首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article deals with the region of motion in the Sitnikov four-body problem where three bodies (called primaries) of equal masses fixed at the vertices of an equilateral triangle. Fourth mass which is finite confined to moves only along a line perpendicular to the instantaneous plane of the motions of the primaries. Contrary to the Sitnikov problem with one massless body the primaries are moving in non-Keplerian orbits about their centre of mass. It is investigated that for very small range of energy h the motion is possible only in small region of phase space. Condition of bounded motions has been derived. We have explored the structure of phase space with the help of properly chosen surfaces of section. Poincarè surfaces of section for the energy range ?0.480≤h≤?0.345 have been computed. We have chosen the plane (q 1,p 1) as surface of section, with q 1 is the distance of a primary from the centre of mass. We plot the respective points when the fourth body crosses the plane q 2=0. For low energy the central fixed point is stable but for higher value of energy splits in to an unstable and two stable fixed points. The central unstable fixed point once again splits for higher energy into a stable and three unstable fixed points. It is found that at h=?0.345 the whole phase space is filled with chaotic orbits.  相似文献   

2.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

3.
The Sitnikov configuration is a special case of the restricted three-body problem where the two primaries are of equal masses and the third body of a negligible mass moves along a straight line perpendicular to the orbital plane of the primaries and passes through their center of mass. It may serve as a toy model in dynamical astronomy, and can be used to study the three-dimensional orbits in more applicable cases of the classical three-body problem. The present paper concerns the straight-line oscillations of the Sitnikov family of the photogravitational circular restricted three-body problem as well as the associated families of three-dimensional periodic orbits. From the stability analysis of the Sitnikov family and by using appropriate correctors we have computed accurately 49 critical orbits at which families of 3D periodic orbits of the same period bifurcate. All these families have been computed in both cases of equal and non-equal primaries, and consist entirely of unstable orbits. They all terminate with coplanar periodic orbits. We have also found 35 critical orbits at which period doubling bifurcations occur. Several families of 3D periodic orbits bifurcating at these critical Sitnikov orbits have also been given. These families contain stable parts and close upon themselves containing no coplanar orbits.  相似文献   

4.
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity \(e'=1\), but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter \(\mu =0.5\) (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to \(\mu \) and \(e'<1\). Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.  相似文献   

5.
This paper deals with the Sitnikov family of straight-line motions of the circular restricted three-body problem, viewed as generator of families of three-dimensional periodic orbits. We study the linear stability of the family, determine several new critical orbits at which families of three dimensional periodic orbits of the same or double period bifurcate and present an extensive numerical exploration of the bifurcating families. In the case of the same period bifurcations, 44 families are determined. All these families are computed for equal as well as for nearly equal primaries (μ = 0.5, μ = 0.4995). Some of the bifurcating families are determined for all values of the mass parameter μ for which they exist. Examples of families of three dimensional periodic orbits bifurcating from the Sitnikov family at double period bifurcations are also given. These are the only families of three-dimensional periodic orbits presented in the paper which do not terminate with coplanar orbits and some of them contain stable parts. By contrast, all families bifurcating at single-period bifurcations consist entirely of unstable orbits and terminate with coplanar orbits.  相似文献   

6.
The model of extended Sitnikov Problem contains two equally heavy bodies of mass m moving on two symmetrical orbits w.r.t the centre of gravity. A third body of equal mass m moves along a line z perpendicular to the primaries plane, intersecting it at the centre of gravity. For sufficiently small distance from the primaries plane the third body describes an oscillatory motion around it. The motion of the three bodies is described by a coupled system of second order differential equations for the radial distance of the primaries r and the third mass oscillation z. This problem which is dealt with for zero initial eccentricity of the primaries motion, is generally non integrable and therefore represents an interesting dynamical system for advanced perturbative methods. In the present paper we use an original method of rewriting the coupled system of equations as a function iteration in such a way as to decouple the two equations at any iteration step. The decoupled equations are then solved by classical perturbation methods. A prove of local convergence of the function iteration method is given and the iterations are carried out to order 1 in r and to order 2 in z. For small values of the initial oscillation amplitude of the third mass we obtain results in very good agreement to numerically obtained solutions.  相似文献   

7.
We deal with the problem of a zero mass body oscillating perpendicular to a plane in which two heavy bodies of equal mass orbit each other on Keplerian ellipses. The zero mass body intersects the primaries plane at the systems barycenter. This problem is commonly known as theSitnikov Problem. In this work we are looking for a first integral related to the oscillatory motion of the zero mass body. This is done by first expressing the equation of motion by a second order polynomial differential equation using a Chebyshev approximation techniques. Next we search for an autonomous mapping of the canonical variables over one period of the primaries. For that we discretize the time dependent coefficient functions in a certain number of Dirac Delta Functions and we concatenate the elementary mappings related to the single Delta Function Pulses. Finally for the so obtained polynomial mapping we look for an integral also in polynomial form. The invariant curves in the two dimensional phase space of the canonical variables are investigated as function of the primaries eccentricity and their initial phase. In addition we present a detailed analysis of the linearized Sitnikov Problem which is valid for infinitesimally small oscillation amplitudes of the zero mass body. All computations are performed automatically by the FORTRAN program SALOME which has been designed for stability considerations in high energy particle accelerators.  相似文献   

