首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historic changes in flux of matter and nutrient budgets in the Bohai Sea   总被引:1,自引:0,他引:1  
Over the past four periods ( 1959--1960, 1982--1983, 1992--1993, and 1998--1999), the ecosystem of the Bohai Sea changed due to both a significant decrease of river water discharge from the Huanghe River and a reduction of precipitation. The shifts in nutrient chemistry could result in changes in the phytoplankton composition with an increased potential for non-diatom algal blooms. Simple box model was used to estimate the water - mass balance and nutrient budgets for the Bohai Sea. Water budgets indicate that the residual flow changed from out of the Bohai Sea before 1993, but became inflow to the Bohai Sea after then. The nutrient budgets developed indicate that the Bohai Sea was a sink for nutrients except for phosphate in 1959--1960 and 1982-- 1983 and for silicate in 1982--1983. Net water flow transports nutrients out of the Bohai Sea in 1959--1960, 1982--1983 and 1992--1993, but into the sea in 1998--1999 due to climate changes, such as precipitation and subsequent freshwater discharge. The residual fluxes of nutrients are minor relative to atmospheric deposition and riverine inputs. Conversions of phosphate values to carbon by stoichiometric ratios were used to predict that the system was net heterotrophic before 1982--1983 and net autotrophic after then. Nutrient budgets can explain the change of nutrient concentrations in the Bohai Sea except nitrates, which should include the surface runoff.  相似文献   

2.
The behavior and budget of Mn, Cd and Cu in the Gironde estuary were investigated through data from both the water column (WC) and sediment depth profiles. In the estuarine freshwater reaches, Mn and Cd removal from and Cu addition to the dissolved phase occurs with a magnitude equivalent to 10%, 30% and 25% of their respective annual fluvial gross dissolved input, respectively. In the saline estuary, diffusive benthic outflow is the main source of dissolved Mn (74% of the total gross dissolved input within the estuary) to the WC. In contrast, Cd (96%) and Cu (89%) are mainly released into the dissolved phase of the WC from fluvial, estuarine and dredging-related particles through complexation (Cd) and organic carbon mineralization (Cu). Anthropogenic activities (sediment dredging) induce pore water inputs, particulate sulfide oxidation and sediment resuspension, significantly contributing to the metal budget of the WC. The related amounts of metals released could be equivalent to 20–50% (Cd) and up to 70% (Cu) of their respective net dissolved addition. Mass balances suggest that a large part of the metals previously released into the dissolved phase from processes within the estuary are removed by suspended particles due to (co-)precipitation of Fe/Mn (oxy)hydroxides and scavenging on autochthonous organic matter. On an annual basis, the Gironde estuary acts as a net sink of dissolved Mn, removing 60% of the dissolved fluvial inputs, and as a net source of dissolved Cd and Cu, contributing ∼ 85% and 20–45% to the dissolved Cd and Cu fluxes to the ocean.  相似文献   

3.
A 3D coupled biogeochemical–hydrodynamic model (MIRO-CO2&CO) is implemented in the English Channel (ECH) and the Southern Bight of the North Sea (SBNS) to estimate the present-day spatio-temporal distribution of air–sea CO2 fluxes, surface water partial pressure of CO2 (pCO2) and other components of the carbonate system (pH, saturation state of calcite (Ωca) and of aragonite (Ωar)), and the main drivers of their variability. Over the 1994–2004 period, air–sea CO2 fluxes show significant inter-annual variability, with oscillations between net annual CO2 sinks and sources. The inter-annual variability of air–sea CO2 fluxes simulated in the SBNS is controlled primarily by river loads and changes of biological activities (net autotrophy in spring and early summer, and net heterotrophy in winter and autumn), while in areas less influenced by river inputs such as the ECH, the inter-annual variations of air–sea CO2 fluxes are mainly due to changes in sea surface temperature and in near-surface wind strength and direction. In the ECH, the decrease of pH, of Ωca and of Ωar follows the one expected from the increase of atmospheric CO2 (ocean acidification), but the decrease of these quantities in the SBNS during the considered time period is faster than the one expected from ocean acidification alone. This seems to be related to a general pattern of decreasing nutrient river loads and net ecosystem production (NEP) in the SBNS. Annually, the combined effect of carbon and nutrient loads leads to an increase of the sink of CO2 in the ECH and the SBNS, but the impact of the river loads varies spatially and is stronger in river plumes and nearshore waters than in offshore waters. The impact of organic and inorganic carbon (C) inputs is mainly confined to the coast and generates a source of CO2 to the atmosphere and low pH, of Ωca and of Ωar values in estuarine plumes, while the impact of nutrient loads, highest than the effect of C inputs in coastal nearshore waters, also propagates offshore and, by stimulating primary production, drives a sink of atmospheric CO2 and higher values of pH, of Ωca and of Ωar.  相似文献   

