首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
D. Raje  P. Priya  R. Krishnan 《水文研究》2014,28(4):1874-1889
In climate‐change studies, a macroscale hydrologic model (MHM) operating over large scales can be an important tool in developing consistent hydrological variability estimates over large basins. MHMs, which can operate at coarse grid resolutions of about 1° latitude by longitude, have been used previously to study climate change impacts on the hydrology of continental scale or global river basins. They can provide a connection between global atmospheric models and water resource systems on large spatial scales and long timescales. In this study, the variable infiltration capacity (VIC) MHM is used to study large scale hydrologic impacts of climate change for Indian river basins. Large‐scale changes in runoff, evapotranspiration and soil moisture for India, as well as station‐scale changes in discharges for three major river basins with distinct climatic and geographic characteristics are examined in this study. Climate model projections for meteorological variables (precipitation, temperature and wind speed) from three general circulation models (GCMs) and three emissions scenarios are used to drive the VIC MHM. GCM projections are first interpolated to a 1° by 1° hydrologic model grid and then bias‐corrected using a quantile–quantile mapping. The VIC model is able to reproduce observed statistics for discharges in the Ganga, Narmada and Krishna basins reasonably well, even at the coarse grid resolution employed using a calibration period for years 1965–1970 and testing period from 1971–1973/1974. An increasing trend is projected for summer monsoon surface runoff, evapotranspiration and soil moisture in most central Indian river basins, whereas a decrease in runoff and soil moisture is projected for some regions in southern India, with important differences arising from GCM and scenario variability. Discharge statistics show increases in mid‐flow and low flow at Farakka station on Ganga River, increased high flows at Jamtara station upstream of Narmada, and increased high, mid‐flow and low flow for Vijayawada station on Krishna River in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The potential impact of climate change on areas of strategic importance for water resources remains a concern. Here, river flow projections for the River Medway, above Teston in southeast England are presented, which is just such an area of strategic importance. The river flow projections use climate inputs from the Hadley Centre Regional Climate Model (HadRM3) for the time period 1960–2080 (a subset of the early release UKCP09 projections). River flow predictions are calculated using CATCHMOD, the main river flow prediction tool of the Environment Agency (EA) of England and Wales. In order to use this tool in the best way for climate change predictions, model setup and performance are analysed using sensitivity and uncertainty analysis. The model's representation of hydrological processes is discussed and the direct percolation and first linear storage constant parameters are found to strongly affect model results in a complex way, with the former more important for low flows and the latter for high flows. The uncertainty in predictions resulting from the hydrological model parameters is demonstrated and the projections of river flow under future climate are analysed. A clear climate change impact signal is evident in the results with a persistent lowering of mean daily river flows for all months and for all projection time slices. Results indicate that a projection of lower flows under future climate is valid even taking into account the uncertainties considered in this modelling chain exercise. The model parameter uncertainty becomes more significant under future climate as the river flows become lower. This has significant implications for those making policy decisions based on such modelling results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.  相似文献   