8.
We study the motions of an infinitesimal mass in the Sitnikov four-body problem in which three equal oblate spheroids (called primaries) symmetrical in all respect, are placed at the vertices of an equilateral triangle. These primaries are moving in circular orbits around their common center of mass. The fourth infinitesimal mass is moving along a line perpendicular to the plane of motion of the primaries and passing through the center of mass of the primaries. A relation between the oblateness-parameter ‘A’ and the increased sides ‘ε’ of the equilateral triangle during the motion is established. We confine our attention to one particular value of oblateness-parameter A=0.003. Only one stability region and 12 critical periodic orbits are found from which new three-dimensional families of symmetric periodic orbits bifurcate. 3-D families of symmetric periodic orbits, bifurcating from the 12 corresponding critical periodic orbits are determined. For A=0.005, observation shows that the stability region is wider than for A=0.003.  相似文献   

9.
The spatial restricted rhomboidal five-body problem, or shortly, SRRFBP, is a five body problem in which four positive masses, called the primaries, move two by two in coplanar circular motions with the center of mass fixed at the origin such that their configuration is always a rhombus, the fifth mass being negligible and not influencing the motion of the four primaries. The Hamiltonian function that governs the motion of the fifth mass is derived and has three degrees of freedom depending periodically on time. Using a synodical system of coordinates, we fix the primaries in order to eliminate the time dependence. With the help of the Hamiltonian structure, we characterize the regions of possible motion. The vertical $z$ axis is invariant and we study what we call the rhomboidal Sitnikov problem. Unlike the classical Sitnikov problem, no chaos exists and the behavior of the fifth mass is quite predictable, periodic solutions of arbitrary long periods are shown to exist and we study numerically their linear horizontal stability.  相似文献   

10.
We consider the photogravitational restricted three-body problem with oblateness and study the Sitnikov motions. The family of straight line oscillations exists only in the case where the primaries are of equal masses as in the classical Sitnikov problem and have the same oblateness coefficients and radiation factors. A perturbation method based on Floquet theory is applied in order to study the stability of the motion and critical orbits are determined numerically at which families of three-dimensional periodic orbits of the same or double period bifurcate. Many of these families are computed.  相似文献   

11.
The existence of new equilibrium points is established in the restricted three-body problem with equal prolate primaries. These are located on the Z-axis above and below the inner Eulerian equilibrium point L 1 and give rise to a new type of straight-line periodic oscillations, different from the well known Sitnikov motions. Using the stability properties of these oscillations, bifurcation points are found at which new types of families of 3D periodic orbits branch out of the Z-axis consisting of orbits located entirely above or below the orbital plane of the primaries. Several of the bifurcating families are continued numerically and typical member orbits are illustrated.  相似文献   

12.
Within the context of the restricted problem of three bodies, we wish to show the effects, caused by varying the mass ratio of the primaries and the eccentricity of their orbits, upon periodic orbits of the infinitesimal mass that are numerical continuations of circular orbits in the ordinary problem of two bodies. A recursive-power-series technique is used to integrate numerically the equations of motion as well as the first variational equations to generate a two-parameter family of periodic orbits and to identify the linear stability characteristics thereof. Seven such families (comprised of a total of more than 2000 orbits) with equally spaced mass ratios from 0.0 to 1.0 and eccentricities of the orbits of the primaries in a range 0.0 to 0.6 are investigated. Stable orbits are associated with large distances of the infinitesimal mass from the perturbing primary, with nearly circular motion of the primaries, and, to a slightly lesser extent, with small mass ratios of the primaries.Conversely, unstable orbits for the infinitesimal mass are associated with small distances from the perturbing primary, with highly elliptic orbits of the primaries, and with large mass ratios.  相似文献   

13.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

14.
In this paper, families of simple symmetric and non-symmetric periodic orbits in the restricted four-body problem are presented. Three bodies of masses m 1, m 2 and m 3 (primaries) lie always at the apices of an equilateral triangle, while each moves in circle about the center of mass of the system fixed at the origin of the coordinate system. A massless fourth body is moving under the Newtonian gravitational attraction of the primaries. The fourth body does not affect the motion of the three bodies. We investigate the evolution of these families and we study their linear stability in three cases, i.e. when the three primary bodies are equal, when two primaries are equal and finally when we have three unequal masses. Series, with respect to the mass m 3, of critical periodic orbits as well as horizontal and vertical-critical periodic orbits of each family and in any case of the mass parameters are also calculated.  相似文献   

