首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetric continuum theory points to the equal roles of the rotation motions and those related directly to shear or confining strains. The strain motions could be quite independent or mutually related with the eventual phase shifts, while the displacements have only a mathematical sense; a real displacement may appear along the fracture slip only. Formally, any deformation could be presented as related to the displacements; however, its origin in a fracture source should be considered either as belonging to an individual process or to complex correlated events; in these cases, the confining, shear and rotation strains can be related mathematically to the different displacement fields. Some of these related deformations could be emitted from a source with a phase shift, while the observed displacements (deduced from records) result as a sum of these independent displacements. An important influence on a source process and on the premonitory micro-events has the material defects, their distribution, and mobility. The defect arrays lead to a concentration of stresses and their local reorganization. Thus, in this paper, we consider the induced stresses and strains related to defect content and to its modification and redistribution. Moreover, an important role in understanding the complex correlated events in a source plays the release?Crebound mechanism. The release?Crebound mechanism in an earthquake source processes leads to a possible direct or phase-shifted correlations between the emitted motions; in this aspect, a propagation of the coupled strain and rotation waves is discussed. In particular, we consider the point fracture events as related either to a confining load or/and to the shear and rotation processes; we discuss the related effects and their meaning when discussing the fault plane mechanism and emitted waves. In some important seismic regions, we have the recording system which permits to record the strains and rotations. However, we should point that the wordwide seismological network is not adequate to record the complex strain deformations released in the fracture processes and remains quite insufficient to understand the global stress changes and related strain waves of a very low period. Consideration on a recording mechanism of the long displacement waves indicates the insufficiencies of the present global recording system and points that recording of the global strain and rotation waves is an important and urgent task.  相似文献   

2.
The tensor relations describing the shear deviatoric strains and rotation strains may be presented as vector relations in a special coordinate system, e.g., in the diagonal or off-diagonal one. However, these fields can be also presented in the 4D invariant forms by means of invariant Dirac tensors. We present 4D relativistic relations for the invariant shear deviatoric strain and rotation strain vectors closely related to a fracture process in solids and to the molecular strains (shear and rotational) in fluids. These shear and rotation strains may interact with the radial derivatives of pressure along the propagation directions.  相似文献   

3.
We present a new development in the asymmetric continuum theory with the shear oscillations (twist motions) and independent spin; these motions (displacement velocities and spin) can be shifted in phase to describe the independent rebound processes. Our approach provides an extension of the asymmetric continuum theory by including the microfragmentation processes with a double transport which may appear in an advanced fracture process under very high load. The related nonlinear equations, leading to soliton solutions, are derived.  相似文献   

4.
We present a new approach to the continuum theories: for solids, our version includes the asymmetric stresses, symmetric strains and antisymmetric rotations, while for fluids we take the similar assumptions but related to the respective time rates of these fields. We consider the constitutive relations and the balance laws: those related to the antisymmetric stresses are equivalent and substitute the required relations for the angular moment; a similar approach with rates of these fields is applied for fluids. The stress-dislocation relations are derived and the role of rotation motions in the fracture processes in solids is studied. A new theory of the extreme motion phenomena in fluids is developed.  相似文献   

5.
In this paper,compression tests of intact granite samples have been made in a triaxial testing machine with solid confining pressure.From the tests,the influences of confining pressure and loading rate(axial strain rate)on the deformation and fracture process of rock samples,on the stress drop and recurrence interval of stick-slip events,and on the geometric distribution of the main fracture have been studied.The experimental results show that the loading rate influences the stress drop and recurrence interval of stick-slip events greatly.At lower loading rates,the stress drop of stick-slip events is greater,their recurrence interval is longer and shows no regularity in distribution.When the loading rate goes higher,the stress drop will become smaller and the recurrence interval will tend to be constant and stick-slip events show a quasi-periodicity.At lower confining pressures and strain rates,the main fracture may evolve into 2 X-shaped conjugate shear faults; whereas at higher confining pressures and  相似文献   

6.
剪切破裂与粘滑——浅源强震发震机制的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
周口店花岗闪长岩的高温高压三轴实验和理论分析表明,剪切破裂和摩擦滑移具有类似的孕育过程和发生机制。剪切破裂贯通强度就是一种摩擦强度。剪切破裂和摩擦滑移各自都有渐进式和突发式之分。突发式摩擦滑移是已有断层的粘滑滑移。突发式剪切破裂则是完整岩石的初始粘滑滑移。考虑到地壳温度随深度增加,完整岩石剪裂强震要求较高的围压,因此,多数浅源强震的发震方式很可能是已有断层的粘滑  相似文献   