4.
The evolution of a warm water mass related to the Iberian Poleward Current (IPC) was characterized along the northern Galician shelf in November 2008 by means of Sea Surface Temperature and wind data. It was observed that under upwelling favorable conditions water temperature decreased along the northern coast and a temperature break appeared between Cape Vilano and Cape Ortegal showing a relaxation of the poleward intrusion. The effect of the IPC was also analyzed inside the Northern Galician Rias taking into account the hydrographical and biogeochemical properties measured on November 18. Water driven by the IPC was observed close to the mouth of the rias, around Cape Estaca de Bares, causing a nutrient salts decrease. Inside the rias a slight biological activity was found near surface resulting from fluvial contributions.  相似文献   

5.
According to historical mean ocean current data through the field observations of the Taiwan Ocean Research Institute during 1991–2005 and survey data of nutrients on the continental shelf of the East China Sea(ECS) in the summer of 2006, nutrient fluxes from the Taiwan Strait and Kuroshio subsurface waters are estimated using a grid interpolation method, which both are the sources of the Taiwan Warm Current. The nutrient fluxes of the two water masses are also compared. The results show that phosphate(PO4-P), silicate(SiO3-Si) and nitrate(NO3-N) fluxes to the ECS continental shelf from the Kuroshio upwelling water are slightly higher than those from the Taiwan Strait water in the summer of 2006. In contrast, owing to its lower velocity, the nutrient flux density(i.e., nutrient fluxes divided by the area of the specific section) of the Kuroshio subsurface water is lower than that of the Taiwan Strait water. In addition, the Taiwan Warm Current deep water, which is mainly constituted by the Kuroshio subsurface water, might directly reach the areas of high-frequency harmful alga blooms in the ECS.  相似文献   

6.
The influence of the coastal ocean on global net annual air-sea CO2 fluxes remains uncertain. However, it is well known that air-sea pCO2 disequilibria can be large (ocean pCO2 ranging from ∼400 μatm above atmospheric saturation to ∼250 μatm below) in eastern boundary currents, and it has been hypothesized that these regions may be an appreciable net carbon sink. In addition it has been shown that the high productivity in these regions (responsible for the exceptionally low surface pCO2) can cause nutrients and inorganic carbon to become more concentrated in the lower layer of the water column over the shelf relative to adjacent open ocean waters of the same density. This paper explores the potential role of the winter season in determining the net annual CO2 flux in temperate zone eastern boundary currents, using the results from a box model. The model is parameterized and forced to represent the northernmost part of the upwelling region on the North American Pacific coast. Model results are compared to the few summer data that exist in that region. The model is also used to determine the effect that upwelling and downwelling strength have on the net annual CO2 flux. Results show that downwelling may play an important role in limiting the amount of CO2 outgassing that occurs during winter. Finally data from three distinct regions on the Pacific coast are compared to highlight the importance of upwelling and downwelling strength in determining carbon fluxes in eastern boundary currents and to suggest that other features, such as shelf width, are likely to be important.  相似文献   

7.
吴念  刘素美  张桂玲 《海洋学报》2017,39(6):114-128
2012年2月至2014年3月在黄河下游采集水样,分析黄河下游营养盐浓度与通量的月际、季节性以及在调水调沙期和暴雨期的变化情况,并估算了调水调沙期和洪水期输水量和营养盐入海通量对黄河年入海通量的贡献。结果表明NO3- 是TDN的主要存在形式,各形态氮营养盐枯水期高于丰水期;DIP是TDP的主要存在形式,PIP是TPP的主要存在形态,颗粒态磷和DSi丰水期高于枯水期。黄河水体中具有高DIN/DIP和DSi/DIP,低DSi/DIN,严重偏离Redfield比值。营养盐输送通量具有很强的月际变化,在径流量及输沙量最大月份也存在营养盐入海通量峰值。2002-2012年10年间调水调沙和暴雨在营养盐输送通量上占黄河下游营养盐输送通量的23%~68%和5%~59%,对营养盐年入海通量的平均贡献分别为 38%和24%,二者均在短期内导致水、沙和营养盐的大量输送,将对黄河口及其邻近海域的生态环境产生重要的影响。  相似文献   

