首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding spin orbital parameter-driven climate change on Mars prior to ∼ 20 Ma ago requires geological evidence because numerical solutions for that period are chaotic and non-unique. We show geological evidence that lineated valley fill at low mid-latitudes in the northern hemisphere of Mars (∼ 37.5° N) originated through regional snow and ice accumulation and underwent glacial-like flow. Breached upland craters and theater-headed valleys reveal features typical of erosion in association with terrestrial glaciers. Parallel, converging and chevron-like lineations in potentially ice-rich deposits on valley floors indicate that flow occurred through constrictions and converged from different directions at different velocities. Together, these Martian deposits and erosional landforms resemble those of intermontaine glacial systems on Earth, particularly in their major morphology, topographic shape, planform and detailed surface features. An inferred Late Amazonian age, combined with predictions of climate models, suggest that the obliquity of Mars exceeded a mean of 45° for a sustained period. During this time, significant transfer of ice occurred from ice-rich regions (e.g., the poles) to mid-latitudes, causing prolonged snow and ice accumulation there and forming an extensive system of valley glaciers.  相似文献   

2.
The secondary mineral budget on Earth is dominated by clay minerals, Al-hydroxides, and Fe-oxides, which are formed under the moderate pH, high water-to-rock ratio conditions typical of Earth's near-surface environment. In contrast, geochemical analyses of rocks and soils from landed missions to Mars indicate that secondary mineralogy is dominated by Mg (± Fe, Ca)-sulfates and Fe-oxides. This discrepancy can be explained as resulting from differences in the chemical weathering environment of Earth and Mars. We suggest that chemical weathering processes on Mars are dominated by: (1) a low-pH, sulfuric acid-rich environment in which the stoichiometric dissolution of labile mineral phases such as olivine and apatite (± Fe–Ti oxides) is promoted; and (2) relatively low water-to-rock ratio, such that other silicate phases with slower dissolution rates (e.g., plagioclase, pyroxene) do not contribute substantially to the secondary mineral budget at the Martian surface. Under these conditions, Al-mobilization is limited, and the formation of significant Al-bearing secondary phases (e.g., clays, Al-hydroxides, Al-sulfates) is inhibited. The antiquity of rock samples analyzed in-situ on Mars suggest that water-limited acidic weathering conditions have more than likely been the defining characteristic of the Martian aqueous environment for billions of years.  相似文献   

3.
4.
Investigating the ancient Martian magnetic field using microwaves   总被引:1,自引:0,他引:1  
The new microwave palaeointensity technique has been used to investigate samples from the Martian meteorite Nakhla. This technique is a promising new way to obtain absolute palaeointensity information regarding the ancient Martian magnetic field as recorded by the Martian meteorites. Assuming that a part of the magnetic remanence is of thermal origin and originating on Mars the two samples studied yield estimates of 4 μT for the Martian magnetic field at 1.35 Ga.  相似文献   

5.
Since 2000, 18 High Asia glaciers have been surveyed for black carbon (BC) deposition 22 times, and numerous snow samples and ice cores have been collected by researchers. However, most of the results were interpreted individually in papers. Here, we assemble the data and discuss the distribution of BC deposition and its impacts on the melting of the glaciers through radiative forcing. We find that BC distribution on the surfaces of High Asia glaciers primarily depends upon their elevations (i.e., higher sites have lower concentrations) and then upon regional BC emissions and surface melting conditions. BC concentrations in High Asia glaciers are similar to the Arctic and western American mountains but are significantly less than heavy industrialized areas such as northern China. Although Himalayan glaciers, which are important due to their water resources, are directly facing the strong emissions from South Asia, their mean BC is the lowest due to high elevations. A new finding indicated by ice core records suggested that great valleys in the eastern Himalayan section are effective pathways for BC entering the Tibetan Plateau and make increasing BC trends in the local glaciers. On average, BC deposition causes a mean forcing of ∼6 W m−2 (roughly estimated 5% of the total forcing) in High Asia glaciers and therefore may not be a major factor impacting the melting of most glaciers.  相似文献   

