首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971–2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996–2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996–2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This phase of intense summit activity has been followed, since the summer of 2001, by a period of increased structural instability of the volcano, marked by a series of important flank eruptions.  相似文献   

2.
Piezomagnetic fields produced by dislocation sources   总被引:2,自引:1,他引:2  
Tectonomagnetic modeling based on the linear piezomagnetic effect is reviewed with special attention to dislocation models. Stacey's scheme was the prototype for such modeling, as proposed in his first seismomagnetic calculations in 1964. The linear piezomagnetic law is presented, in which the stress-induced magnetization is expressed as a linear combination of stress components. The Gauss law for magnetic field and the Cauchy-Navier equation for static elastic equilibrium are combined through linear piezomagnetism and the Hooke law to yield the basic equation for piezomagnetic potential. A representation theorem for its solution is given by surface integrals of the displacement and its normal derivative over the strained body.A Green's function method is developed to compute the piezomagnetic field produced by a dislocation surface in an elastic half-space. Volterra's formula for piezomagnetic potential is derived by modifying Stacey's scheme for tectonomagnetic modeling. The Green's functions for the problem are called elementary piezomagnetic potentials, which are defined as potentials produced by elementary dislocations. Special consideration is required to construct the elementary piezomagnetic potentials, because the stress field around a point dislocation has a singularity of orderr –3. The integral representing elementary piezomagnetic potentials is not uniformly convergent. Owing to inappropriate convergency, the Green's functions obtained in an earlier study led to a puzzling outcome. Revised Green's functions give consistent results with those obtained so far by numerical integrations. Generally the piezomagnetic field produced by dislocation sources is weak in the case of a homogeneous earth model. Two enhancement effects for piezomagnetic signals are suggested: one due to inhomogeneous magnetization and the other via bore-hole observations.  相似文献   

3.
Forward-Looking Infrared (FLIR) nighttime thermal images were used to extract the thermal and morphological properties for the surface of a blocky-to-rubbley lava mass active within the summit crater of the Caliente vent at Santiaguito lava dome (Guatemala). Thermally the crater was characterized by three concentric regions: a hot outer annulus of loose fine material at 150–400°C, an inner cold annulus of blocky lava at 40–80°C, and a warm central core at 100–200°C comprising younger, hotter lava. Intermittent explosions resulted in thermal renewal of some surfaces, mostly across the outer annulus where loose, fine, fill material was ejected to expose hotter, underlying, material. Surface heat flux densities (radiative + free convection) were dominated by losses from the outer annulus (0.3–1.5 × 104  s−1m−2), followed by the hot central core (0.1–0.4 × 104 J s−1m−2) and cold annulus (0.04–0.1 × 104 J s−1m−2). Overall surface power output was also dominated by the outer annulus region (31–176 MJ s−1), but the cold annulus contributed equal power (2.41–7.07 MJ s−1) as the hot central core (2.68–6.92 MJ s−1) due to its greater area. Cooled surfaces (i.e. the upper thermal boundary layer separating surface temperatures from underlying material at magmatic temperatures) across the central core and cold annulus had estimated thicknesses, based on simple conductive model, of 0.3–2.2 and 1.5–4.3 m. The stability of the thermal structure through time and between explosions indicates that it is linked to a deeper structural control likely comprising a central massive plug, feeding lava flow from the SW rim of the crater, surrounded by an arcuate, marginal fracture zone through which heat and mass can preferentially flow.  相似文献   

