首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
The multiple-parameter linear regression method (Monitoring global ocean carbon inventories. Ocean Observing System Development Panel, Texas A&M University, College Station, TX, 1995, 54pp; Global Biogeochem. Cycles 13 (1999) 179) is used to compare inorganic carbon data from the GEOSECS CO2 survey in the Pacific Ocean in 1973 to the WOCE/JGOFS global CO2 survey in the 1990s. A model of total dissolved inorganic carbon (DIC) as a function of five variables (AOU, θ, S, Si, and PO4) has been developed from the recent CO2 survey data (namely CGC91 and CGC96) in the Pacific Ocean. After correcting for a systematic DIC offset of −30.3±7 μmol kg−1 from the GEOSECS data, the residual DIC based on this model as computed from GEOSECS data has been used to estimate the anthropogenic CO2 penetration in the Pacific Ocean. In the Northeast Pacific, we obtained an increase of CO2 of 21.3±7.9 mol m−2 over the period from GEOSECS in 1973 to CGC91 in 1991. This gives a mean anthropogenic CO2 uptake rate of 1.3±0.5 mol m−2 yr−1 over this 17 year time period. In the South Pacific, north of 50°S between 180° and 120°W region, the integrated anthropogenic CO2 inventory is estimated to be 19.7±5.7 mol m−2 over the period from GEOSECS in 1974 to CGC96 in 1996. The equivalent mean CO2 uptake rate is estimated to be 0.9±0.3 mol m−2 yr−1 over the 22 years. These results are compared with the isopycnal method (Nature 396 (1998) 560) to estimate the anthropogenic CO2 signal in the Northeast Pacific (30°N, 152°W) at the crossover region between CGC91 and GEOSECS. The results of the isopycnal method are consistent with those derived from the MLR method. Both methods show an increase in anthropogenic CO2 inventory in the ocean over two decades that is consistent with the increase expected if the ocean uptake has kept pace with the atmospheric CO2 increase.  相似文献   

2.
Strong seasonal patterns in upper ocean total carbon dioxide (TCO2), alkalinity (TA) and calculated pCO2 were observed in a time series of water column measurements collected at the US Joint Global Ocean Flux Study (JGOFS) BATS site (31 °50′N, 64 °10′W) in the Sargasso Sea. TA distribution was a conservative function of salinity. However, in February 1992, a non-conservative decrease in TA was observed, with maximum depletion of 25–30 μmoles kg−1 occuring in the surface layer and at the depth of the chlorophyll maximum (˜ 80–100 m). Mixed-layer TCO2 also decreased, while surface pCO2 increased by 25–30 μatm. We suggest these changes in carbon dioxide species resulted from open-ocean calcification by carbonate-secreting organisms rather than physical processes. Coccolithophore calcification is the most likely cause of this event although calcification by foraminifera or pteropods cannot be ruled out. Due to the transient increase in surface pCO2, the net annual transfer of CO2 into the ocean at BATS was reduced. These observations demonstrate the potential importance of open-ocean calcification and biological community structure in the biogeochemical cycling of carbon.  相似文献   

3.
We analyze the time-longitude structure of composite cases from model-assimilated ocean data in the period 1958–1998, following on from earlier work by Huang and Kinter (J. Geophys. Res. 107(C11) (2002) 3199) that studied east–west thermocline variability in the Indian Ocean. Our analysis focuses on the Rossby wave signal along the thermocline ridge in the tropical SW Indian Ocean (10°S, 60–80°E), where wind stress curl is important. Anomalous winds in the equatorial east Indian Ocean force successive Rossby waves westward at speeds of 0.1 m s−1±30%. With a wavelength of 7000 km, the period of oscillation is in the range 1.9–5.2 years. The Indian Ocean Rossby wave is partially resonant with the global influence of the El Nino–Southern Oscillation, except during quasi-biennial rhythm. The presence of the Rossby wave offers potential predictability for east–west atmospheric circulation systems and climate that affect resources in countries surrounding the Indian Ocean.  相似文献   