4.
The models of physiographic inundation and flood routing for channel network were used in this study to analyse the influence of the Tainan Scientific Base Industrial Park (TSBIP) and Feng-Hua detention ponds on the inundated potential, inundated volume, flood damage, and flood stage of peak flow along the Yen-Shui creek in 2-day flood for the 2-, 10- and 50-year return periods, respectively. The computed results show that the TSBIP detention ponds are able to reduce the inundated area and flood damage. However, the decrease in inundated area is not obvious for the 50-year return-period flood. Construction of the Feng-Hua detention pond resulted in a significant decrease in the flood stage along the Yen-Shui creek in the downstream reach. Moreover, the decrease in peak flow and lag of time-to-peak become increasingly evident in the downstream direction for the 2- and 10-year return-period events. For the 50-year return period, the lag of time-to-peak is not apparent, but the decrease in peak flow is still noticeable. In respect to the performance of detention ponds, the slopes of hydrographs in the rising and recession segments are smoother than those without detention ponds. Meanwhile, the shapes of peak become flatter if the detention ponds are installed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Recognizing the underlying mechanisms of bank storage and return flow is important for understanding streamflow hydrographs. Analytical models have been widely used to estimate the impacts of bank storage, but are often based on assumptions of conditions that are rarely found in the field, such as vertical river banks and saturated flow. Numerical simulations of bank storage and return flow in river-aquifer cross sections with vertical and sloping banks were undertaken using a fully-coupled, surface-subsurface flow model. Sloping river banks were found to increase the bank infiltration rates by 98% and storage volume by 40% for a bank slope of 3.4° from horizontal, and for a slope of 8.5°, delay bank return flow by more than four times compared with vertical river banks and saturated flow. The results suggested that conventional analytical approximations cannot adequately be used to quantify bank storage when bank slope is less than 60° from horizontal. Additionally, in the unconfined aquifers modeled, the analytical solutions did not accurately model bank storage and return flow even in rivers with vertical banks due to a violation of the dupuit assumption. Bank storage and return flow were also modeled for more realistic cross sections and river hydrograph from the Fitzroy River, Western Australia, to indicate the importance of accurately modeling sloping river banks at a field scale. Following a single wet season flood event of 12 m, results showed that it may take over 3.5 years for 50% of the bank storage volume to return to the river.  相似文献   

6.
A number of extensive droughts and destructive floods have occurred in Poland in the last 25 years; hence, projections of low and high river flows are of considerable interest and importance. In the first part of this paper, projections of low and high flows in the rivers of the Vistula and the Odra basins (VOB region), for two future time horizons, are presented. Projections are based on the Soil and Water Assessment Tool (SWAT) hydrological model simulations driven by results of the EURO‐CORDEX experiment under Representative Concentration Pathways 4.5 and 8.5. The VOB region covers most of Poland and parts of five neighboring countries, giving this study an international relevance. In the second part of the paper, a review of projections of low and high flows in rivers in Central and Eastern Europe is presented. Despite a substantial spread of flow projections, the main message of the modelling part is that increases of both low and high flows are dominating. The magnitude of increase of low flow is considerably higher than that of high flow. In other words, future streamflow droughts are projected to be less severe, whereas, in contrast, river floods are projected to increase, which is a challenge for flood risk reduction, water management, and climate change adaptation. There is an overall agreement of our findings for the VOB region with projections of hydrological extremes from large‐scale models forced by EURO‐CORDEX results in the European‐scale studies.  相似文献   

7.
Climate change is likely to manifest in river flow changes across the globe, which could have wide-ranging consequences for society and the natural environment. A number of previous studies used the UK Climate Projections 2009 (UKCP09) to investigate the potential impacts on river flows in Britain, but these projections were recently updated by the release of UKCP18, thus there is a need to update flow studies. Here, the UKCP18 Regional (12 km) projections are applied using a national-scale grid-based hydrological model, to investigate potential future changes in seasonal mean river flows across Great Britain. Analysis of hydrological model performance using baseline climate model data (1980–2010) shows relatively good agreement with use of observation-based data, particularly after application of a monthly precipitation bias-correction. Analysis of seasonal mean flow changes for two future time-slices (2020–2050 and 2050–2080) suggests large decreases in summer flows across the country (median −45% by 2050–2080), but possible increases in winter flows (median 9% by 2050–2080), especially in the north and west. Information on the potential range of flow changes using the latest projections is necessary to develop appropriate adaptation strategies, and comparisons with previous projections can help update existing plans, although such comparisons are often not straightforward.  相似文献   