4.
Fieldwork, radiometric (40Ar/39Ar and 14C) ages and whole-rock geochemistry allow a reconstruction of eruptive stages at the active, mainly dacitic, Pichincha Volcanic Complex (PVC), whose eruptions have repeatedly threatened Quito, most recently from 1999 to 2001. After the emplacement of basal lavas dated at ∼1100 to 900 ka, the eruptive activity of the old Rucu Pichincha volcano lasted from ∼850 ka to ∼150 ka before present (BP) and resulted in a 15 × 20 km-wide edifice, which comprises three main building stages: (1) A lower stratocone (Lower Rucu, ∼160 km3 in volume) developed from ∼850 to 600 ka; (2) This edifice was capped by a steeper-sided and less voluminous cone (the Upper Rucu, 40–50 km3), the history of which started 450–430 ka ago and ended around 250 ka with a sector collapse; (3) A smaller (8–10 km3) but more explosive edifice grew in the avalanche amphitheatre and ended Rucu Pichincha's history about 150 ka ago. The Guagua Pichincha volcano (GGP) was developed from 60 ka on the western flank of Rucu with four growth stages separated by major catastrophic events. (1) From ∼60 to 47 ka, a basal effusive stratocone developed, terminating with a large ash-and-pumice flow event. (2) This basal volcano was followed by a long-lasting dome building stage and related explosive episodes, the latter occurring between 28–30 and 22–23 ka. These first two stages formed the main GGP (∼30 km3), a large part of which was removed by a major collapse 11 ka BP. (3) Sustained explosive activity and viscous lava extrusions gave rise to a new edifice, Toaza (4–5 km3 in volume), which in turn collapsed around 4 ka BP. (4) The ensuing amphitheatre was partly filled by the ∼1-km3 Cristal dome, which is the historically active centre of the Pichincha complex. The average output rate for the whole PVC is 0.29 km3/ka. Nevertheless, the chronostratigraphic resolution we obtained for Lower Rucu Pichincha and for the two main edifices of Guagua Pichincha (main GGP and Toaza), leads to eruptive rates of 0.60–0.65 km3/ka during these construction stages. These output rates are compared to those of other mainly dacitic volcanoes from continental arcs. Our study also supports an overall SiO2 and large-ion lithophile elements enrichment as the PVC develops. In particular, distinctive geochemical signatures indicate the involvement of a new magma batch at the transition between Rucu and Guagua. At the GGP, the same phenomenon occurs at each major collapse event marking the onset of the ensuing magmatic stage. Since the 11-ka-BP collapse event, this magmatic behaviour has led to increasingly explosive activity. Four explosive cycles of between 100 and 200 years long have taken place at the Cristal dome in the past 3.7 ka, and repose intervals between these cycles have tended to decrease with time. As a consequence, we suggest that the 1999–2001 eruptive period may have initiated a new eruptive cycle that might pose a future hazard to Quito (∼2 million inhabitants).  相似文献   

5.
After 16 months of quiescence, Mount Etna began to erupt again in mid-July 2006. The activity was concentrated at and around the Southeast Crater (SEC), one of the four craters on the summit of Etna, and eruptive activity continued intermittently for 5 months. During this period, numerous vents displayed a wide range of eruptive styles at different times. Virtually all explosive activities took place at vents at the summit of the SEC and on its flanks. Eruptive episodes, which lasted from 1 day to 2 weeks, became shorter and more violent with time. Volcanic activity at these vents was often accompanied by dramatic mass-wasting processes such as collapse of parts of the cone, highly unusual flowage processes involving both old rocks and fresh magmatic material, and magma–water interaction. The most dramatic events took place on 16 November, when numerous rockfalls and pyroclastic density currents (PDCs) were generated during the opening of a large fracture on the SE flank of the SEC cone. The largest PDCs were clearly triggered explosively, and there is evidence that much of the energy was generated during the interaction of intruding magma with wet rocks on the cone’s flanks. The most mobile PDCs traveled up to 1 km from their source. This previously unknown process on Etna may not be unique on this volcano and is likely to have taken place on other volcanoes. It represents a newly recognized hazard to those who visit and work in the vicinity of the summit of Etna.  相似文献   