4.
The evolution and decay of El Niño 1997–8 was observed in coastal waters off Oregon in a sequence of cruises along 44.6°N from the coast to more than 150 km offshore. Hydrographic observations were made during eleven cruises between July 1997 and April 1999 at stations on the Newport Hydrographic Line, which had been occupied regularly from 1961 to 1971. The data from the earlier decade provide a basis for defining ‘normal’ conditions and allow comparisons with the recent El Niño in terms of T, S, spiciness and geostrophic velocity. Independent of El Niño, the ocean in July 1997 was already anomalously warm offshore of 50 km and above 100 m. By September 1997 there were unambiguous indications of El Niño: isotherms and isohalines sloped down toward the coast indicating poleward flow over shelf and slope, and anomalously spicy water was present at the shelf-break. In November 1997 and February 1998 shelf-break waters were even warmer, and there was strong poleward flow inshore of 100 km, extending to depths greater than 200 m. The April 1998 section closely resembled that of April 1983 (another El Niño year) but by June 1998 the anomalies were mostly gone. November 1998 was near normal and the sections from subsequent cruises resemble the mean sections from 1961–1971.Four cruises between November 1997 and November 1998 included sampling at several latitudes between 38° and 45°N. As expected, these sections show significant alongshore gradients, but also a surprising degree of homogeneity in the anomalous features associated with El Niño (in the temperature, salinity, spiciness and geostrophic velocity fields). The anomalous signature of El Niño was stronger at its winter peak in 1998 than in 1983, but the signature in the temperature and spiciness fields, and in coastal sea level, did not persist as long as in 1983. By April 1999, the coastal ocean from 38°N to 45°N was significantly colder than it had been in April 1984.  相似文献   

5.
Organic carbon flux from eutrophicated Tokyo Bay to the Pacific Ocean is estimated as 260 ton C day–1 based on the horizontal gradient of COD and the dispersion coefficient at the bay mouth. Also, carbon flux from the air or from the open ocean to Tokyo Bay is estimated as 156 ton C day–1. If we suppose that five percent of the coastal seas in the world might be eutrophicated as Tokyo Bay and the organic carbon flux from the shelf to the open ocean in other coastal seas might be one third of that in Tokyo Bay, 1.12 G tons year–1 would be transported from the eutrophicated coastal seas to the open ocean and such carbon flux may account for the missing sink in the global carbon budget.  相似文献   

6.
This paper discusses the seasonal evolution of the hydrographic and biogeochemical properties in the Antarctic Circumpolar Current (ACC) during the US Joint Global Ocean Flux (JGOFS) Antarctic Environment and Southern Ocean Process Study (AESOPS) in 1997–1998. The location of the study region south of New Zealand along 170°W was selected based on the zonal orientation and meridional separation of the physical and chemical fronts found in that region. Here we endeavor to describe the seasonal changes of the macronutrients, fluorescence chlorophyll, particulate organic carbon (POC), and carbon dioxide (CO2) in the upper 400 m of the ACC during the evolution of the seasonal phytoplankton bloom found in this area. While the ACC has extreme variability in the meridional sense (due to fronts, etc.), it appears to be actually quite uniform in the zonal sense. This is reflected by the fact that a good deal of the seasonal zonal changes in nutrients distributions at 170°W follow a pattern that reflects what would be expected if the changes are associated with seasonal biological productivity. Also at 170°W, the productivity of the upper waters does not appear to be limited by availability of phosphate or nitrate. While there is a significant decrease (or uptake) of inorganic nitrogen, phosphate and silicate associated with the seasonal phytoplankton bloom, none of the nutrients, except perhaps silicate (north of the silicate front) are actually depleted within the euphotic zone. At the end of the growing season, nutrient concentrations rapidly approached their pre-bloom levels. Inspection of the ratios of apparent nutrient drawdown near 64°S suggests N/P apparent drawdowns to have a ratio of 10 and N/Si apparent drawdowns to have a ratio of >4. These ratios suggest a bloom that was dominated by Fe limited diatoms. In addition, the surface water in the Polar Front (PF) and the Antarctic Zone (AZ) just to the south of the PF take up atmospheric CO2 at a rate 2–3 times as fast as the mean global ocean rate during the summer season but nearly zero during the rest of year. This represents an important process for the transport of atmospheric CO2 into the deep ocean interior. Finally, the net CO2 utilization or the net community production during the 2.5 growing months between the initiation of phytoplankton blooms and mid-January increase southward from 1.5 mol C m−2 at 55°S to 2.2 mol C m−2 to 65°S across the Polar Frontal Zone (PFZ) into the AZ.  相似文献   