6.
Samples of a new Martian meteorite of the nakhlite family (NWA 817) contain traces of an iron-rich alteration product. Textural arguments indicate that this alteration product has been formed on the parent body of the meteorite (Mars). The chemical composition and structural data (X-ray diffraction, transmission electron microscopy and vibrational spectroscopy) show that the alteration mineral is a hydrous phase from the smectite family. Major elements and rare earth elements suggest that the formation of the alteration phase is related to the circulation of an aqueous fluid which composition is controlled by the dissolution of feldspars to account for a positive Eu anomaly, olivine and possibly apatite. Hydrogen isotope data display negative δD values ranging from −60 to −280‰ in olivine and pyroxenes and from −140 to −181‰ in the alteration phase. The values of δD for the alteration product show a small scatter with a mean value of −170±14‰. These values are lower than those previously obtained on other Martian meteorites, which give mainly positive δD values. These positive values have been interpreted as resulting from the interaction of the Martian meteorites with water from the Martian atmosphere. Ruling out the effect of terrestrial alteration, it is suggested that alteration in the NWA 817 meteorite was likely produced on Mars by the circulation of an aqueous fluid originating from a chemical reservoir, such as the Martian mantle, which has not equilibrated with a fractionated Martian atmosphere.  相似文献   

7.
This paper evaluates the utility of the shoreline preservation index (s.p.i.) for estimating the age of late Pleistocene palaeolake shorelines, the relative influence of various factors on shoreline preservation, and whether shoreline preservation varies significantly with shoreline aspect. Sampled shorelines from the 3300 km2 study area, which includes the Skull, Tule and Puddle Valley portions of the Lake Bonneville basin, range in age from approximately 26 to 12 ka. Their total s.p.i. values range from 23 to 69 per cent, average 46 per cent, and do not vary significantly with shoreline aspect. The data from Skull and Tule Valleys, where studied shorelines are of known age, are analysed first in order to determine if there are statistically significant associations between variables representing shoreline preservation, age, degree of geomorphic development and duration of subaerial exposure. Pairwise correlation is then repeated using observations from all three valleys in order to determine how data from the Puddle Valley shorelines, whose hypothesized ages are not supported by radiocarbon analyses, affect the results. Results show that s.p.i. is useful as a relative-age dating tool, that the postulated ages of the Puddle Valley shorelines are ordinally correct, and that geomorphic development is not an important influence on the preservation of these late Pleistocene shorelines. The relative importance of shoreline age and the relative unimportance of duration of subaerial exposure with respect to shoreline preservation suggest that subaqueous processes play a more substantial role in shoreline obliteration than is generally suggested.  相似文献   

8.
火星磁场和行星发电机理论   总被引:1,自引:1,他引:0       下载免费PDF全文
火星磁场是火星主要观测物理场之一,火星磁场研究对火星探索具有重要的科学意义.本文侧重介绍火星磁场探测所取得的主要成果,在介绍火星行星磁场起源的行星发电机理论的基础上,重点讨论了动力学机制、起始时间、停止的原因等关键性问题,并指出了研究中存在的一些问题.  相似文献   

9.
Surface heat flows are calculated from elastic lithosphere thicknesses for the heavy cratered highlands of Mars, in terms of the fraction of the surface heat flow derived from crustal heat sources. Previous heat flow estimations for Mars used linear thermal gradients, which is equivalent to ignoring the existence of heat sources within the crust. We compute surface heat flows following a methodology that relates effective thickness and curvature of an elastic plate with the strength envelope of the lithosphere, and assuming crustal heat sources homogeneously distributed in a radioactive element-rich layer 20 or 60 km thick. The obtained results show that the surface heat flow increases with the proportion of heat sources within the crust, and with the decrease of both radioactive element-rich layer thickness and surface temperature. Also, the results permit us to calculate representative temperatures for the crust base, rock strength for the upper mantle, and lower and upper limits to the crustal magnetization depth and intensity, respectively. For Terra Cimmeria, an effective elastic thickness of 12 km implies between 30% and 80% of heat sources located within the crust. In this case the uppermost mantle would be weak at the time of loading, and temperatures in the lower crust cold enough to favor unrelaxed crustal thickness variations and to permit deep Curie depths in the highlands, as suggested by the observational evidence.  相似文献   