7.
含切口岩体模型在差应力作用下的应力应变关系表明:岩体不同部位的应力应变曲线按斜率变化特征可以划分为四个发展阶段。根据对切口岩石破裂过程的对比,各阶段的变形机制分别与岩体内原微裂纹闭合、孔隙和颗粒弹性变形、宏观张裂剪裂以及剪切、张-剪主破裂相对应,但各阶段的发展进程在时间、空间上却不一致,这一差异均与切口分布和岩性变化相关。最后讨论了应力应变特征与发震断层孕震过程的关系,对地震预报可能有实际意义  相似文献   

8.
Large sand intrusions often exhibit conical morphologies analogous to magmatic intrusions such as saucer-shaped or cup-shaped sills. Whereas some physical processes may be similar, we show with scaled experiments that the formation of conical sand intrusions may be favoured by the pore-pressure gradients prevailing in the host rock before sand injection. Our experiments involve injecting air into a permeable and cohesive analogue material to produce hydraulic fractures while controlling the pore pressure field. We control the state of overpressure in the overburden by applying homogeneous basal pore pressure, and then adding a second local pore pressure field by injecting air via a central injector to initiate hydraulic fractures near the injection point. In experiments involving small vertical effective stresses (small overburden, or high pore fluid overpressure), the fracturing pressure (λfract) is supralithostatic and two dipping fractures are initiated at the injection point forming a conical structure. From theoretical considerations, we predict that high values of λfract are due to strong cohesion or high pore fluid overpressure distributed in the overburden. Such conditions are favoured by the pore pressure/stress coupling induced by both pore pressure fields. The dips of cones can be accounted for elastic-stress rotation occurring around the source. Contrary to magmatic chamber models, the aqueous fluid overpressure developed in a parent sandbody (and prevailing before the formation of injectites) may diffuse into the surrounding overburden, thus favouring stress rotation and the formation of inclined sheets far from the parent source. For experiments involving higher vertical effective stresses (thick overburden or low pore fluid overpressure), the fracturing pressure is lower than the lithostatic stress, and a single fracture is opened in mode I which then grows vertically. At a critical depth, the fracture separates into two dilatant branches forming a flat cone. We make use of a P.I.V. (Particle Imaging Velocimetry) technique to analyse plastic deformation, showing that these inclined fractures are opened in mixed modes. Close to the surface, they change into steep shear bands where fluids can infiltrate. The final morphology of the fracture network is very similar to the common tripartite architecture of various injection complexes, indicating that different mechanisms may be involved in the formation of dykes. Feeder dykes under the sill zones may open as tensile fractures, while overlying dykes may be guided by the deformation induced by the growth of sills. These deformation conditions may also favour the formation of fluid escape structures and pockmarks.  相似文献   

9.
We present a new development in fluid theory, incorporating into it the velocity and spin fields; special attention is given to the structure of transport.The theory includes asymmetric molecular stresses and independent rotation velocity, i.e., spin. Our approach is based on our former studies on the asymmetric continuum theory with the balance and constitutive laws for displacement velocity and independent rotation motion, and points out the role of a related characteristic length unit. It is assumed that the vorticity caused by velocities can induce a spin transport counterpart. Thus, under certain conditions, an additional transport term due to rotational velocity fields may be incorporated to the velocity transport, which may lead to the vortex fields included directly into the theory.  相似文献   

10.
Analysis of a group of seismic events which took place in central Italy and have been recorded at the l’Aquila Observatory reveals proportionality between the maximum seismic signal (the displacement velocity) and the maximum amplitudes of rotational components. To compare the seismic events in the aspect of energy emitted as rotational motions, the rotation indices are used; these indices help us also to differentiate between the results obtained for different frequency spectra. In the adopted higher frequency range, 2.6–43 Hz, the relation between maximum displacement velocities and the rotation indices is roughly reciprocal, while for the lower frequencies, 0.3–3 Hz, there is no clear relationship. The share of rotation motions in the whole seismic energy emitted from the source varies during the seismic event. Research on the rotational components hidden in the seismic field gives a new insight into the processes in the source.  相似文献   