7.
As part of the US Joint Global Ocean Flux Study (US JGOFS) Southern Ocean Program, flow cytometry and epifluorescent microscopy were utilized to determine abundance, distribution and size structure of the microbial community in the Polar Front region during the summer biomass maximum. Surface samples were collected approximately every 10 km along 170°W during two N–S transects, separated in time by two weeks. Phytoplankton abundance and size structure varied with distinct latitudinal trends. Autotrophic biomass was lowest north of the Polar Front reflecting the dominance of small cells. The highest biomass (170 μg C l−1) occurred at 65°S where the composition was strongly influenced by large centric diatoms. Farther south, the diatom community shifted to the dominance of smaller pennate diatoms. Total grazer biomass and size distributions followed similar patterns, ranging from 4 μg C l−1 in the north to 52 μg C l−1 in the south where larger (>20 μm) grazers were more abundant. Heterotrophic bacteria varied over an order of magnitude in abundance across the study site, with size generally increasing from north to south. In the second transect, phytoplankton biomass at 65°S was 50% lower, and grazer biomass and bacterial populations were slightly greater, indicating the decline of the bloom. The changes in biomass and community structure along 170°W and the reduction of phytoplankton standing stock at 65°S over time suggests adjacent, yet different, microbial systems in terms of carbon flux, spanning from primarily recycling to export-dominated.  相似文献   

8.
Atmospheric and oceanic pCO2 were measured continuously along an Atlantic Meridional transect (50°N–50°S) in September–October 1995 and 1996 (U.K. to the Falklands Islands) and in April–May 1996 (Falklands Islands to the UK). The Atlantic ocean was a net sink for atmospheric CO2 for all 3 transects. The largest sinks were located at high latitudes, in regions of high wind speed, where strong CO2 undersaturations, associated with high biological activity, were observed. In these regions the partial pressure difference between the ocean and the atmosphere reached −110 μatm. A CO2 source occurred in the equatorial region between 0° and 10°S, where ΔpCO2 of up to 40 μatm was found. Another source was in the northern subtropical gyre where its extension varied according to the season. Along the whole transect the October cruises exhibited similar pCO2 distributions suggesting a dominance of the seasonal variability and small year to year changes.  相似文献   

9.
Water mass variations in the northeastern Atlantic Ocean along 20°W are analyzed with pentadal resolution over the past 15 years using data from four repeat occupations of a meridional hydrographic section running south from Iceland. The section was sampled in 1988, 1993, 1998, and 2003. The results are interpreted in the context of changes in air–sea forcing, ocean circulation, and water properties associated with the North Atlantic Oscillation (NAO). The NAO index oscillated around zero from 1984 to 1988, was strongly positive from 1989 to 1995, after which it shifted to lower positive, and occasionally negative values from 1996 to 2003. Previously published studies suggest that after the 1995–1996 shift of the NAO, the subpolar gyre largely retreated to the northwest in the northeastern Atlantic Ocean, resulting in an increasingly southeastern character of local water masses with time. Water property changes extending from the SubPolar Mode Water (SPMW) just below the seasonal pycnocline through the density range shared by Mediterranean Outflow Water and SubArctic Intermediate Water (SAIW) along 20°W are consistent with changes in wind-driven ocean circulation and air–sea heat flux associated with shifts in the NAO, especially after accounting for ocean memory. After periods of lower NAO index the SPMW is warmer, saltier, and lighter. At these same times, large increases of apparent oxygen utilization (AOU) and potential vorticity are found at the SPMW base, consistent with SPMW ventilation to lighter densities during lower NAO index periods. Deeper and denser in the water column, the cold, fresh, and dense SAIW signature within the permanent pycnocline that was most strongly present in 1993, near the culmination of a period of high NAO index, is much reduced in 1988 and 1998. In 2003, after a prolonged period of lower NAO index, increasing influence of warmer, saltier subtropical waters is clear within the permanent pycnocline. The deep penetration of the changes implies that they are caused primarily by circulation changes resulting from NAO-associated wind shifts, but changes in air–sea heat flux could also have played a role.  相似文献   