8.
The annual flux of biologically produced organic carbon from surface waters is equivalent to annual net community production (NCP) at a steady state and equals the export of particulate and dissolved organic carbon (POC and DOC, respectively) to the ocean interior. NCP was estimated from carbon budgets of salinity-normalized dissolved inorganic carbon (nDIC) inventories at two time-series stations in the western subarctic (K2) and subtropical (S1) North Pacific Ocean. By using quasi-monthly biogeochemical observations from 2004 to 2013, monthly mean nDIC inventories were integrated from the surface to the annual maximum mixed layer depth and corrected for changes due to net air–sea CO2 exchange, net CaCO3 production, vertical diffusion from the upper thermocline, and horizontal advection. The annual organic carbon flux at K2 (1.49 ± 0.42 mol m?2 year?1) was lower than S1 (2.81 ± 0.53 mol m?2 year?1) (p < 0.001 based on t test). These fluxes consist of three components: vertically exported POC fluxes (K2: 1.43 mol m?2 year?1; S1: 2.49 mol m?2 year?1), vertical diffusive DOC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.25 mol m?2 year?1), and suspended POC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.07 mol m?2 year?1). The estimated POC export flux at K2 was comparable to the sum of the POC flux observed with drifting sediment traps and active carbon flux exported by migrating zooplankton. The export fluxes at both stations were higher than those reported at other time-series sites (ALOHA, the Bermuda Atlantic Time-series Study, and Ocean Station Papa).  相似文献   

9.
The Yeongsan River estuary (YRE) is located downstream of a dam housing an artificial lake on the southwestern coast of Korea. Intermittent discharges of lake water through dam gates control the water level of the lake. This study compares fluxes of dissolved nutrients in discharged water with those of submarine groundwater discharge (SGD) occurring in the YRE in July and October 2008. With the exception of dissolved inorganic phosphorus (DIP) which limits primary production, nutrient concentrations in the YRE are controlled mainly by conservative mixing between lake water and open ocean water during periods of lake water discharge. In comparison with lake water discharge, the magnitude of SGD, based on a 222Rn mass balance model, is relatively small (about 1.5×105 m3 day?1 in July and about 30% higher in October) and dependent on the water elevation in the lake. However, SGD contributes considerably to the input of DIP when discharge of lake water is halted. Our study shows that SGD is more important in the delivery of biogeochemical components into estuaries that are obstructed by artificial dams.  相似文献   

10.
Multiple biotic and abiotic drivers regulate the balance between CO2 assimilation and release in surface waters. In the present study, we compared in situ measurements of plankton carbon metabolism (primary production and respiration) to calculated air–water CO2 fluxes (based on abiotic parameters) during 1 year (2008) in a hypereutrophic tropical estuary (Recife Harbor, NE Brazil – 08°03′S, 34°52′W) to test the hypothesis that high productivity leads to a net CO2 flux from the atmosphere. The calculated CO2 fluxes through the air–water interface (FCO2) were negative throughout the year (FCO2: –2 to –9 mmol C·m?2·day?1), indicating that Recife Harbor is an atmospheric CO2 sink. Respiration rates of the plankton community ranged from 2 to 45 mmol C·m?2·hr?1. Gross primary production ranged from 0.2 to 281 mmol C·m?2·hr?1, exceeding respiration during most of the year (net autotrophy), except for the end of the wet season, when the water column was net heterotrophic. The present results highlight the importance of including eutrophic tropical shallow estuaries in global air–water CO2 flux studies, in order to better understand their role as a sink of atmospheric CO2.  相似文献   