8.
This paper examines the impacts of climate change on future water yield with associated uncertainties in a mountainous catchment in Australia using a multi‐model approach based on four global climate models (GCMs), 200 realisations (50 realisations from each GCM) of downscaled rainfalls, 2 hydrological models and 6 sets of model parameters. The ensemble projections by the GCMs showed that the mean annual rainfall is likely to reduce in the future decades by 2–5% in comparison with the current climate (1987–2012). The results of ensemble runoff projections indicated that the mean annual runoff would reduce in future decades by 35%. However, considerable uncertainty in the runoff estimates was found as the ensemble results project changes of the 5th (dry scenario) and 95th (wet scenario) percentiles by ?73% to +27%, ?73% to +12%, ?77% to +21% and ?80% to +24% in the decades of 2021–2030, 2031–2040, 2061–2070 and 2071–2080, respectively. Results of uncertainty estimation demonstrated that the choice of GCMs dominates overall uncertainty. Realisation uncertainty (arising from repetitive simulations for a given time step during downscaling of the GCM data to catchment scale) of the downscaled rainfall data was also found to be remarkably high. Uncertainty linked to the choice of hydrological models was found to be quite small in comparison with the GCM and realisation uncertainty. The hydrological model parameter uncertainty was found to be lowest among the sources of uncertainties considered in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

Uncertainty in climate change impacts on river discharge in the Upper Awash Basin, Ethiopia, is assessed using five MIKE SHE hydrological models, six CMIP5 general circulation models (GCMs) and two representative concentration pathways (RCP) scenarios for the period 2071–2100. Hydrological models vary in their spatial distribution and process representations of unsaturated and saturated zones. Very good performance is achieved for 1975–1999 (NSE: 0.65–0.8; r: 0.79–0.93). GCM-related uncertainty dominates variability in projections of high and mean discharges (mean: –34% to +55% for RCP4.5, – 2% to +195% for RCP8.5). Although GCMs dominate uncertainty in projected low flows, inter-hydrological model uncertainty is considerable (RCP4.5: –60% to +228%, RCP8.5: –86% to +337%). Analysis of variance uncertainty attribution reveals that GCM-related uncertainty occupies, on average, 68% of total uncertainty for median and high flows and hydrological models no more than 1%. For low flows, hydrological model uncertainty occupies, on average, 18% of total uncertainty; GCM-related uncertainty remains substantial (average: 28%).  相似文献   

10.
Abstract

The aim of this article is to assess the impact of four scenarios combining possible changes in climate, atmospheric carbon dioxide, land use and water use by 2050, on the specific set of ecologically relevant flow regime indicators that define environmental flow requirements in a semi-natural river basin in Poland. This aim is presented through a modelling case study using the Soil and Water Assessment Tool (SWAT). Indicators show both positive and negative responses to future changes. Warm projections from the IPSL-CM4 global climate model combined with sustainable land- and water-use projections (SuE) produce the most negative changes, while warm and wet projections from the MIROC3.2 model combined with market-driven projections (EcF) gave the most positive changes. Climate change overshadows land- and water-use change in terms of the magnitude of projected flow alterations. The future of environmental water quantity is brighter under the market-driven rather than the sustainability-driven scenario, which shows that sustainability for terrestrial ecosystems (e.g. more forests and grasslands) can be at variance with sustainability for riverine and riparian ecosystems (requiring sufficient amount and proper timing of river flows).
Editor D. Koutsoyiannis

Citation Piniewski, M., Okruszko, T., and Acreman, M.C., 2014. Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew basin, Poland. Hydrological Sciences Journal, 59 (3–4), 916–934.  相似文献   

11.
Abstract

This paper focuses on a regionalization attempt to partly solve data limitation problems in statistical analysis of high flows to derive discharge–duration–frequency (QDF) relationships. The analysis is based on 24 selected catchments in the Lake Victoria Basin (LVB) in East Africa. Characteristics of the theoretical QDF relationships were parameterized to capture their slopes of extreme value distributions (evd), tail behaviour and scaling measures. To enable QDF estimates to be obtained for ungauged catchments, interdependence relationships between the QDF parameters were identified, and regional regression models were developed to explain the regional difference in these parameters from physiographic characteristics. In validation of the regression models, from the lowest (5 years) to the highest (25 years) return periods considered, the percentage bias in the QDF estimates ranged from –2% for the 5-year return period to 27% for 25-year return period.
Editor D. Koutsoyiannis  相似文献   

12.