10.
The Continuous Plankton Recorder (CPR) Type I was first used in Antarctic waters during the 1925–1927 Discovery Expedition, and has been used successfully for 70 years to monitor plankton in the North Sea and North Atlantic Ocean. Sixty-five years later the CPR as a Type II version returned to Antarctic waters when the Australian Antarctic Division initiated a survey of the Southern Ocean on RSV Aurora Australis south of Australia and west to Mawson. The objectives are to study regional, seasonal, interannual and long-term variability in zooplankton abundance, species composition and community patterns, as well as the annual abundance and distribution of krill larvae. The survey covers a large area from 60°E to 160°E, and south from about 48°S to the Antarctic coast—an area of more than 14 million km2. Tows are conducted throughout the shipping season, normally September to April, but occasionally as early as July (midwinter). The large areal and temporal scale means that it is difficult to separate temporal and geographical variation in the data. Hence, CPRs are now also towed on the Japanese icebreaker Shirase in collaboration with the Japanese Antarctic programme. Shirase has a fixed route and time schedule, travelling south on 110°E in early December and north on 150°E in mid-March each year, and will serve as an important temporal reference for measuring long-term interannual variability and to help interpret the Australian data. Since 1991, over 90 tows have been made, providing over 36,000 nautical miles of records. The most successful seasons to date have been the 1997/1998, 1999/2000 and 2000/2001 austral summers with 20, 31 and 26 tows, respectively. The 1999/2000 season included a unique, nearly simultaneous three-ship crossing of the Southern Ocean along 25° 30’E, 110°E and 157°E. Typical CPR tows show very high abundance of zooplankton in the uppermost 20 m of the permanently open ocean zone between the sea-ice zone and the Sub-Antarctic Front; this is an area thought to be oligotrophic. Appendicularians and small calanoid and cyclopoid copepods dominate the plankton. By comparison the surface waters of the sea-ice zone have low species diversity and abundances. Zooplankton data, and hence distribution patterns, can be time- and geo-coded to GPS data and environmental data collected by the ships’ underway monitoring system (e.g. fluorescence, water temperature, salinity, and meteorological data).  相似文献   

11.
Dissolved cadmium and copper concentrations have been determined in 76 surface water samples in coastal and ocean waters around Scotland by anodic stripping voltammetry (ASV). A trace metal/salinity ‘front’ is observed to the west, north and north-east of Scotland separating high salinity ocean water (>35 × 10−3) with low concentrations of dissolved Cd and Cu from lower salinity (<35 × 10−3) coastal water containing higher concentrations of Cd and Cu. Mean Cd concentrations in ocean and coastal waters are 7 ng dm−3 (0·06 n ) and 11 ng dm−3 (0·10 n ) respectively; for Cu the respective levels are 60 ng dm−3 (0·95 n ) and 170 ng dm−3 (2·68 n ). The observed distribution is attributed principally to freshwater runoff and the advection of contaminated Irish Sea water into the study area.  相似文献   

12.
Sea surface salinity (SSS) data in the Atlantic Ocean is investigated between 50°N and 30°S based on data collected mostly during the period 1977–2002. Monthly mapping of SSS is done to extract the large-scale variability. This mapped variability indicates fairly long (seasonal) time scales outside the equatorial region. The spatial scales of the seasonal anomalies are regional, but not basin-wide (typically 500–1000 km). These seasonal SSS anomalies are found to respond with a 1–2 month lag to freshwater flux anomalies at the air–sea interface or to the horizontal Ekman advection. This relation presents a seasonal cycle in the northern subtropics and north-east Atlantic indicating that the late-boreal spring/summer season is less active than the boreal winter/early-spring season in forcing the seasonal SSS variability. In the north-eastern mid-latitude Atlantic, SSS is positively correlated to SST, with SSS slightly lagging SST. There are noticeable long-lasting larger-scale signals overlaid on this regional variability. Part of it is related to known climate signals, for example ENSO and NAO. A linear trend is present during the first half of the period in some parts of the basin (usually towards increasing salinities, at least between 20°N and 45°N). Based on a linear regression analysis, these signals combined can locally represent up to 20% of SSS variance (in particular near 30°N/60°W or 40°N/10–30°W), but usually represent less than 10% of the variance.  相似文献   

