首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Anorthosites, mangerites and charnockites from metamorphosed anorthosite massifs (the Adirondacks and elsewhere) commonly contain coarsely exsolved pyroxenes with substantial amounts of exsolved orthopyroxene (in clinopyroxene) and clinopyroxene (in orthopyroxene). Electron microprobe reintegration of such pyroxenes yields compositions which indicate that pigeonite and subcalcic augite coexisted before metamorphic reequilibration. Equilibration temperatures of 1100 °±100 °C for anorthosite and 1000 °C±100 °C for mangerites and charnockites are inferred from the solvus of Ross and Huebner (1975). These temperatures constrain minimum magmatic thermal conditions and suggest that the magmas were relatively dry. Exsolution lamellae of coarse pyroxenes and small equant coexisting pyroxenes (with little or no exsolution) yield temperatures of 750 °C, consistent with equilibration during granulite facies metamorphism. Relict igneous textures and compositions persisted through the metamorphic event due to dry P(H2O) P(solid) metamorphic conditions. The reintegrated pyroxene compositions provide a window through the metamorphism and yield constraints on the pre-metamorphic igneous events.Contribution No. 340 from the Mineralogical Laboratory, Department of Geology and Mineralogy, The University of Michigan, Ann Arbor, Michigan, 48109, U.S.A.  相似文献   

2.
Summary Precambrian amphibolites and quartz-mica schists in the Saidapuram-Podalakuru area fall within the almandine-amphibolite facies of regional metamorphism. The analysed rocks represent metamorphosed basic igneous rocks. It is suggested that the quartz-muscovite-staurolite schists underwent metamorphism between 550° and 700° C at an average pressure of 7.2 kb; the quartz-muscovite (±biotite), hornblende-biotite (±garnet), and hornblende-garnet schists between 600°–700° C/7.5 kb; and the quartz-biotitekyanite schists between 650°–700° C/8 kb.
Petrologie der metamorphen Gesteine in Almandin-Amphibolit-Fazies im Gebiet von Saidapuram-Podalakuru, Distrikt Nellore, Andhra Pradesh, Indien
Zusammenfassung Präkambrische Amphibolite und Quarz-Glimmer-Schiefer im Gebiet von Saidapuram-Podalakuru gehören der Almandin-Amphibolit-Fazies an. Die analysierten Gesteine stellen metamorphe basische Erstarrungsgesteine dar. Die Quarz-Muskovit-Staurolith-Schiefer wurden bei 550°–700°C und einem durchschnittlichen Druck von 7,2 kb metamorph, die Quarz-Muskovit-(±Biotit-), die Hornblende-Biotit- (±Granat-) und die Hornblende-Granat-Schiefer bei 600°–700° C/7,5 kb, die Quarz-Cyanit-Schiefer bei 650°–700° C/8 kb.


With 6 Figures  相似文献   

3.
Thermometry of regionally metamorphosed granulites of the Adirondack Highlands has been undertaken using feldspar and iron-titanium-oxide equilibria. Electron microprobe analyses of 20 coexisting oligoclase (An18–30) and microcline perthite (Or57–87) pairs from charnockites and granitic gneisses give KD[Na/(Na+Ca+K]plag/[Na/(Na+Ca+K)]or = 2–3 yielding temperatures of 650 ° to 750 ° C in comparison to Seck's (1971) experimental and Stormer's (1975) calculated temperatures for inferred pressures of 8 kilobars. Microprobe analyses of 10 coexisting titaniferous magnetite (ulvöspinelss 16–45) and ilmenite (hematitess 4.7–6.5) pairs from the Marcy massif anorthosite and related gabbros give temperatures of 620 ° to 800 ° C in comparison to Buddington and Lindsley's (1964) experimental data. Oxygen fugacities buffered by this assemblage range between 10–20 and 10–16 and always lie within 10+1 of the f buffered by fayalite-magnetite-quartz. Exsolved albite in alkali feldspar and ilmenite (oxidized ulvöspinel lamellae) must be reintegrated to infer metamorphic temperatures. Both thermometers give internally consistent, reproducible and geologically reasonable results. The inferred 750 ° and 700 ° C isotherms wrap around the anorthosite massif in roughly concentric circles. Maximum metamorphic temperatures (790 ± 50 ° C) occur between Saranac Lake and Tupper Lake, New York.Contribution No. 336 from the Mineralogical Laboratory, Department of Geology and Mineralogy, The University of Michigan, Ann Arbor, Michigan, 48109. U.S.A.  相似文献   