10.
The exact response of mangrove shorelines to anticipated sea-level rise will depend upon the balance between sedimentation and sea-level change. Within the Top End of the Northern Territory of Australia there are extensive, relatively unmodified, tide-dominated mangrove forests, where tidal processes redistribute sediment. Harbours, such as Darwin Harbour, and tidal rivers, such as the South Alligator River with its associated coastal and estuarine plains, represent opposite extremes in terms of Holocene sedimentary infill, and will respond differently to sea-level rise. In Darwin Harbour, mangrove assemblages can be recognized in geomorphologically defined habitats. Similar topography within and between creeks implies morphodynamic equilibrium with tidal processes. Tidal reworking of sediment may maintain an equilibrial profile under gradually rising sea level, with resuspension of lower intertidal and subtidal muds and their redeposition within upper intertidal mangrove habitats. In contrast, the plains along the coast and tidal rivers draining into van Diemen Gulf developed during the post-glacial marine transgression, and since sea level stabilized, around 6000 years ago, coastal plains have prograded. These broad plains are presently not extensively influenced by salt water, but are often at elevations close to, or even below, modern high-tide levels. They may, therefore, revert to saline conditions particularly rapidly if the sea rises. The pattern of change may not be directly analogous to marine incursion experienced in the early Holocene, because broad plains have been able to prograde during the last 6000 years of relatively stable sea level.  相似文献   

11.
Assemblages of evaporite minerals record detailed physical and chemical characteristics of ancient surficial environments. Accordingly, newly discovered regions of saline minerals on Mars are high priority targets for exploration. The chemical divide concept of evaporite mineral formation is used successfully to predict evaporite mineralogy and brine evolution on Earth. However, basaltic weathering largely controls fluid compositions on Mars and the robust predictive capabilities of terrestrial chemical divides cannot be used to interpret Martian evaporites. Here we present a new chemical divide system that predicts evaporite assemblages identified in SNC-type meteorites, ancient evaporites discovered on Meridiani Planum by the Opportunity rover, and Mars Express OMEGA data. We suggest that a common fluid type that has been buffered to different pH levels by basaltic weathering controls the variability among Martian evaporite assemblages and that evaporite mineralogy and brine evolution is essentially established by the initial composition of the dilute evaporating fluid.  相似文献   

12.
Physical sedimentology experiments have shown that sulfuric acid solutions may have formed some surface features seen on Mars. Recent data returned from Mars show the presence of jarosite, sulfate salts, hematite, phyllosilicates, and opaline silica, all of which precipitate from some terrestrial sulfuric acid solutions. There is a plethora of geochemical, mineralogical, and sedimentological data indicative of past sulfuric acid systems on Mars, but there has never been a comprehensive study published regarding sulfuric acid as a physical sedimentological agent. In the laboratory, we ran liquids of various compositions over sediments in order to test how these liquids entrain, transport, and deposit sediments. Pure water and concentrated sulfuric acid solutions produced the same general features, such as channels, gullies, and alluvial fans. However, sulfuric acid solutions yielded some distinct sedimentary features not produced by pure water runs. These features, narrow, deeply incised channels of consistent widths, rounded discrete fans, and air bubble “craters”, are similar to some Martian landscape features. These experimental results indicate that acid solutions should be considered a possible sedimentological agent on Mars.  相似文献   

13.
Alex Ellery and David Wynn-Williams propose a new UK astrobiology project, in which a micro-rover would deploy ground-penetrating moles to burrow into the Martian subsurface.
One of the linchpins of the UK's contribution to the burgeoning field of astrobiology is the Beagle 2 mission, due to fly to Mars in 2003 on the Mars Express bus. Given that NASA has declared its intention to focus on "whole planet" geological investigation in its future Mars missions, beginning with the Mars Exploration Rovers which are due to fly in 2003/2004, the UK is well placed to consider post-Beagle 2 astrobiology-focused Mars missions to ensure its leadership in the future in astrobiology. In this paper we present such a proposal – Vanguard.  相似文献   

