首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Exact solutions of the semi-classical Einstein equations for conformally invariant free quantum fields in an homogeneous and isotropic space-time, with cosmological constant and containing a classical scalar field, dust matter, an unquantised Dirac field and electromagnetic radiation are found. The initial behaviour of the semiclassical models is investigated. Some of the solutions found avoid the singularity and do not have particle horizons. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Cosmological electrovac field equations are studied in Bertotti-Robinson-type space-time, and a class of cosmological solutions is obtained. The nature of the electromagnetic fields and singularities of the solution is studied. A technique is established to generate these solutions from a known vacuum solution with a non-zero cosmological constant.  相似文献   

3.
Dynamical and kinematic properties of Bianchi-II cosmological models with rotation and expansion are investigated. Exact solutions of Einstein field equations are obtained which describe the evolution of a rotating Universe. Exact solutions of null, timelike and spacelike geodesics are constructed. Two new cosmological tests for rotating universes are discussed: cosmological lens effect and cosmological mirror effect.  相似文献   

4.
Plane-symmetric solutions of Einstein's field equations in vacuum, in the presence of electromagnetic fields and with cosmological constant are explored in null coordinates. The gravitational field of an infinite plane (uncharged and charged both) is thus obtained in a simple and systematic way. The method adopted for these solutions has possibilities of generalization.  相似文献   

5.
The imposition of boundary conditions on the background fields of brane-world models leads to nonzero vacuum averages for the corresponding energy-momentum tensor. Methods from the qualitative theory of dynamic systems are used in this paper to study the cosmological evolution generated by this tensor. All the possible types of cosmological dynamics are examined for models with homogeneous and isotropic subspaces on the branes and the behavior of the corresponding solutions is studied in the early and late stages of evolution.  相似文献   

6.
This research is an extension of the author’s works, in which conformally invariant generalization of string theory was suggested to higher-dimensional objects. Special cases of the proposed theory are Einstein’s theory of gravity and string theory. This work is devoted to the formation of self-consistent equations of the theory of induced gravity in the presence of matter in the form of a perfect fluid that interacts with scalar fields. The study is done to solve these equations for the case of the cosmological model. In this model time-evolving gravitational and cosmological “constants” take place which are determined by the square of scalar fields. The values of which can be matched with the observational data. The equations that describe the theory have solutions that can both match with the solutions of the standard theory of gravity as well as it can differ from it. This is due to the fact that the fundamental “constants” of the theory, such as gravitational and cosmological, can evolve over time and also depend of the coordinates. Thus, in a rather general case the theory describes the two systems (stages): Einstein and “evolving”. This process is similar to the phenomenon of phase transition, where the different phases (Einstein gravity system, but with different constants) transit into each other.  相似文献   

7.
We study how the constants G and Λ may vary in different theoretical models (general relativity with a perfect fluid, scalar cosmological models (“quintessence”) with and without interacting scalar and matter fields and a scalar-tensor model with a dynamical Λ) in order to explain some observational results. We apply the program outlined in section II to study three different geometries which generalize the FRW ones, which are Bianchi V, VII0 and IX, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we arrive at the conclusion that the solutions are isotropic and noninflationary while the cosmological constant behaves as a positive decreasing time function (in agreement with the current observations) and the gravitational constant behaves as a growing time function.  相似文献   

8.
Scalar fields are an important ingredient of modern cosmological models describing the very early universe. If they are of the Higgs field type, scalar fields offer a possibility to understand why the cosmological constant is such a small quantity. This is because of the fact that different ground states are possible for a Higgs field. The unstable ground state gives an inflationary stage of the cosmic evolution and a large cosmological constant whereas the stable ground state has a vanishing cosmological constant and is decisive for the late time behaviour with an Einstein-De Sitter — like expansion law.  相似文献   

9.
In this paper, a general FRW cosmological model has been constructed in f(R,T) gravity reconstruction with variable cosmological constant. A number of solutions to the field equations has been generated by utilizing a form for the Hubble parameter that leads to Berman's law of constant deceleration parameter q = m-1. The possible decelerating and accelerating solutions have been investigated. For(q 0) we get a stable flat decelerating radiation-dominated universe at q = 1. For(q 0) we get a stable accelerating solution describing a flat universe with positive energy density and negative cosmological constant. Nonconventional mechanisms that are expected to address the late-time acceleration with negative cosmological constant have been discussed.  相似文献   

10.
The solutions of Einstein’s equations with cosmological constant (Λ) in the presence of a creation field have been obtained for general class of anisotropic cosmological models. We have obtained the cosmological solutions for two different scenarios of average scale factor. In first case, we have discussed three different types of physically viable cosmological solutions of average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. In second case, we have discussed another three different forms of cosmological solutions by using the average scale factor in three different scenarios like Intermediate scenario, Logamediate scenario and Emergent scenario. All physical parameters are calculated and discussed in each physical viable cosmological model. We examine the nature of creation field and cosmological constant is dominated the early Universe but they do not survive for long time and finally tends to zero for large cosmic time t. We have also discussed the all energy conditions in each cases.  相似文献   