13.
Episodic outflow of suspended sediments from the Kii Channel to the Pacific Ocean in winter was observed by the sediment traps experiment above the shelf slope. When the current speed was weak and its direction was south or southwestward above the shelf slope the sinking sediment flux was nearly zero but the sinking sediment flux increased to 22g m–2 day–1 after the current speed was strong, its direction changed to south-west or westward and water temperature fell. Such intermitten sinking sediment flux above the shelf slope is considered to be related to the intermittent intrusion of the turbid and cold shelf water into the sub-surface layer of the transparent and warm slope water. Such episodic events may play a very important role in the material transport from the coastal sea to the open ocean.  相似文献   

14.
A coastal atmosphere-ocean coupled system (CAOCS) is developed with Princeton Ocean Model (POM) as the oceanic component, and with National Center for Atmospheric Research (NCAR) regional climate model (RegCM2) as the atmospheric component. The model domain (98.84°–121.16°E, 3.06°S–25.07°N) covers the whole SCS and surrounding land and islands. The surface fluxes of water, heat (excluding solar radiation), and momentum are applied synchronously with opposite signs in the atmosphere and ocean. Flux adjustments are not used. The CAOCS model was verified using an intensive airborne expendable bathythermograph (AXBT) survey between 14–25 May 1995 over the majority of the SCS down to about 300-m depth.  相似文献   

15.
Meso- or submeso-scale features of the Antarctic sea ice are investigated using the MOS-1/1b MESSR Images (spatial resolution of approximately 50 m) received at Syowa Station. Particular attention is paid to the ice bands and ice streamers in coastal polynyas. In the Antarctic Ocean, ice bands can be often seen not only at the ice edge but also in the ice interior zone throughout the year and they extend for hundreds of kilometers in the latitudinal direction. It is found that the width and spacing of ice bands tend to decrease from winter to summer. The width of ice band is about 2–6 km in August and September, and 0.1–0.7 km in December. The spacing of ice bands is about 3–10 km in August and September, and 0.1–2 km in December. In coastal polynyas, ice streamers, which are composed of new ice, are sometimes observed. In general, the row of the streamers is spaced at 0.5–2 km with a width of 0.1–1.0 km.  相似文献   

16.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   

17.
Changes from winter (July) to summer (February) in mixed layer carbon tracers and nutrients measured in the sub-Antarctic zone (SAZ), south of Australia, were used to derive a seasonal carbon budget. The region showed a strong winter to summer decrease in dissolved inorganic carbon (DIC;  45 µmol/kg) and fugacity of carbon dioxide (fCO2;  25 µatm), and an increase in stable carbon isotopic composition of DIC (δ13CDIC;  0.5‰), based on data collected between November 1997 and July 1999.The observed mixed layer changes are due to a combination of ocean mixing, air–sea exchange of CO2, and biological carbon production and export. After correction for mixing, we find that DIC decreases by up to 42 ± 3 µmol/kg from winter (July) to summer (February), with δ13CDIC enriched by up to 0.45 ± 0.05‰ for the same period. The enrichment of δ13CDIC between winter and summer is due to the preferential uptake of 12CO2 by marine phytoplankton during photosynthesis. Biological processes dominate the seasonal carbon budget (≈ 80%), while air–sea exchange of CO2 (≈ 10%) and mixing (≈ 10%) have smaller effects. We found the seasonal amplitude of fCO2 to be about half that of a study undertaken during 1991–1995 [Metzl, N., Tilbrook, B. and Poisson, A., 1999. The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus Series B—Chemical and Physical Meteorology, 51(4): 849–861.] for the same region, indicating that SAZ may undergo significant inter-annual variations in surface fCO2. The seasonal DIC depletion implies a minimum biological carbon export of 3400 mmol C/ m2 from July to February. A comparison with nutrient changes indicates that organic carbon export occurs close to Redfield values (ΔP:ΔN:ΔC = 1:16:119). Extrapolating our estimates to the circumpolar sub-Antarctic Ocean implies a minimum organic carbon export of 0.65 GtC from the July to February period, about 5–7% of estimates of global export flux. Our estimate for biological carbon export is an order of magnitude greater than anthropogenic CO2 uptake in the same region and suggests that changes in biological export in the region may have large implications for future CO2 uptake by the ocean.  相似文献   