11.
依据改革开放40 a来胶州湾营养盐状况历史资料以及2018—2019年的现场调查,对胶州湾营养盐历史变化过程及其生态效应进行了系统分析。结果表明:营养盐的浓度变化大致以2008年为分界节点,在2008年前胶州湾溶解无机氮(DIN)浓度呈现持续上升趋势,而溶解无机磷(DIP)、活性硅酸盐(DSi)浓度则先略有减少后快速增加;2008年后胶州湾3种营养盐浓度均快速减少。营养盐限制状况由20世纪80年代初期的氮限制、20世纪90年代的硅限制转变为目前的磷限制。胶州湾Chl a年均质量浓度一直在3μg·L^-1上下波动但近年来则呈下降趋势,浮游动物生物量1994年后大幅度增加。分析发现,入湾营养盐通量的增加和海域面积缩小是2008年前胶州湾营养盐浓度增加的主要原因,而近十几年来胶州湾环境综合整治措施的大力实施则是氮、磷营养盐浓度减少的主要原因。2010年以前贝类养殖是控制胶州湾浮游植物生物量的主要因素,但近年来溶解无机磷浓度的减少和浮游动物生物量的增加是Chl a质量浓度呈下降趋势的主要原因。  相似文献   

12.
Flow-through flumes were used to quantify net areal fluxes of nutrients in the fringe mangrove zone of lower Taylor River in the southern Everglades National Park. We also quantified net areal fluxes along the open water portion of the channel to determine the relative importance of either zone (vegetated vs. unvegetated) in the regulation of nutrient exchange in this system. Taylor River's hydrology is driven mainly by precipitation and wind, as there is little influence of tide. Therefore, quarterly samplings of the vegetated and unvegetated flumes were slated to include typical wet season and dry season periods, as well as between seasons, over a duration of two years. Concentrations of dissolved and total organic carbon (DOC and TOC) were highest during the wet season and similar to one another throughout the study, reflecting the low particulate loads in this creek. Dissolved inorganic nitrogen (nitrate+nitrite+ammonium) was 10–15% of the total nitrogen (TN) content, with NO−x and NH+4 showing similar concentration ranges over the 2-year study. Soluble reactive phosphorus (SRP) was usually <0·05μM, while total phosphorus (TP) was typically an order of magnitude higher. Net areal fluxes were calculated from nutrient concentration change over the length of the flumes. Most flux occurred in the vegetated zone. Dissolved inorganic nitrogen and DOC were usually taken up from the water column; however, we saw no seasonal pattern for any constituent over the course of this study. Total nutrients (TOC, TN, and TP) showed little net exchange and, like SRP, had fluxes that shifted irregularly throughout the study. Despite the lack of a clear seasonal pattern, there was a great deal of consistency between vegetated flumes, especially for NO−x and NH+4, and fluxes in the vegetated flumes were generally in the same direction (import, export, or no net flux) during a given sampling. These findings suggest that the fringe mangrove zone is of considerable importance in regulating nutrient dynamics in lower Taylor River. Furthermore, the influence of this zone may at times extend into northeast Florida Bay, as the bay is the primary recipient of water and nutrients during the wet season.  相似文献   

13.
Abstract. Benthic fluxes of dissolved N. Si and P nutrients, alkalinity, dissolved inorganic C (DIC), and O2 from sediments in the Gulf of Trieste (northern Adriatic, Italy) were measured monthly for 16 months, using laboratory incubated flux chambers at in siru temperatures in the dark. The annual average fluxes were: 02 = -19.3 ± 8.2, DIC = 13.7 ± 9.6, NO3 = -0.04 ± 0.16, NH4 = 0.3 ± 0.4. PO4= 4.001 ± 0.01, Si = 0.9 ± 0.1 mmol m-2 d-1, with strong temporal fluctuations. The highest effluxes of all nutrients and DIC were observed in the summer. Small effluxes of DIC and NH4 and influxes of Si and PO4 were observed in late winter. Only NH4 (ca. 50%) and Si (ca. 70%) fluxes were significantly correlated with temperature. This correlation suggests that the rate of downward input and the quality of sedimented organic matter (autochthonous and allochthonous) were superimposed on the temperature fluctuations. High DIC, NH4 and Si effluxes observed in May 1993 during low temperature were due to the degradation of sedimentary organic matter produced by an early spring bloom of benthic microalgae which occurred about 6 weeks earlies while the autumn phytoplankton bloom was simultaneously reflected in enhanced benthic fluxes due to higher temperature. The role of benthic biological advection in this transport across the sediment-water interface, evaluated by comparison between measured benthic and calculated diffusive fluxes from nutrient pore water concentrations, was of minor importance. This is probably due to low infaunal activity throughout the year it was localized mostly in the narrow surficial layer. The annual average diffusive fluxes of NH4 and PO4 were higher than those measured, probably due to the presence of nitrificationdenitrifi-cation processes and redox-dependent chemical reactions at the oxic sediment-water interface, respectively. Only during bottom-water hypoxia in September 1993 did strong PO4 effluxes prevail. Calculations based on the Redfield stoichiometry of oxic decomposition of organic N to NH4 and NO3, and differences between diffusive and measured NH4 fluxes showed that denitrifkation averaged 0.8 mmol m-2 d-1. Significant correlations between NH4 and PO4 DIC and Si, and NH4 and Si fluxes suggested their parallel regeneration and utilization at the sediment-water interface. The nutrient fluxes observed were not significantly linked to O2 consumption, suggesting also that anaerobic oxidation processes were important at the sediment-water interface in the gulf. The N, P and Si nutriqnts released from sediment pore waters are probably utilized in benthic microalgal and bottorn-hater primary production. This indicates that pelagic and benthic communities in the central part of the Gulf of Trieste function relatively independently of each other.  相似文献   