The source region of Yellow river is an alpine river sensitive to climate changes, but the potential effects of climate change on hydrological regime characteristics and ecological implications are less understood. This study aims to assess the response of the alterations in the flow regimes over the source region of Yellow river to climate change using Soil and Water Integrated Model driven by different Global Circulation Models (GFDL-ESM2M, IPSL-CM5A-LR and MIROC-ESM-CHEM) under three Representative Concentration Pathway emission scenarios (RCP2.6, RCP4.5 and RCP8.5). Indicators of hydrological alteration and River impact index are employed to evaluate streamflow regime alterations at multiple temporal scales. Results show that the magnitude of monthly and annual streamflow except May, the magnitude and duration of the annual extreme, and the number of reversals are projected to increase in the near future period (2020–2049) and far future period (2070–2099) compared to the baseline period (1971–2000). The timing of annual maximum flows is expected to shift backwards. The source region of Yellow river is expected to undergo low change degree as per the scenarios RCP2.6 for both two future periods and under the scenarios RCP4.5 for the near future period, whereas high change degree under RCP4.5 and RCP8.5 in the far period on the daily scale. On the monthly scale, climate changes mainly have effects on river flow magnitude and timing. The basin would suffer an incipient impact alteration in the far period under RCP4.5 and RCP8.5, while low impact in other scenarios. These changes in flow regimes could have several positive impacts on aquatic ecosystems in the near period but more detrimental effects in the far period.

  相似文献   

13.
Understanding low flow variability is critical for assessing water quality and health of riverine ecosystems in a river basin. Low flows are dependent on human water abstraction as well as the climate variability. This paper investigates the changing nature of low flows and their association with large-scale climate variability for different watersheds in the State of Texas, USA. For this purpose, we employed trend, wavelet analysis and linear as well as nonlinear correlations to identify important changes in low flow characteristics for three stream-gauging stations selected from different (i.e. Brazos, Colorado and Trinity) river basins located in Texas for the time period of 1916–1959 and 1960–2003. We also investigated the teleconnections between low flow variables and the large-scale climate indices (NINO 3.4, SOI and PDO) using cross wavelet analysis as well as their linear and non-linear correlation relationship. Our results indicated that the low flow magnitudes have shown considerable different characteristics for selected river basins during two separate time periods (1916–1959 and 1960–2003). Based on cross wavelet analysis, we identified that the low flows in selected stations of Colorado and Trinity River basins are likely to be influenced by all three large-scale climate indices. In addition to that, we identified that low flows are more nonlinearly associated with climate indices. Among the selected River basins, the stronger association between low flows and large scale climate indices are observed for Trinity River basin. The results from this study can help in better understanding of low flow hydrology and their potential relationship with large scale indices.  相似文献   

14.
Based on daily precipitation data of more than 2000 Chinese stations and more than 50 yr, we constructed time series of extreme precipitation based on six different indices for each station: annual and summer maximum(top-1) precipitation,accumulated amount of 10 precipitation maxima(annual, summer; top-10), and total annual and summer precipitation.Furthermore, we constructed the time series of the total number of stations based on the total number of stations with top-1 and top-10 annual extreme precipitation for the whole data period, the whole country, and six subregions, respectively. Analysis of these time series indicate three regions with distinct trends of extreme precipitation:(1) a positive trend region in Southeast China,(2) a positive trend region in Northwest China, and(3) a negative trend region in North China. Increasing(decreasing)ratios of 10–30% or even 30% were observed in these three regions. The national total number of stations with top-1 and top-10 precipitation extremes increased respectively by 2.4 and 15 stations per decade on average but with great inter-annual variations.There have been three periods with highly frequent precipitation extremes since 1960:(1) early 1960 s,(2) middle and late 1990 s,and(3) early 21 st century. There are significant regional differences in trends of regional total number of stations with top-1 and top-10 precipitation. The most significant increase was observed over Northwest China. During the same period, there are significant changes in the atmospheric variables that favor the decrease of extreme precipitation over North China: an increase in the geopotential height over North China and its upstream regions, a decrease in the low-level meridional wind from South China coast to North China, and the corresponding low moisture content in North China. The extreme precipitation values with a50-year empirical return period are 400–600 mm at the South China coastal regions and gradually decrease to less than 50 mm in Northwest China. The mean increase rate in comparison with 20-year empirical return levels is 6.8%. The historical maximum precipitation is more than twice the 50-year return levels.  相似文献   