14.
We report new Sm-Nd, Lu-Hf, and Pb-Pb mineral and whole-rock isotope data for the basaltic shergottite Zagami, as well as Pb-Pb whole-rock isotope data for the basaltic shergottite Los Angeles, the lherzolitic shergottite Dar-al-Gani 476 (DaG 476), and the clinopyroxenite Nakhla. In agreement with previous findings, our new Sm-Nd and Lu-Hf mineral ages on the Martian meteorite Zagami are young (155 and 185 Ma, respectively). The 207Pb/206Pb-204Pb/206Pb compositions of the insoluble fractions of shergottites (Zagami, Los Angeles, and literature data for Shergotty and EETA79001) form an excellent alignment indicative of a 4.0 Ga crystallization age. The range of Pb isotope compositions observed in the leachates of these samples attests to negligible contamination of the shergottites by terrestrial Pb and argues against mixing relationships. The age of 4.048 ± 0.017 Ga (MSWD = 1.5) provided by the Pb isotope compositions of the Zagami whole-rock and residues is therefore taken to date the crystallization of this rock, which, so far, was believed to be only ∼ 180 Ma old. Based on this result, we argue that the lithosphere of Mars is extremely old and that most mineral ages were reset recently by acidic aqueous solutions percolating through the Martian surface. This interpretation is consistent with photographic interpretations of erosional features on Mars. It also relieves the constraint imposed by the presence of anomalies of 142Nd and 182W (both products of extinct radioactive nuclides) that the Martian mantle should have preserved primordial isotopic heterogeneities, thus allowing for the planet interior to be actively convecting.  相似文献   

15.
Dark aeolian deposits on Mars are thought to consist of volcanic materials due to their mineral assemblages, which are common to basalts. However, the sediment source is still debated. Basaltic dunes on Earth are promising analogs for providing further insights into the assumed basaltic sand dunes on Mars. In our study we characterize basaltic dunes from the Ka'u Desert in Hawaii using optical microscopes, electron microprobe, and spectral analyses. We compare the spectra of terrestrial and Martian dune sands to determine possible origins of the Martian dark sediments. Our results show that the terrestrial sands consist primarily of medium to coarse sand‐sized volcanic glass and rock fragments as well as olivine, pyroxene, and plagioclase minerals. Grain shapes range from angular to subrounded. The sample composition indicates that the material was derived from phreatomagmatic eruptions partially with additional proportions of rock fragments from local lava flows. Grain shape and size indicate the materials were transported by aeolian processes rather than by fluvial processes. Spectral analyses reveal an initial hydration of all terrestrial samples. A spectral mineralogical correlation between the terrestrial and Martian aeolian sands shows a similarity consistent with an origin from volcanic ash and lava. We suggest that the Martian deposits may contain similar abundances of volcanic glass, which has not yet been distinguished in Martian spectral data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
210Pb in the surface water of the North Pacific was extensively determined. The results showed that the highest concentrations of210Pb of 19 ± 3dpm/100kg were found in the northern mid-latitudes around 30°N, but longitudinal variation across the North Pacific was not observed. The mean residence time of210Pb in the surface water up to 100 m in depth is calculated to be 230 days. In the mid-latitudes of the northern hemisphere,210Pb may be transported by the prevailing westerly wind of a higher speed than 15 m/sec, likely the jet stream.  相似文献   