4.
The Archaean Karnataka craton of southern India contains Eastern and Western crustal blocks (separated by a major thurst) in which Sargur Schists occur as lenses within tonalitic Peninsular Gneisses. The Schist complex comprises pelites, quartzitic psammites, carbonates and calc-silicates, iron formations, and basic rocks, and thus provides many mineral assemblages ideal for the calculation of PT conditions. With their gneisses the Sargur rocks are unconformably overlain by the Dharwar greenstone belts, and are generally thought to be older than 3,000 my.In the Western block maximum metamorphic conditions are given by meta-basic rocks as 790±50° C and 13±2 kb, but adjacent meta-sediments give a pressure of 9 kb, suggesting that the differences in P and T recorded in this block mark a polychronic metamorphic geotherm related to the exhumation of the terrain by uplift and erosion. In the eastern block maximum temperatures were in the range 750°-850° C and maximum pressures were 7 kb. The rocks of the two blocks were sampled 100 km apart, and thus there was probably a regional pressure difference between the two blocks caused by differentiated crustal thickening prior to or during metamorphism.The shape of the geotherm from the Western block shows near-isothermal decompression over 20 km. Our data suggest that during Sargur metamorphism maximum crustal thicknesses were in excess of 45 km and that there was a minimum difference of 20 km in crustal thickness between the Eastern and Western blocks.  相似文献   

5.
Two calc-silicate xenoliths in the Upper Zone of the Bushveld complex contain mineral assemblages which permit delineation of the metamorphic path followed after incorporation of the xenoliths into the magma. Peak metamorphism in these xenoliths occurred at T=1100–1200°C and P <1.5 kbar. Retrograde metamorphism, probably coinciding with the late magmatic stage, is characterized by the breakdown of akermanite to monticellite and wollastonite at 700°C and the growth of vesuvianite from melilite. The latter implies that water-rich fluids (XCO2 <0.2) were present and probably circulating through the cooling magmatic pile. In contrast, calc-silicate xenoliths within the lower zones of the Bushveld complex, namely in the Marginal and Critical Zones, also contain melilite, monticellite and additional periclase with only rare development of vesuvianite. This suggests that the Upper Zone cumulate pile was much ‘wetter’ in the late-magmatic stage than the earlier-formed Critical and Marginal Zone cumulate piles.  相似文献   

6.
A calcite-marble containing gem-quality ruby is exposed in the Hunza Valley, northwestern part of the Karakoram mountains, Pakistan zone of Kashmir. The marble forms concordant intercalations within sillimanite- and garnet-bearing biotite-plagioclase gneisses and mica schists. The metamorphic sequence is cut by discordant aplite and pegmatite dikes. The following mineral assemblages are recognized in the marble:1) Calcite+corundum+phlogopite±margarite±sheridanite±Al-rich pargasite±anorthite (An 96.7),2) calcite+spinel±corundum+phlogopite+sheridanite.Microprobe analyses are given for the essential minerals including corundum (ruby) and three different colour varieties of spinel. On the basis of recent experimental data, especially in the system CaO - Al2O3 - SiO2 - H2O -CO2 (and related subsystems), we assume that, during the regional metamorphism, temperatures of about 600 – 620°C and a water vapour pressure of about 6 kb were realized in part of the Hunza area. The gas phase must have contained roughly 20 mole-% of CO2. Thus the total fluid pressure may have reached about 7 kb. Presumably, temperatures increased in northwest direction, perhaps up to about 700°C. The estimated P-T conditions are consistent with a geothermal gradient of about 25°C/km.  相似文献   