15.
The hydrological response to the potential future climate change in Yangtze River Basin (YRB), China, was assessed by using an ensemble of 54 climate change simulations. The Coupled Model Intercomparison Project 5 simulations under two new Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios were downscaled and used to drive the Variable Infiltration Capacity hydrological model. This study found that the range of temperature changes is homogeneous for almost the entire region, with an average annual increase of more than 2 °C under RCP4.5 and even more than 4 °C under RCP8.5 in the end of the twenty first century. The warmest period (June–July–August) of the year would experience lower changes than the colder ones (December–January–February). Overall, mean precipitation was projected to increase slightly in YRB, with large dispersion among different global climate models, especially during the dry season months. These phenomena lead to changes in future streamflow for three mainstream hydrological stations (Cuntan, Yichang, and Datong), with slightly increasing annual average streamflows, especially at the end of twenty first century. Compared with the percentage change of mean flow, the high flow shows (90th percentile on the probability of no exceedance) a higher increasing trend and the low flow (10th percentile) shows a decreasing trend or lower increasing trend. The maximum daily discharges with 5, 10, 15, and 30-year return periods show an increasing trend in most sub-basins in the future. Therefore, extreme hydrological events (e.g., floods and droughts) will increase significantly, although the annual mean streamflow shows insignificant change. The findings of this study would provide scientific supports to implement the integrated adaptive water resource management for climate change at regional scales in the YRB.  相似文献   

16.
A flood emergency storage area (polder) is used to reduce the flood peak in the main river and hence, protect downstream areas from being inundated. In this study, the effectiveness of a proposed flood emergency storage area at the middle Elbe River, Germany in reducing the flood peaks is investigated using hydrodynamic modelling. The flow to the polders is controlled by adjustable gates. The extreme flood event of August 2002 is used for the study. A fully hydrodynamic 1D model and a coupled 1D–2D model are applied to simulate the flooding and emptying processes in the polders and flow in the Elbe River. The results obtained from the 1D and 1D–2D models are compared with respect to the peak water level reductions in the Elbe River and flow processes in the polders during their filling and emptying. The computational time, storage space requirements and modelling effort for the two models are also compared. It is concluded that a 1D model may be used to study the water level and discharge reductions in the main river while a 1D-2D model may be used when the study of flow dynamics in the polder is of particular interest. Further, a detailed sensitivity analysis of the 1D and 1D–2D models is carried out with respect to Manning's n values, DEMs of different resolutions, number of cross-sections used and the gate opening time as well as gate opening/closing duration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Variability and possible relationship between monthly 1-day maximum/minimum flow from headwater of Tarim River basin, climatic indices and regional climate were detected by Mann–Kendall test, continuous wavelet transform, cross-wavelet and wavelet coherence methods. The results showed that: (1) hydrological extremes have increased during past 50 years, and the trends of 1-day minimum flow were larger than that of 1-day maximum flow. The most significant change occurred in winter; (2) the hydrological extremes exhibited significant 1-year period and 0.5-year period along the whole hydrological series; (3) different circulation indices may influence the trends of hydrological extremes in different river. The area of polar vortex in North American (i25) and area of Northern Hemisphere polar vortex (i5) showed most significant correlation with 1-day maximum flow and 1-day minimum flow in Aksu River, respectively. In Hotan River, the most significant correlated climate indices with 1-day maximum and minimum flow were Southern oscillation index and area of Northern American Subtropical High (i15), respectively. The area of polar vortex in Atlantic and Europe Sector (i35) showed significant relationships with 1-day minimum flow in Yarkand River; (4) regions of shared power at 0.8–1.5 year mode were found between selected climate indices and the hydrological extremes, anti-phase relations were detected for most of the series; (5) the fluctuations of temperature have strong effects on hydrological extremes, and significant coherence between regional climate and extremes was found at 0.7–1.5 year scale. The results of the study provide valuable information for improving the long-term forecasting of the hydrological extremes using its relationship with climate indices.  相似文献   