6.
Between 1989 and 2001, five eruptions at Etna displayed a regular alternation between repose periods and episodes rich in gas, termed quasi-fire fountains and consisting of a series of Strombolian explosions sometimes leading to a fire fountain. This behaviour results from the coalescence of a foam layer trapped at the top of the reservoir which was periodically rebuilt prior to each episode (Vergniolle and Jaupart, J Geophys Res 95:2793–2809, 1990). Visual observations of fire fountains are combined with the foam dynamics to estimate the five degassing parameters characteristic of the degassing reservoir, i.e. the number of bubbles, gas volume fraction, bubble diameter, reservoir thickness and reservoir volume. The study of decadal cycles of eruptive patterns (Allard et al., Earth Sci Rev 78:85–114, 2006) suggests that the first eruption with fire fountains occurred in 1995 while the last one happened in 2001. The number of bubbles and the gas volume fraction increase smoothly from the beginning of the cycle (1995) to its end (2001). The increasing number of bubbles per cubic metre, from 0.61–20×105 to 0.1–3.4×109, results from cooling of the magma within the reservoir. The simultaneously decreasing bubble diameter, from 0.67–0.43 to 0.30–0.19 mm, is related to the decreasing amount of dissolved volatiles. Meanwhile, the thickness and the volume of the degassing reservoir diminish, from values typical of the magma reservoir to values characteristic of a very thin bubbly layer, marking the quasi-exhaustion of volatiles. The magma reservoir has a slender vertical shape, with a maximum thickness of 3,300–8,200 m and a radius of 240 m (Vergniolle 2008), making its detection from seismic studies difficult. Its volume, at most 0.58–1.4 km3, is in agreement with geochemical studies (0.5 km3) (Le Cloarec and Pennisi, J Volcanol Geotherm Res 108:141–155, 2001). The time evolution of both the total gas volume expelled per eruption, and the inter-eruptive gas flux results from the competition between the increasing number of bubbles and the decreasing bubble diameter. The smooth temporal evolution of the five degassing parameters also points towards bubbles being produced by a self-induced mechanism within the magma reservoir rather than by a magmatic reinjection prior to each eruption. The decadal cycles are therefore initiated by a magmatic reinjection, in agreement with a typical return time of 14–80 years (Albarède 1993). Hence, the 1995 eruption results from a fresh magma being newly emplaced while the magma from the following eruptions is progressively depleted in volatiles species until reaching a state of quasi-exhaustion in 2001. A magmatic reinjection of 0.13–0.6 km3 every few decades is sufficient to explain the expelled gas volume, including SO2. A scenario is also proposed for the alternation between gas-rich summit eruptions and gas-poor flank eruptions which are observed during decadal cycles. The scenario proposed for Etna could also be at work at Piton de la Fournaise and Erta ’Ale volcanoes.  相似文献   

7.
A new multidisciplinary study, combining geology, petrography, and geochemistry, on the rocks of the isolated hill of Mount Calanna (Mount Etna, Italy) has provided evidence for the existence of a dyke swarm, formed by more than 200 dykes distributed over an area of ~0.7 km2, with an intensity of intrusion up to 40%. All bodies are deeply altered, and the geological and mesostructural surveying of 132 dykes revealed that they intruded in E–W direction, with an average dip of 60°. The faults affecting the outcrop have in general an E–W strike and dip of ~55°: these have all normal motion and have been interpreted as coeval with the dykes. This interpretation contrasts with the previous hypothesis that considered Mount Calanna as a thrust resulting from compressive deformation resulting from the gravitational spreading of the volcanic edifice. Mount Calanna is here interpreted as the uppermost portion of a vertically extensive magmatic plexus that fed the eruptive activity of one (or more) eruptive center/s sited in the Valle del Bove area. Measurements of the apparent densities on 23 dykes and host rock samples give an average value of 2,420 kg/m3 for the entire complex, ~15% lower than the density expected for hawaiitic magma, placing an important constraint on the geophysical identification of similar structures. Considering that Mount Etna is not an old eroded edifice but an active and growing volcano, the exposure of this subvolcanic structure can be regarded as exceptional. Its geometry and physical characteristics can be thus regarded as an interesting example of the present-day shallow plumbing system of Mount Etna as well as of other basaltic volcanoes.  相似文献   

8.
A ground magnetic study of Ustica Island was performed to provide new insights into subsurface tectonic and volcanic structures. The total-intensity anomaly field, obtained after a data-reduction procedure, shows the presence of a W–E-striking magnetic anomaly in the middle of the island and another two intense anomalies, which seem to continue offshore, in the southwestern and the northeastern sides, respectively. The detected anomalies were analyzed by a quadratic programming (QP) algorithm to obtain a 3D subsurface magnetization distribution. The volcano magnetization model reveals the presence of intensely magnetized volumes, interpreted as the feeding systems of the main eruptive centers of the island, which roughly follow the trend of the main regional structural lineaments. These findings highlight how regional tectonics has strongly affected the structural and magmatic evolution of the Ustica volcanic complex producing preferential ways for magma ascent.  相似文献   

