable alternative to traditional perturbation methods in highlighting the processes and time scales important to ocean and climate modeling.  相似文献   

17.

The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200 km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias.

  相似文献   

18.
A new approach to understand the physical processes that govern internal variability of the large scale North Atlantic ocean circulation is outlined and current methods and results are reviewed. In this approach, based on the theory of dynamical systems, internal variability is viewed as arising through successive transitions when parameters are changed. The potential of the approach is demonstrated through analysesof solutions of intermediate complexity models of the wind-driven ocean circulation in the North Atlantic. In a quasi-geostrophic modelfor the flow in a rectangular basin with idealized wind forcing, the basic transitions are already found and physical mechanisms at work can be described in detail. Qualitatively, this transition behavior remains robust in more realistic models, having shallow water dynamics, realistic wind forcingand continental geometry, although patterns and time scales changethrough the model hierarchy. The relevance of the results is discussed inrelation to those of observations and of ocean general circulation models.  相似文献   

19.
We discuss the model representation of volume transports through one of the most climate-relevant ocean passages, the Fram Strait. We compare results from a coupled ocean–sea ice model with different resolutions (∼1/12° and ∼1/4°) and measurements from a mooring array along 79° N. The 1/4° model delivers a realistic mean climate state and realistic net volume transports. However, this model fails to reproduce the observed intense barotropic recirculation that reaches far north in Fram Strait. This recirculation is captured in the higher resolution version of the model. Other differences exist in the circulation over the East Greenland Shelf and in the temperature of Atlantic waters in the Fram Strait region as well as in surface heat fluxes. We find that a combination of high-resolution model results and long-term measurements can improve the interpretation of measured and simulated processes and reduce the uncertainties in exchange rates between Arctic and the North Atlantic.  相似文献   

20.
The salinity boundary condition at the ocean surface plays an important role in the stability of long-term integrations of an oceanic general circulation model(OGCM) and in determining its equilibrium solutions.This study presents a new formulation of the salt flux calculation at the ocean surface based on physical processes of salt exchange at the air-sea interface.The formulation improves the commonly used virtual salt flux with constant reference salinity by allowing for spatial correlations between surface freshwater flux and sea-surface salinity while preserving the conservation of global salinity.The new boundary condition is implemented in the latest version of the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics Climate Ocean Model version 2(LICOM2.0).The impact of the new boundary condition on the equilibrium simulations of the model is presented.It is shown that the new formulation leads to a stronger Atlantic meridional overturning circulation(AMOC) that is closer to observational estimates.It also slightly improves poleward heat transport by the oceans in both the Atlantic and the global oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号