18.
Abstract

Abstract Current research suggests that strategies to control sediment and phosphorus loss from non-point sources should focus on different runoff components and their spatial and temporal variations within the river basin. This is a prerequisite for determining effective management measures for reducing diffuse source pollution. Therefore, non-point source models, especially in humid climatic regions, should consider variable hydrologically active source areas. These models should be able to consider runoff generation by saturated overland flow, as well as Hortonian overland flow. A combination of the hydrological model WaSiM-ETH and the erosion and P-transport model AGNPS was chosen for this study. The models were run in the WaSiM runoff generation mode (Green & Ampt/TOPMODEL or Richards equation approach) and the SCS curve number mode to assess the effect of these different runoff calculation procedures on the dissolved phosphorus yield. A small and a medium-sized river basin, of the area of 1.44 and 128.9 km2, respectively, in central Germany were selected for the investigation. The results show that the WaSiM–AGNPS coupling produces more accurate results than the SCS curve number method. For the spatial distribution, the more physically-based model approach computed a much more realistic distribution of water and phosphorus yield-producing areas.  相似文献   

19.
ABSTRACT

A semi-distributed hydrological model is developed, calibrated and validated against unregulated river discharge from the Tocantins-Araguaia River Basin, northern Brazil. Climate change impacts are simulated using projections from the 41 Coupled Model Intercomparison Project Phase 5 climate models for the period 2071–2100 under the RCP4.5 scenario. Scenario results are compared to a 1971–2000 base line. Most climate models suggest declines in mean annual discharge although some predict increases. A large proportion suggest that the dry season experiences large declines in discharge, especially during the transition to the rising water period. Most models (>75%) suggest declines in annual minimum flows. This may have major implications for both current and planned hydropower schemes. There is greater uncertainty in projected changes in wet season and annual maximum discharges. Two techniques are investigated to reduce uncertainty in projections, but neither is able to provide more confidence in the simulated changes in discharge.
Editor D. Koutsoyiannis Associate editor F. Hattermann  相似文献   

20.
ABSTRACT

The application of remotely-sensed data for hydrological modeling of the Congo Basin is presented. Satellite-derived data, including TRMM precipitation, are used as inputs to drive the USGS Geospatial Streamflow Model (GeoSFM) to estimate daily river discharge over the basin from 1998 to 2012. Physically-based parameterization was augmented with a spatially-distributed calibration that enables GeoSFM to simulate hydrological processes such as the slowing effect of the Cuvette Centrale. The resulting simulated long-term mean of daily flows and the observed flow at the Kinshasa gauge were comparable (40 631 and 40 638 m3/s respectively), in the 7-year validation period (2004–2010), with no significant bias and a Nash-Sutcliffe model efficiency coefficient of 0.70. Modeled daily flows and aggregated monthly river outflows (compared to historical averages) for additional sites confirm the model reliability in capturing flow timing and seasonality across the basin, but sometimes fails to accurately predict flow magnitude. The results of this model can be useful in research and decision-making contexts and validate the application of satellite-based hydrological models driven for large, data-scarce river systems such as the Congo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号