9.
Magnetic and electric field variations associated with the 2000 eruption of Miyake-jima volcano are summarized. For about 1 week prior to the July 8 phreatic explosion, significant changes in the total intensity were observed at a few stations, which indicated uprising of a demagnetized area from a depth of 2 km towards the summit: this non-magnetic source can be regarded as a vacant space itself. Electric and magnetic field variations were observed simultaneously associated with the tilt-step event, which was the abrupt (∼50 s) inflation at a few km depth within the volcano followed by gradual recovery (∼several hours). The electric field is ascribed to the electrokinetic effect most probably due to forced injection of fluids from the source, while the magnetic field to the piezomagnetic effect due to increased pressure. Large magnetic variations amounting to a few tens of nT were observed at several stations since July 8, and they turned almost flat after the August 18 largest eruption. Magnetic changes are explained mostly by the vanishing of magnetic mass in the summit and additionally by the thermal demagnetization at a rather shallow depth. A large increase in the self-potential by 130 mV was also observed near the summit caldera associated with the August 18 eruption, which suggests that the hydrothermal circulation system sustained within the volcano for the past more than 10 years was destroyed by this eruption.  相似文献   

10.
Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:1,他引:0  
Lateral migration of magma away from Miyakejima volcanic island, Japan, generated summit subsidence, associated with summit explosions in the summer of 2000. An earthquake swarm beneath Miyakejima began on the evening of 26 June 2000, followed by a submarine eruption the next morning. Strong seismic activity continued under the sea from beneath the coast of Miyakejima to a few tens of kilometers northwest of the island. Summit eruptive event began with subsidence of the summit on 8 July and both explosions and subsidence continued intermittently through July and August. The most intense eruptive event occurred on 18 August and was vulcanian to subplinian in type. Ash lofted into the stratosphere fell over the entire island, and abundant volcanic bombs were erupted at this time. Another large explosion took place on 29 August. This generated a low-temperature pyroclastic surge, which covered a residential area on the northern coast of the island. The total volume of tephra erupted was 9.3×106 m3 (DRE), much smaller than the volume of the resulting caldera (6×108 m3). Migration of magma away from Miyakejima was associated with crustal extension northwest of Miyakejima and coincident shrinkage of Miyakejima Island itself during July–August 2000. This magma migration probably caused stoping of roof rock into the magma reservoir, generating subsurface cavities filled with hydrothermal fluid and/or magmatic foam and formation of a caldera (Oyama Caldera) at the summit. Interaction of hydrothermal fluid with ascending magma drove a series of phreatic to phreatomagmatic eruptions. It is likely that new magma was supplied to the reservoir from the bottom during waning stage of magmas migration, resulting in explosive discharge on 18 August. The 18 August event and phreatic explosions on 29 August produced a conduit system that allowed abundant SO2 emission (as high as 460 kg s–1) after the major eruptive events were over. At the time of writing, inhabitants of the island (about 3,000) have been evacuated from Miyakejima for more than 3 years.  相似文献   

11.
The stratigraphic succession of the Pomici di Avellino Plinian eruption from Somma-Vesuvius has been studied through field and laboratory data in order to reconstruct the eruption dynamics. This eruption is particularly important in the Somma-Vesuvius eruptive history because (1) its vent was offset with respect to the present day Vesuvius cone; (2) it was characterised by a distinct opening phase; (3) breccia-like very proximal fall deposits are preserved close to the vent and (4) the pyroclastic density currents generated during the final phreatomagmatic phase are among the most widespread and voluminous in the entire history of the volcano. The stratigraphic succession is, here, divided into deposits of three main eruptive phases (opening, magmatic Plinian and phreatomagmatic), which contain five eruption units. Short-lived sustained columns occurred twice during the opening phase (Ht of 13 and 21.5 km, respectively) and dispersed thin fall deposits and small pyroclastic density currents onto the volcano slopes. The magmatic Plinian phase produced the main volume of erupted deposits, emplacing white and grey fall deposits which were dispersed to the northeast. Peak column heights reached 23 and 31 km during the withdrawal of the white and the grey magmas, respectively. Only one small pyroclastic density current was emplaced during the main Plinian phase. In contrast, the final phreatomagmatic phase was characterised by extensive generation of pyroclastic density currents, with fallout deposits very subordinate and limited to the volcano slopes. Assessed bulk erupted volumes are 21 × 106 m3 for the opening phase, 1.3–1.5 km3 for the main Plinian phase and about 1 km3 for the final phreatomagmatic phase, yielding a total volume of about 2.5 km3. Pumice fragments are porphyritic with sanidine and clinopyroxene as the main mineral phases but also contain peculiar mineral phases like scapolite, nepheline and garnet. Bulk composition varies from phonolite (white magma) to tephri-phonolite (grey magma).  相似文献   