15.
We study the orbit of a particle in the plane of symmetry of two equal mass primaries in rectilinear keplerian motion. Using the surfaces of section we look for periodic orbits, examine their stability and search for quasi-periodic orbits and regions of escape. For large values of the angular momentumC, we verify the validity of the approximation of two fixed centers. However, we also find irregular families of orbits and resonance zones.For small values ofC, the approximation is no longer valid, but we find invariant curves whose interpretation might be interesting.  相似文献   

16.
We study the motion of negligible mass in the frame work of Sitnikov five-body problem where four equal oblate spheroids known as primaries symmetrical in all respect are placed at the vertices of square. These primaries are also considered as source of radiations moving in a circular orbit around their common center of mass. The fifth negligible mass performs oscillations along z-axis which is perpendicular to the orbital plane of motion of the primaries and passes through the center of mass of the primaries. Under the combined effects of radiation pressure and oblateness, we have developed the series solution by the Lindstedt-Poincare technique and established averaged Hamiltonians by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (1983). The orbits such as regular, periodic, quasi-periodic, chaotic, or stochastic have been examined with the help of Poincare surfaces of section.  相似文献   

17.
In this paper we consider a restricted equilateral four-body problem where a particle of negligible mass is moving under the Newtonian gravitational attraction of three masses (called primaries) which move on circular orbits around their center of masses such that their configuration is always an equilateral triangle (Lagrangian configuration). We consider the case of two bodies of equal masses, which in adimensional units is the parameter of the problem. We study numerically the existence of families of unstable periodic orbits, whose invariant stable and unstable manifolds are responsible for the existence of homoclinic and heteroclinic connections, as well as of transit orbits traveling from and to different regions. We explore, for three different values of the mass parameter, what kind of transits and energy levels exist for which there are orbits with prescribed itineraries visiting the neighborhood of different primaries.  相似文献   

18.
Four 3 : 1 resonant families of periodic orbits of the planar elliptic restricted three-body problem, in the Sun-Jupiter-asteroid system, have been computed. These families bifurcate from known families of the circular problem, which are also presented. Two of them, I c , II c bifurcate from the unstable region of the family of periodic orbits of the first kind (circular orbits of the asteroid) and are unstable and the other two, I e , II e , from the stable resonant 3 : 1 family of periodic orbits of the second kind (elliptic orbits of the asteroid). One of them is stable and the other is unstable. All the families of periodic orbits of the circular and the elliptic problem are compared with the corresponding fixed points of the averaged model used by several authors. The coincidence is good for the fixed points of the circular averaged model and the two families of the fixed points of the elliptic model corresponding to the families I c , II c , but is poor for the families I e , II e . A simple correction term to the averaged Hamiltonian of the elliptic model is proposed in this latter case, which makes the coincidence good. This, in fact, is equivalent to the construction of a new dynamical system, very close to the original one, which is simple and whose phase space has all the basic features of the elliptic restricted three-body problem.  相似文献   

19.
We present results about the stability of vertical motion and its bifurcations into families of 3-dimensional (3D) periodic orbits in the Sitnikov restricted N-body problem. In particular, we consider ν = N ? 1 equal mass primary bodies which rotate on a circle, while the Nth body (of negligible mass) moves perpendicularly to the plane of the primaries. Thus, we extend previous work on the 4-body Sitnikov problem to the N-body case, with N = 5, 9, 15, 25 and beyond. We find, for all cases we have considered with N ≥ 4, that the Sitnikov family has only one stability interval (on the z-axis), unlike the N = 3 case where there is an infinity of such intervals. We also show that for N = 5, 9, 15, 25 there are, respectively, 14, 16, 18, 20 critical Sitnikov periodic orbits from which 3D families (no longer rectilinear) bifurcate. We have also studied the physically interesting question of the extent of bounded dynamics away from the z-axis, taking initial conditions on x, y planes, at constant z(0) = z 0 values, where z 0 lies within the interval of stable rectilinear motions. We performed a similar study of the dynamics near some members of 3D families of periodic solutions and found, on suitably chosen Poincaré surfaces of section, “islands” of ordered motion, while away from them most orbits become chaotic and eventually escape to infinity. Finally, we solve the equations of motion of a small mass in the presence of a uniform rotating ring. Studying the stability of the vertical orbits in that case, we again discover a single stability interval, which, as N grows, tends to coincide with the stability interval of the N-body problem, when the values of the density and radius of the ring equal those of the corresponding system of N ? 1 primary masses.  相似文献   

20.
We study the change of phase space structure of the rectilinear three-body problem when the mass combination is changed. Generally, periodic orbits bifurcate from the stable Schubart periodic orbit and move radially outward. Among these periodic orbits there are dominant periodic orbits having rotation number (n − 2)/n with n ≥ 3. We find that the number of dominant periodic orbits is two when n is odd and four when n is even. Dominant periodic orbits have large stable regions in and out of the stability region of the Schubart orbit (Schubart region), and so they determine the size of the Schubart region and influence the structure of the Poincaré section out of the Schubart region. Indeed, with the movement of the dominant periodic orbits, part of complicated structure of the Poincaré section follows these orbits. We find stable periodic orbits which do not bifurcate from the Schubart orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号