17.
Recent observations and missions to Mars have provided us with new insight into the past habitability of Mars and its history. At the same time they have raised many questions on the planet evolution. We show that even with the few data available we can propose a scenario for the evolution of the Martian atmosphere in the last three billion years. Our model is obtained with a back integration of the Martian atmosphere, and takes into account the effects of volcanic degassing, which constitutes an input of volatiles, and atmospheric escape into space. We focus on CO2, the predominant Martian atmospheric gas.Volcanic CO2 degassing rates are obtained for different models of numerical model crust production rates [Breuer, D., Spohn, T. 2003. Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. J. Geophys. Res. - Planets, 108, E7, 5072, Breuer, D., Spohn, T., 2006. Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field. Planet. Space Sci. 54 (2006) 153–169; Manga, M., Wenzel, M., Zaranek, S.E., 2006. Mantle Plumes and Long-lived Volcanism on Mars as Result of a Layered Mantle. American Geophysical Union Fall Meeting 2006, Abstract #P31C-0149.] and constrained on observation. By estimating the volatile contents of the lavas, the amount of volatiles released in the atmosphere is estimated for different scenarios. Both non-thermal processes (related to the solar activity) and thermal processes are studied and non-thermal processes are incorporated in our modelling of the escape [Chassefière, E., Leblanc, F., Langlais, B., 2006, The combined effects of escape and magnetic field history at Mars. Planet. Space Sci. Volume 55, Issue 3, Pages 343–357.]. We used measurements from ASPERA and Mars Express and these models to estimate the amount of lost atmosphere.An evolution of the CO2 pressure consistent with its present state is then obtained. A crustal production rate of at least 0.01 km3/year is needed for the atmosphere to be at steady state. Moreover, we show that for most of the scenarios a rapid loss of the primary (and primordial) atmosphere due to atmospheric escape is required in the first 2 Gyr in order to obtain the present-day atmosphere. When CO2 concentration in the mantle is high enough (i.e. more than 800 ppm), our results imply that present-day atmosphere would have a volcanic origin and would have been created between 1 Gyr and 2 Gyr ago even for models with low volcanic activity. If the volcanic activity and the degassing are intense enough, then the atmosphere can even be entirely secondary and as young as 1 Gyr. However, with low activity and low CO2 concentration (less than 600 ppm), the present-day atmosphere is likely to be for the major part primordial.  相似文献   

18.
Evidence for sand motion is found in repeated observations of sand dunes at three sites in the Martian tropics by the High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. An eroding outcrop of layered sediments is identified as a possible source of the sand in Pasteur crater. Ancient layered sediments in Becquerel crater are actively being carved into flutes and yardangs by the blowing sands. Dunes in an un‐named crater in Meridiani near the Mars Exploration Rover Opportunity landing site advanced as much as 50 cm over an interval of one Martian year. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The concentration of dissolved mercury in sea water has been determined in a number of areas in the northern and southern hemispheres and an attempt has been made to correlate the values found for certain areas with natural physical phenomena. The average concentrations found ranged from 11.2 ng l?1 in the southern hemisphere to 33.5 ng l?1 for the northern hemisphere; an increase suspected to be the result of dispersion of industrial pollution by jet streams. Local effects including upwelling, volcanic action, land run-off and heavy suspended matter loads are also discussed.  相似文献   

20.
First discovered in Poland, glacial curvilineations (GCLs) are enigmatic landforms comprising parallel sets of sinuous ridges and troughs of metres amplitude and around 150 m wavelength, found within kilometres‐wide valleys interpreted as being produced by meltwater flowing subglacially. Their morphological and sedimentary characteristics and association with tunnel valleys has been described for some prominent Polish examples. From these observations the existing hypothesis is that they form as a consequence of erosion by longitudinal vortices that develop in subglacial floods. Here we report, for the first time, GCLs found along the southern sector of the Laurentide Ice Sheet in three northern states of the USA. Using mapping and topographic analysis from high resolution digital elevation models we report observations on their morphological properties and landform associations. We find aspects of their context and morphology difficult to explain using the existing hypothesis. We instead suggest that these glacial curvilineations are produced by subglacial bank and slope failures that locally widen tunnel valleys, or that occur near subglacial lake shorelines. Further investigation is required to test this hypothesis and to ascertain the mechanisms of proposed mass movements, which may have occurred by rotational or translational slope failure or by creep deformation. Our preferred mechanism is that such movements occurred where subglacial water was emplaced over previously perma‐frozen ground. Under such circumstances, sediment blocks thawed by the water may then easily glide over a frozen décollement at low slope angles; analogous to subaerial active‐layer glides in permafrost environments. Permafrost spring sapping may have provided lines of weakness for slope failure. If the requirement for permafrost is found to hold, then GCLs may become an important indicator of the palaeo‐distribution of permafrost. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号