11.
Various radio observations have shown that the hot atmospheres of galaxy clusters are magnetized. However, our understanding of the origin of these magnetic fields, their implications on structure formation and their interplay with the dynamics of the cluster atmosphere, especially in the centres of galaxy clusters, is still very limited. In preparation for the upcoming new generation of radio telescopes (like Expanded Very Large Array, Low Wavelength Array, Low Frequency Array and Square Kilometer Array), a huge effort is being made to learn more about cosmological magnetic fields from the observational perspective. Here we present the implementation of magnetohydrodynamics (MHD) in the cosmological smoothed particle hydrodynamics (SPH) code gadget . We discuss the details of the implementation and various schemes to suppress numerical instabilities as well as regularization schemes, in the context of cosmological simulations. The performance of the SPH–MHD code is demonstrated in various one- and two-dimensional test problems, which we performed with a fully, three-dimensional set-up to test the code under realistic circumstances. Comparing solutions obtained using athena , we find excellent agreement with our SPH–MHD implementation. Finally, we apply our SPH–MHD implementation to galaxy cluster formation within a large, cosmological box. Performing a resolution study we demonstrate the robustness of the predicted shape of the magnetic field profiles in galaxy clusters, which is in good agreement with previous studies.  相似文献   

12.
Exact solutions of the semi-classical Einstein equations with cosmological constant for conformally invariant free quantum fields in a general Robertson-Walker metric are found when a classical perfect fluid is present. There exist a one-parameter family of time-symmetric bouncing solutions that avoid the singularity and a one-parameter family which does not have particles horizons. The de Sitter solution is found to be stable, while the Einstein universe is unstable.  相似文献   

13.
We obtain some cosmological models that are exact solutions of Einstein's field equations. The metric utilized is Marder's metric which is Bianchi Type I and the curvature source is a cloud of strings which are one dimensional objects. Bianchi type cosmological models play an important role in the study of the universe on a scale which anisotropy is not ignored. In this paper we have investigated the effect of cosmic strings on the cosmic microwave background anisotropy. Various physical and geometrical properties of the model are also discussed. The solutions have reported that the cosmic microwave background anisotropy may due to the cosmic strings.  相似文献   

14.
Principles of the theory of turbulence in relativistic cosmology are developed. By averaging Einstein's equations over stochastic fields a self-consistent system of equations is obtained which describes statistically: (1) the influence of the turbulence on the ‘basic state of the Universe (the background) on which the turbulence develops; (2) the behaviour of the turbulence on the background ‘distorted’ by it. By means of a qualitative study of exact equations in the region of a strong turbulence at an early stage of cosmological expansion conditions of the absence of singularity are found and the possibility of stationary solutions in the homogeneous, isotropic, on the average, Universe (the cosmological constantA=0) is shown. The rate of cosmological expansion increases if the energy density of the turbulence is positive, and decreases if it is negative. The latter alternative takes place if the absolute value of the energy density of excitations, which will change into potential motions in the future, exceeds the energy density of the remaining part of the turbulence.  相似文献   

15.
We present analytic solutions of the Einstein-Maxwell equations for cosmological models of LRS Bianchi type-II, VIII, and IX. The solutions represent anisotropic universes with source-free electromagnetic fields and perfect fluids matter satisfying the equation of state that is a function of the cosmic-time. Some physical properties of the models have been discussed.  相似文献   

16.
A class of new exact solutions of the Einstein field equations have been investigated for stationary cylindrically symmetric space-time around a local cosmic string in the theory based on Lyra’s geometry in normal gauge in the presence and absence of an electromagnetic field. The cosmological solutions have been analyzed through various physical and geometrical parameters. It has also been shown that the solutions are space-time inhomogeneous and filled with charged dust.  相似文献   

17.
In a recent Letter to the Editor, Beesham (1986) has claimed that the models based on the Lyra manifold allow a wider class of solutions of the vacuum field equations than models based on a Riemannian manifold. It was also argued that the cosmological term is introduced in an arbitraryad hoc fashion in general relativity.In this note I will show that all the vacuum solutions found by Beesham, can equally well be solutions of the Friedmann equations of vacuum with a cosmological term. All these solutions are well known.  相似文献   

18.
Cosmological evolution is investigated within the framework of low-energy string gravitation with higher-loop corrections to the dilaton coupling functions in the presence of a dilaton potential and a nongravitational source. It is shown that for homogeneous and isotropic models with a flat space, the cosmological system of equations reduces to an autonomous, third-order, dynamical system. Subclasses of models with a constant dilaton, which provide the basis for various cosmological mechanisms of dilaton stabilization, are considered. A class of solutions is distinguished with asymptotic scaling behavior of the energy density of the dilaton field.  相似文献   

19.
A Bianchi type I string cosmological model in the presence of a magnetic flux is investigated. A few plausible assumptions regarding the parametrization of the cosmic string and magneto-fluid are introduced and some exact analytical solutions are presented.  相似文献   

20.
Cosmological solutions are examined in the proper representation of the JBD theory with a dominant nonminimally coupled scalar field. It is shown that only the introduction of a cosmological scalar that transforms to the ordinary cosmological constant in the Einstein representation enables a phase of evolution with a uniform and then an accelerated expansion of the universe over cosmological time scales. __________ Translated from Astrofizika, Vol. 48, No. 4, pp. 633–640 (November 2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号