11.
During the period of 1999~2002, the Chinese seismologists made a serious of developments in the study on seismic sources including observations, experiments and theory. In the field of observation, the methods of the accuracy location of earthquake sources, the inversion of seismic moment tensor and the mechanism of earthquake source are improved and developed. A lot of important earthquake events are studied by using these methods. The rupture processes of these events are inverted and investigated combined with the local stress fields and the tectonic moment by using the measurements of surface deformation. In the fields of experiments and theory, many developments are obtained in cause of seismic formation, condition of stress and tectonics, dynamics of earthquake rupture, rock fracture and nucleation of strong earthquakes.  相似文献   

12.
During the period of 1999-2002, the Chinese seismologists made a serious of developments in the study on seis-mic sources including observations, experiments and theory. In the field of observation, the methods of the accu-racy location of earthquake sources, the inversion of seismic moment tensor and the mechanism of earthquake source are improved and developed. A lot of important earthquake events are studied by using these methods. The rupture processes of these events are inverted and investigated combined with the local stress fields and the tec-tonic moment by using the measurements of surface deformation. In the fields of experiments and theory, many developments are obtained in cause of seismic formation, condition of stress and tectonics, dynamics of earthquake rupture, rock fracture and nucleation of strong earthquakes.  相似文献   

13.
—For small-scale microseismic events, the source sizes provided by shear models are unrealistically large when compared to visual observations of rock fractures near underground openings. A detailed analysis of the energy components in data from a mine-by experiment and from some mines showed that there is a depletion of S-wave energy for events close to the excavations, indicating that tensile cracking is the dominant mechanism in these microseismic events.¶In the present study, a method is proposed to estimate the fracture size from microseismic measurements. The method assumes tensile cracking as the dominant fracture mechanism for brittle rocks under compressive loads and relates the fracture size to the measured microseismic energy. With the proposed method, more meaningful physical fracture sizes can be obtained and this is demonstrated by an example on data from an underground excavation with detailed, high-quality microseismic records.  相似文献   

14.
嵇少丞 《地震学报》1987,9(2):208-216
利用 Kolsky 扭转棒作为实验装置,笔者在常温常压条件下对干燥的和潮湿的大理岩试样进行了一系列的动态简单剪切的实验变形研究,以期了解在高应变率(373-1-1736-1)时岩石中孔隙水对于岩石抗剪强度的影响.结果表明,孔隙水的存在不但没有降低,反而稍微提高了岩石的抗剪强度.结合前人在静态条件下的实验研究资料,笔者认为水对岩石变形的作用机制随应变率的变化而改变.在低应变率(例如:10-9-1)时,水对岩石变形的影响分别表现为压溶作用、应力侵蚀作用和降低有效应力的效应.压溶作用和应力侵蚀作用导致岩石强度的降低;而有效应力的降低则导致岩石强度的相对提高.   相似文献   

15.
In a much quoted paper, Jackson (1976) hypothesized that turbulent [bursting] motions such as those documented in laboratory boundary layers play a major role in alluvial sediment suspension. To date, the hypothesis remained largely untested, due to difficulties in monitoring turbulent suspension in rivers. This study provides field data documenting burst-like turbulent motions over a sandy bed channel and quantifying the role of these motions in sand suspension. The data were collected in a 10 m deep channel of the Fraser River near Mission, British Columbia, Canada. Turbulent fluctuations of both flow components, downstream and normal to the bed, along with the output of an optical suspended sediment sensor, were monitored 1 m above the river bed. Typical flow velocities averaged 0·9 ms−1 at the sensors, where mean suspended sediment concentrations were 500 mgl−1; decimetre height small dunes on the backs of larger, half-metre amplitude dunes covered the channel bed in the area. Brief but intense, burst-like [ejection and inrush] events were identified in the flow records, where they are responsible for a high degree of [intermittency] in shear stress over the dunes: 80 per cent of the turbulent momentum exchange across the 1 m level can be ascribed to such brief (3-8 s duration) events, active under 12 per cent of the time. In addition, the record of fluctuating sediment concentrations reveals these burst-like motions to be highly effective in vertically mixing suspended sediment and thus, ultimately, in maintaining suspended sediment transport above the dune bed. The bulk (60 and 90 per cent in two deployments) of the vertical sediment mixing was accomplished by intense events active some 10 per cent of the time. No discrete recurrence timescale for these ‘burst-like’ mixing events is evident, however. Rather, a continuous variation of return periods was observed as a function of the magnitude of vertical mixing event considered. To that extent, conceptual models of sediment transport in terms of burst events with a predictable recurrence such as proposed by Jackson (1976) may be misleading.  相似文献   