12.
 The purpose of this work was to study jointly the volcanic-hydrothermal system of the high-risk volcano La Soufrière, in the southern part of Basse-Terre, and the geothermal area of Bouillante, on its western coast, to derive an all-embracing and coherent conceptual geochemical model that provides the necessary basis for adequate volcanic surveillance and further geothermal exploration. The active andesitic dome of La Soufrière has erupted eight times since 1660, most recently in 1976–1977. All these historic eruptions have been phreatic. High-salinity, Na–Cl geothermal liquids circulate in the Bouillante geothermal reservoir, at temperatures close to 250  °C. These Na–Cl solutions rise toward the surface, undergo boiling and mixing with groundwater and/or seawater, and feed most Na–Cl thermal springs in the central Bouillante area. The Na–Cl thermal springs are surrounded by Na–HCO3 thermal springs and by the Na–Cl thermal spring of Anse à la Barque (a groundwater slightly mixed with seawater), which are all heated through conductive transfer. The two main fumarolic fields of La Soufrière area discharge vapors formed through boiling of hydrothermal aqueous solutions at temperatures of 190–215  °C below the "Ty" fault area and close to 260  °C below the dome summit. The boiling liquid producing the vapors of the Ty fault area has δD and δ18O values relatively similar to those of the Na–Cl liquids of the Bouillante geothermal reservoir, whereas the liquid originating the vapors of the summit fumaroles is strongly enriched in 18O, due to input of magmatic fluids from below. This process is also responsible for the paucity of CH4 in the fumaroles. The thermal features around La Soufrière dome include: (a) Ca–SO4 springs, produced through absorption of hydrothermal vapors in shallow groundwaters; (b) conductively heated, Ca–Na–HCO3 springs; and (c) two Ca–Na–Cl springs produced through mixing of shallow Ca–SO4 waters and deep Na–Cl hydrothermal liquids. The geographical distribution of the different thermal features of La Soufrière area indicates the presence of: (a) a central zone dominated by the ascent of steam, which either discharges at the surface in the fumarolic fields or is absorbed in shallow groundwaters; and (b) an outer zone, where the shallow groundwaters are heated through conduction or addition of Na–Cl liquids coming from hydrothermal aquifer(s). Received: 9 November 1998 / Accepted: 15 July 1999  相似文献   

13.
Small (1–3 mm), hollow spherules of hexahydrite have been collected falling out of the magmatic gas plume downwind of Kīlauea’s summit vent. The spherules were observed on eight separate occasions during 2009–2010 when a lake of actively spattering lava was present ~150–200 m below the rim of the vent. The shells of the spherules have a fine bubbly foam structure less than 0.1 mm thick, composed almost entirely of hexahydrite [MgSO4·6H2O] Small microspherules of lava (<5 μm across) along with mineral and rock fragments from the magmatic plume adhered to the outside of the hexahydrite spherules. Phase relationships and the particulate matter in the magmatic plume indicate that the spherules originated as a bubbly solution injected into and mixed with the magmatic plume. The most likely mechanism for production of hexahydrite spherules is boiling of MgSO4-saturated meteoric water in the walls of the conduit above the surface of the lava lake. Solfataric sulfates may thus be recycled and reinjected into the plume, creating particulates of sulfate minerals that can be distributed far from their original source.  相似文献   

14.
Volcán Aucanquilcha, northern Chile, has produced ∼37 km3 of dacite (63–66 wt% silica), mainly as lavas with ubiquitous magmatic inclusions (59–62 wt% silica) over the last ∼1 million years. A pyroclastic flow deposit related to dome collapse occurs on the western side of the edifice and a debris avalanche deposit occurs on the eastern side. The >6,000-m high edifice defines a 9-km E–W ridge and lies at the center of a cluster of more than 15 volcanoes, the Aucanquilcha Volcanic Cluster, that has been active for at least the past 11 million years. The E–W alignment of vents is nearly orthogonal to the arc axis. A majority of Volcán Aucanquilcha was constructed during the first 200,000 years of eruption, whereas the last 800,000 years have added little additional volume. The peak eruptive rate during the edifice-building phases was ∼0.16 km3/ka and the later eruptive rate was ∼0.02 km3/ka. Comparable dacite volcanoes elsewhere show a similar pattern of high volcanic productivity during the early stages and punctuated rather than continuous activity. Volcán Aucanquilcha lavas are dominated by phenocrysts of plagioclase, accompanied by two populations of amphibole, biotite, clinopyroxene, Fe–Ti oxides and (or) orthopyroxene. Accessory phases include zircon, apatite and rare quartz and sanidine. One amphibole population is pargasite and the other is hornblende. The homogeneity of dacite lava from Volcán Aucanquilcha contrasts with the heterogeneity (52–66 wt% silica) at nearby Volcán Ollagüe, which has been active over roughly the same period of time. We attribute this homogeneity at Aucanquilcha to the thermal development of the crust underneath the volcano resulting from protracted magmatism there, whereas Volcán Ollagüe lacks this magmatic legacy.  相似文献   