14.
15.
Settling particles collected at 1550 m water depth off the São Francisco River, Brazil, between January and May 1995 showed peak fluxes of amino acids, hexosamines, and carbohydrates, which formed the onset of a three-week period of high organic matter (OM) flux, coinciding with the high discharge period of the river. Two phases of OM deposition exist: (1) the fluvial input of nutrients triggering a bloom of non biomineralizing plankton, and (2) suspended sediment mainly derived from shelf erosion increasing the fluxes of refractory OM. This indicates the importance of seasonally varying hydrodynamic conditions and nutrient input from the continent for the production and sedimentation of OM to the continental margin of eastern Brazil.  相似文献   

16.
《Ocean Modelling》1999,1(1):1-15
In regions of sloping isopycnals, isopycnal mixing acting in conjunction with biological cycling can produce patterns in the nutrient field which have negative values of tracer in light water and unrealistically large values of tracer in dense water. Under certain circumstances, these patterns can start to grow unstably. This paper discusses why such behavior occurs. Using a simple four-box model, it demonstrates that the instability appears when the isopycnal slopes exceed the grid aspect ratio (Δz/Δx). In contrast to other well known instabilities of the CFL type, this instability does not depend on the time step or time-stepping scheme. Instead it arises from a fundamental incompatibility between two requirements for isopycnal mixing schemes, namely that they should produce no net flux of passive tracer across an isopycnal and everywhere reduce tracer extrema. In order to guarantee no net flux of tracer across an isopycnal, some upgradient fluxes across certain parts of an isopycnal are required to balance downgradient fluxes across other parts of the isopycnal. However, these upgradient fluxes can cause local maxima in the nutrient field to become self-reinforcing. Although this is less of a problem in larger domains, there is still a strong tendency for isopycnal mixing to overconcentrate tracer in the dense water. The introduction of eddy-induced advection is shown to be capable of counteracting the upgradient fluxes of nutrient which cause problems, stabilizing the solution. The issue is not simply a numerical curiosity. When used in a GCM, different parameterizations of eddy mixing result in noticeably different distributions of nutrient and large differences in biological production. While much of this is attributable to differences in convection and circulation, the numerical errors described here may also play an important role in runs with isopycnal mixing alone.  相似文献   

17.
Nutrient (C, N and P) fluxes were monitored in a microtidal semi-arid mangrove system, which links a semi-enclosed shallow coastal lagoon with the Gulf of California. We assessed the role of the mangrove ecosystem as a nutrient sink/source and determined how mangrove litterfall rates, tidal regime and climate factors influence these fluxes. Despite high seasonal differences in DOC, POC, N-NO3 and TP levels, nutrient concentrations were only marginally influenced by either hydrological variables or the concentration of these fractions in the adjacent lagoon. The carbon budget appeared to be balanced throughout the study. Retention rates in the mangrove system were related to litterfall rates. Export of DIN was observed mainly in the wet season due to the low nitrogen assimilation efficiency of the system. Import of organic nitrogen was related to the high retention efficiency of particulate organic nitrogen. Phosphorus fractions were imported and retained in the mangrove supporting previous findings that mangroves are phosphorus sinks. Finally, through a simple meta-analysis we tested the quantitative importance of main variables (tidal flow, tidal elevation, tidal range, rainfall, mangrove catchment area, litterfall) controlling mangrove nutrient dynamics. Although results suggest that generalizations can be made about factors regulating nutrient export from mangroves, the lack of statistical significance highlights the relative importance of the local environment for the magnitude of nutrient exchange in mangroves. Future research should focus on finding mechanistic models to explain these general patterns, taking into account the main biogeochemical processes and their roles in coastal ecosystem ecology.  相似文献   