16.
Three seismic events in L’Aquila region and one in western Greece have been chosen for comparative analysis of two kinds of seismic motions, spin and twist. These torque components of the seismic field were detected in horizontal plane with the rotational seismometers. Homologous parts were sought in the signals of spin and twist components — curve of one component was compared to the other directly and after transformations: phase-shifting and sign reversal. To achieve better clarity, these operations were done on the data divided into several descendant signals with the use of band-pass filtration. Conformities of spin and twist, revealed in this way, are assumed to be results of distant processes in the source, where relations between rotational and shear motions include retardations.  相似文献   

17.
运用变分原理,我们得到了最小地震波辐射能量约束准则并用于研究震源的物理过程.通过研究1995年ML4.1河北沙城地震序列主震和余震的动力学过程,可知主震和余震震源的动态破裂过程明显不同;ML4.1主震的破裂速度与瑞利波速相近,约为剪切波速度的0.89倍;而28个余震的破裂速度远远小于剪切波速度,大约是剪切波速度的0.05到0.55倍.根据裂纹扩展模型,计算得到其余震的地震波辐射效率多在10%以下,这也说明了余震的地震效率较低.我们认为余震震源的动态破裂过程应与断层内部新生裂纹的扩展有关,而非简单的岩体间的相对滑动.余震震源的动态破裂传播与破裂能占主导地位的小地震有关.这些小震所带来的破裂能也导致了断层的进一步扩展.在对该地震序列的研究中,我们发现主震与余震的震源破裂过程在能量分配上有着本质的区别.因此当地震断层尺度相当小时,破裂能的贡献不能忽略,它的大小将显著地影响地震波辐射能的大小.  相似文献   

18.
19.
Upper mantle peridotite bodies at the earth's surface contain relict structures and microstructures which provide direct information on the role and the mechanisms of shear localisation in the upper mantle. Deformation which occurred at high temperatures (T>950±50°C) is relatively homogeneous within domains ranging in scale from a few kilometres to a few tens of kilometres. Below 950±50°C strain is localised into centimetre to several hundred metre wide shear zones which commonly contain hydrated mylonitic peridotites. The microstructures developed in the peridotites suggest there is a correlation between the occurrence of shear localisation and the occurrence of strain softening and brittle deformation processes. The most important strain softening processes are inferred to be structural and reaction induced softening. Structural softening processes include dynamic recrystallisation and strain-induced transitions from dislocation creep to some form of grain-size-sensitive (GSS) creep. Reaction induced softening is related to the formation of fine grained polyphase reaction products which deform by GSS creep and the formation of weak sheet silicates such as phlogopite, chlorite, talc and antigorite. From experimental studies these softening processes and brittle deformation processes are inferred to occur mainly at temperatures less than about 910±160°C. This temperature range is inferred to be a significant rheological transition in the upper mantle. Below 910±160°C deformation during orogenesis may be accommodated by an anastomosing network of hydrated mylonitic shear zones with a distinct, perhaps weak, rheology. At higher temperatures strain is accommodated in much wider deformation zones.On the scale of the lithosphere the degree of localisation may be different to that determined at the scale of the periodotite massif. An anastomosing network of hundred metre wide mylonitic shear zones forming 0.05–0.3 by volume fraction of the mantle lithosphere atT<950°C could accommodate inhomogeneous or homogeneous bulk deformation depending on the spatial distribution and ordering of the mylonite zones. The higher temperature deformation at deeper levels in the mantle could be markedly inhomogeneous being concentrated in shear zones with widths in the range of 2–20 km, alternatively these zones may widen significantly during deformation, resulting in a decrease in the degree of localisation with increasing bulk strain.  相似文献   

20.
固体围压下完整花岗岩粘滑现象的实验研究   总被引:3,自引:0,他引:3  
程海旭  吴开统 《中国地震》1993,9(3):211-222
本文用完整的花岗岩样品在固体围压三轴实验装置上压缩,研究围压和应变速率对岩样变形破裂过程、粘滑应力降、粘滑复发间隔及样品主破裂几何分布的影响。结果表明,加载速率较低时,粘滑应力降较大,复发间隔较长且分布无规律。加载速率越大,粘滑应力降越小,复发间隔也近似相等,粘滑事件表现出准周期性。围压和应变率较低时,岩石的主破裂会演变成两个交叉的共轭断裂面;而围压和应变率较高时,岩石的主破裂则演变成单一断裂面或入字形断裂面。本文结果对认识中国大陆板内地震孕育、发生及重复过程;研究地震重复发生的机制及影响地震复发间隔的主要因素都有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号