15.
The violent August 16–17, 2006 Tungurahua eruption in Ecuador witnessed the emplacement of numerous scoria flows and the deposition of a widespread tephra layer west of the volcano. We assess the size of the eruption by determining a bulk tephra volume in the range 42–57 × 106 m3, which supports a Volcanic Explosivity Index 3 event, consistent with calculated column height of 16–18 km above the vent and making it the strongest eruptive phase since the volcano’s magmatic reactivation in 1999. Isopachs west of the volcano are sub-bilobate in shape, while sieve and laser diffraction grain-size analyses of tephra samples reveal strongly bimodal distributions. Based on a new grain-size deconvolution algorithm and extended sampling area, we propose here a mechanism to account for the bimodal grain-size distribution. The deconvolution procedure allows us to identify two particle subpopulations in the deposit with distinct characteristics that indicate dissimilar transport-depositional processes. The log-normal coarse-grained subpopulation is typical of particles transported downwind by the main volcanic plume. The positively skewed, fine-grained subpopulation in the tephra fall layer shares close similarities with the elutriated co-pyroclastic flow ash cloud layers preserved on top of the scoria flow deposits. The area with the higher fine particle content in the tephra layer coincides with the downwind prolongation of the pyroclastic flow deposits. These results indicate that the bimodal distribution of grain size in the Tungurahua fall deposit results from synchronous deposition of lapilli from the main plume and fine ash elutriated from scoria flows emplaced on the western flank of the volcano. Our study also reveals that inappropriate grain-size data processing may produce misleading determination of eruptive type.  相似文献   

16.
Active thermal areas are concentrated in three areas on Mauna Loa and three areas on Kilauea. High-temperature fumaroles (115–362° C) on Mauna Loa are restricted to the summit caldera, whereas high-temperature fumaroles on Kilauea are found in the upper East Rift Zone (Mauna Ulu summit fumaroles, 562° C), middle East Rift Zone (1977 eruptive fissure fumaroles), and in the summit caldera. Solfataric activity that has continued for several decades occurs along border faults of Kilauea caldera and at Sulphur Cone on the southwest rift zone of Mauna Loa. Solfataras that are only a few years old occur along recently active eruptive fissures in the summit caldera and along the rift zones of Kilauea. Steam vents and hot-air cracks also occur at the edges of cooling lava ponds, on the summits of lava shields, along faults and graben fractures, and in diffuse patches that may reflect shallow magmatic intrusions.  相似文献   

17.
We report on the paleomagnetism of ten sites in the products of the most recent silicic eruptive cycle of Pantelleria, Strait of Sicily. Previously radiometrically dated at 5–10 ka, our comparison with proxies for geomagnetic field directions allows us to narrow considerably the time window during which these eruptions occurred. The strongly peralkaline composition causes the magmas to have low viscosities, locally resulting in strong agglutination of proximal fall deposits. This allows successful extraction of paleomagnetic directions from the explosive phases of eruptions. One of our sites was located in the Serra della Fastuca fall deposit, produced by the first explosive event of the eruptive cycle. The other nine sites were located in the most recent explosive (pumice fall and agglutinate from Cuddia del Gallo and Cuddia Randazzo) and effusive (Khaggiar lava) products. The (very similar) paleomagnetic directions gathered from eight internally consistent sites were compared to reference geomagnetic field directions of the last 5–10 ka. Directions from Cuddia del Gallo agglutinate and Khaggiar flows translate into 5.9- to 6.2-ka ages, whereas the Fastuca pumices yield a slightly older age of 6.2–6.8 ka. Hence, the most recent silicic eruptive cycle lasted at most a millennium and as little as a few centuries around 6.0 ka. Paleomagnetically inferred ages are in good agreement with published (and calibrated by us) 14C dates from paleosols/charcoals sampled below the studied volcanic units, whereas K/Ar data are more scattered and yield ∼30% older ages. Our data show that the time elapsed since the most recent silicic eruptions at Pantelleria is comparable to the quiescence period separating the two latest volcanic cycles.  相似文献   