18.
Proliferation of fast-growing ephemeral macroalgae in shallow-water embayments constitutes a large-scale environmental change of coastal marine ecosystems. Since inorganic nutrients essential for the initiation and maintenance of macroalgal growth may be supplied from the underlying sediment, we investigated the coupling between benthic inorganic nutrient (mainly N and P) fluxes and sediment properties in 6 bays representing a wide gradient of sediment characteristics (grain size, organic matter content, solid phase C and N). The initial characterization of bays was made in June and also included measurements of oxygen flux and microphytobenthic and macrofaunal biomass. In September, still within the growth season of the macroalgae, complementary experiments with sediment-water incubations for benthic flux measurements of oxygen and nutrients focused on trophic status (balance between auto- and heterotrophy) as a controlling factor for rates of measured benthic nutrient fluxes. Generally, sediments rendered autotrophic by microphytobenthic photosynthesis removed nutrients from the overlying water, while heterotrophic sediments supplied nutrients to the overlying bottom water. Estimations of the green-algal nutrient demand suggested that late in the growth season, net heterotrophic sediments could cover 20% of the N-demand and 70% of the P demand. As the benthic trophic status is a functional variable more closely coupled to nutrient fluxes than the comparably conservative structural parameter organic matter content, we suggest that the trophic status is a more viable parameter to classify sediments and predict benthic nutrient fluxes in shallow-water environments.  相似文献   

19.
A sampling and computational approach for estimating nutrient fluxes from a salt marsh ecosystem is presented. Extensive and intensive sampling of tidal velocities, water depths, and nutrient concentrations was made synoptically across three tidal creeks, connecting a 34 km2 South Carolina salt marsh with surrounding coastal waters. An estimate of nutrient exchange over each sampling period is based on measurements over four tidal cycles during a neap and spring tidal regime. The computation of instantaneous fluxes of NO3?NO2?, NH4+, and o-PO24? was based on the cross-multiplication of concentration, velocity, and integrated over the cross-sectional area of each tidal creek. The net flux of nutrients was estimated using a least-squares regression model which included periodic functions simulating tidal and diurnal cycles. This computational approach allows for a rigorous test of the statistical significance of the measured nutrient fluxes and a basis on which interpretations of the ecological significance of the exchange can be made.Tidal patterns in inorganic nutrient concentrations and the corresponding exchanges are presented for a spring time sampling. Nitrate-nitrite was exported consistently from the marsh to the coastal ocean with a mean value of 8.0 kg per tidal cycle for the neap sampling set and 15.6 kg per tidal cycle for the spring set. This corresponded to high concentrations of nitrate-nitrite (0.6 μM) on the ebb tide with low concentrations (0.1 μM) on the flood tide. Ammonia flux was variable and did not portray a consistent tidal concentration pattern. Concentrations ranged from 1 to 6 μM. Ammonia flux was exported to the coastal ocean only during the spring tidal set with a mean value of 114 kg per tidal cycle. Ortho-phosphate was also exported only on the spring tidal set with a mean flux of 40.0 kg per tidal cycle. A tidal concentration pattern of high concentrations (0.6 μM) on the ebb tide and low concentrations (0.05 μM) on the flood was consistent for ortho-phosphate during both neap and spring tidal sets.  相似文献   

20.
The interannual variation of the monthly average (weighted average) concentrations of particulate organic phosphorus (PPOM) in the photosynthetic layer, oxycline, redox zone, and H2S zone in the open Black Sea is estimated based on long-term observation data. The suspension sedimentation rates from the studied layers are assessed using model calculations and published data. The annual variation of PPOM sediment fluxes from the photosynthetic layer, oxycline, redox zone, and upper H2S zone to the anaerobic zone of the sea and the correspondingly annual average values are estimated for the first time. A regular decrease in the PPOM annual average flux with depth in the upper active layer is demonstrated. A correlation between the annual average values of PPOM sediment flux from the photosynthetic layer and ascending phosphate flux to this layer is shown, which suggests their balance in the open sea. The results are discussed in terms of the phosphorus biogeochemical cycle and the concept of new and regenerative primary production in the open Black Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号