18.
Seabed distributions of 234Th excess (Thxs) were determined in the upper centimetres of 38 sediment cores from the north-western Iberian Margin, sampled from 41–44°N and from 9–12°E during five OMEX II cruises. Three main areas, a northern, and at 42°38 and 42°N, were investigated during representative seasons (winter, spring and summer). Low 234Thxs activities in summer 1998 (18–252 Bq per kg) were similar to those measured in summer 1997. In winter 234Th also showed moderate excess. The highest values were observed in spring with surface 234Thxs values up to 402 Bq kg−1. Maximum penetration depths of 234Thxs ranged from a few mm to 3 cm. 234Thxs activities always showed a smooth decrease with depth, without any evidence of non-local mixing. Thus particle mixing on a short time scale can be described as an eddy diffusive process, and bioturbation rates, calculated on this basis, range from 0.02 to 3.07 cm2 per year. Data (activities, inventories, bioturbation rates) are discussed in order to relate the observed surface and down-core variations to spatial and seasonal trends. Using 234Thxs data in sediment as a substitute for sediment trap estimates, particle fluxes were calculated from 234Thxs inventories. The range of 234Th-derived particle fluxes for the north-western Iberian Margin is 16–1418 mg.m−2.d−1. Mean values indicate a gradual decrease of mass fluxes from the shelf to the open ocean. On a 100-day scale, the northern area (43–44°N) represents a low sedimentation regime. Further south, around 42°–43°N, particle inputs are more important. On the middle slope, around 1000 to 2000 m depth, high inventories and bioturbation rates indicate enhanced, and probably organic-rich, particle fluxes to the seafloor, particularly in spring.  相似文献   

19.
Land/ocean boundaries constitute complex systems with active physical and biogeochemical processes that affect the global carbon cycle. An example of such a system is the mesotidal lagoon named Ria de Aveiro (Portugal, 40°38′N, 08°45′W), which is connected to the Atlantic Ocean by a single channel, 350 m wide. The objective of this study was to estimate the seasonal and inter-tidal variability of organic carbon fluxes between the coastal lagoon and the Ocean, and to assess the contribution of the organic carbon fractions (i.e. dissolved organic carbon (DOC) and particulate organic carbon (POC)) to the export of organic carbon to the Ria de Aveiro plume zone. The organic carbon fractions fluxes were estimated as the product of the appropriate fractional organic carbon concentrations and the water fluxes calculated by a two-dimensional vertically integrated hydrodynamic model (2DH). Results showed that the higher exchanges of DOC and POC fractions at the system cross-section occurred during spring tides but only resulted in a net export of organic carbon in winter, totalling 85 t per tidal cycle. Derived from the winter and summer campaigns, the annual carbon mass balance estimated corresponded to a net export of organic carbon (7957 = 6585 t yr−1 POC + 1372 t yr−1 DOC). On the basis of the spring tidal drainage area, it corresponds to an annual flux of 79 g m−2 of POC and 17 g m−2 of DOC out of the estuary.  相似文献   

20.
The absorption of anthropogenic CO2 and atmospheric deposition of acidity can both contribute to the acidification of the global ocean. Rainfall pH measurements and chemical compositions monitored on the island of Bermuda since 1980, and a long-term seawater CO2 time-series (1983–2005) in the subtropical North Atlantic Ocean near Bermuda were used to evaluate the influence of acidic deposition on the acidification of oligotrophic waters of the North Atlantic Ocean and coastal waters of the coral reef ecosystem of Bermuda. Since the early 1980's, the average annual wet deposition of acidity at Bermuda was 15 ± 14 mmol m− 2 year− 1, while surface seawater pH decreased by 0.0017 ± 0.0001 pH units each year. The gradual acidification of subtropical gyre waters was primarily due to uptake of anthropogenic CO2. We estimate that direct atmospheric acid deposition contributed 2% to the acidification of surface waters in the subtropical North Atlantic Ocean, although this value likely represents an upper limit. Acidifying deposition had negligible influence on seawater CO2 chemistry of the Bermuda coral reef, with no evident impact on hard coral calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号