18.
Turrialba (10°02′N, 83°45′W) is a 3,349-m high stratovolcano belonging to the Holocene “Cordillera Central” volcanic belt of Costa Rica. The summit consists of three EW-oriented craters (East, Central, and West). Since its last eruptive phase (1864–1866), the Central and West craters have displayed modest fumarolic activity, with outlet temperatures clustering around 90°C. In 2001, seismic swarms, ground deformation, and increasing fumarolic activity occurred. From 2005 to 2008, new fumarolic vents opened between and within the Central and West craters, and along the western and southwestern outer flanks of the volcanic edifice. These physical changes were accompanied by a drastic modification in the gas chemistry that can be divided in three stages: (1) hydrothermal (from 1998 to autumn 2001), characterized by the presence of H2O, CO2, H2S, and, to a very minor extent, HCl and HF; (2) hydrothermal/magmatic (autumn 2001–2007), with the appearance of SO2 and a significant increase of HCl and HF; and (3) magmatic-dominated (2007–2008), characterized by increased SO2 content, SO2/H2S > 100, and temperatures up to 282°C. Accordingly, gas equilibrium in the CO2-CH4-H2 system suggests a progressive evolution of the deep fluid reservoir toward higher temperatures and more oxidizing conditions. The chemical–physical modifications of Turrialba in the last decade can be interpreted as part of a cyclic mechanism controlling the balance between the hydrothermal and the magmatic systems. Nevertheless, the risk of rejuvenation of the volcanic activity cannot be excluded, and an appropriate seismic, ground deformation, and geochemical monitoring program is highly recommended. Turrialba lies at a distance of 35 and 15 km from San José and Cartago, respectively, the two largest cities in Costa Rica.  相似文献   

19.
 Results are presented from 11 microgravity surveys on Mt. Etna between 1987 and 1993, a period including the major 1989 and 1991–1993 flank eruptions and subordinate 1990 activity. Measurements were made with LaCoste and Romberg D-62 and D-157 gravity meters along a network around the volcano between 1000 and 1900 m a.s.l. and, since 1992, a N–S summit profile. Gravity changes of as much as 200 μGal were observed at scales from the size of the summit region to that of the volcano. None was associated with significant changes in ground elevation. The data show an increase in gravity for 2 years before the 1989 eruption. The increase is attributed to the accumulation of magma (0.25–1.7×109 m3) in an elongate zone, oriented NNW–SSE, between 2.5 and 6 km below sea level. Part of this magma was injected into the volcanic pile to supply the 1989 and 1990 eruptions. It also probably fed the start of the 1991–1993 eruption, since this event was not preceded by significant gravity changes. A large gravity increase (up to 140 μGal) detected across the volcano between June and September 1992 is consistent with the arrival in the accumulation zone of 0.32–2.2×109 m3 of new magma, thus favoring continued flank effusion until 1993. A large gravity decrease (200 μGal) in the summit region marked the closing stages of the 1991–1993 event and is associated with magma drainage from the upper levels of Etna's central feeding system. Received: 15 July 1995 / Accepted: 27 October 1997  相似文献   

20.
Six new 40Ar/39Ar and three cosmogenic 36Cl age determinations provide new insight into the late Quaternary eruptive history of Erebus volcano. Anorthoclase from 3 lava flows on the caldera rim have 40Ar/39Ar ages of 23 ± 12, 81 ± 3 and 172 ± 10 ka (all uncertainties 2σ). The ages confirm the presence of a second, younger, superimposed caldera near the southwestern margin of the summit plateau and show that eruptive activity has occurred in the summit region for 77 ± 13 ka longer than previously thought. Trachyte from “Ice Station” on the eastern flank is 159 ± 2 ka, similar in age to those at Bomb Peak and Aurora Cliffs. The widespread occurrences of trachyte on the eastern flank of Erebus suggest a major previously unrecognized episode of trachytic volcanism. The trachyte lavas are chemically and isotopically distinct from alkaline lavas erupted contemporaneously in the summit region < 5 km away.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号