7.
Metamorphism in the Adirondacks. I. Petrology, Pressure and Temperature   总被引:3,自引:2,他引:3  
Grenville Supergroup sediments and suites of pre- and syn-tectonicigneous rocks have been metamorphosed to the upper amphiboliteand granulite facies in the Adirondacks of northern New Yorkduring the Grenville orogeny about one billion years ago. Magnetite-ilmenite, alkali feldspar-plagioclase, calcite-dolomiteand garnet-clinopyroxene thermometry indicate that metamorphictemperatures (T) increase from about 650 ?C in the area westand northwest of Gouverneur to 700–750 ?C near Coltonand along the Lowlands-Highlands boundary to 750–800 ?Cin areas within and around the Marcy anorthosite massif. Thepresence of grossular-rich garnet + quartz without wollastonite+ plagioclase in calc-silicate rocks and the apparent absenceof metamorphic ferropigeonite in charnockites restrict maximummetamorphic T to less than 800–850 ?C. Metamorphic pressures (P), determined from coexisting pyrite-pyrrhotite-sphalerite,garnet-rutile-sillimanite-ilmenite-quartz, fayalite-quartz-ferrosilite,fayalite-anorthite-garnet, ferrosilite-anorthite-garnet-quartz,kyanite-sillimanite, anorthite-garnet-sillimanite-quartz andthe stability of akermanite, are 6?5–7?0 kb near Gouverneurand increase to 7?5–8?0 kb in the central Adirondack Highlands. The above P-T data deduced from diverse mineralogical/chemicalsystems are interpreted as peak or near-peak conditions forAdirondack metamorphism. The compositions of thin retrograderims on garnets indicate a post-peak-metamorphic P-T path forthe Adirondacks with appreciable cooling (200–300?) beforedecompression. Peak and retrograde P-T conditions inferred forthe Adirondacks are similar to numerous other granulite terranessuggesting that similar tectonothermal events are necessaryfor the formation of many granulite belts.  相似文献   

8.
The stability and partial melting of synthetic pargasite in the presence of enstatitic orthopyroxene (opx), forsterite, diopsidic clinopyroxene (cpx), plagioclase (An50), and water has been studied in the range of 0.4–6.0 kb and 750–1000°C in the system Na2O-CaO-MgO-Al2O3-SiO2-H2O with a fixed bulk composition of pargasite+5 opx. The addition of orthopyroxene effectively reduces the stability field of pargasite by approximately 200°C at 1 kb. The invariant point involving pargasite coexisting with water-saturated liquid and anhydrous phase shifts from about 0.85 kb and 1025°C to 2.5±0.5 kb and 925±25°C with the addition of opx. Based on the solidus mineral assemblage and direct chemical analysis of quenched glass, the vapor-saturated liquid has a composition close to that of intermediate plagioclase. A layered silicate, interpreted to be Na-phlogopite, has an upper-thermal stability that nearly equals that of pargasite in the field of partial melting and coexists with liquid, pargasite, cpx, and forsterite at 6 kb, 1000°C. These results support the hypothesis that mantle metasomatism could involve formation of pargasitic amphibole from a silicate melt at depths as shallow as 8–10 km.  相似文献   

9.
The sub-solidus fields of crystallization of a spectrum of synthetic aluminous basic compositions (high-alumina basalt, anorthite-enriched high-alumina basalt, kyanite eclogite, grosspydite and gabbroic anorthosite) have been investigated at pressures of up to 36 kb. At low pressures the assemblages are characterized by abundant plagioclase, clinopyroxene and possibly minor olivine and orthopyroxene. These correspond to natural gabbroic and pyroxene granulite assemblages. As pressure is increased garnet appears and increases gradually in amount at the expense of other ferromagnesian minerals and plagioclase, until finally at pressures of >23 kb at 1,100° C, plagioclase disappears and high pressure clinopyroxene+garnet+kyanite±quartz assemblages equivalent to eclogite are obtained. In the eclogite stability field, with further rise in pressure, the ratio ga/cpx and the grossular content of the garnet increase.In the high-alumina basalt composition the transitional garnet granulite assemblage (clinopyroxene+plagioclase+garnet±quartz) is spread over a pressure interval of 11 kb at 1,100° C. This is a greater interval than observed for other basalt compositions and is important in considering the hypothesis that the Mohorovicic Discontinuity is a phase change from basalt to eclogite. It indicates that the change in V p would be spread over a significant depth range, and no sharp seismic velocity discontinuity could result.The first experimental synthesis of kyanite eclogite from both high-alumina basalt and kyanite eclogite compositions has been obtained, as well as synthesis of unusual grossular-clinopyroxene-kyanite assemblages (grosspydite) from grosspydite and gabbroic anorthosite compositions. The pressures needed to synthesize these assemblages are somewhat greater than the pressures needed to synthesize eclogite from basic compositions of lower alumina content at the same temperature. Experimental confirmation of the observation that there is a direct relation between Gross/Alm + Py ratio of garnet and the Jd/Di ratio of co-existing pyroxene in grosspydite and kyanite eclogite assemblages found in kimberlite pipes has also been obtained.  相似文献   

10.
The Luziânia gold deposits in southern Goiás lie within the Late Proterozoic Brasília fold belt. The rocks that host the gold mineralization are a monotonous series of hydrothermally altered phyllites that have been subject to low grade regional metamorphism. The major controls on the gold mineralization are northeast trending and gently northwest dipping ductile-brittle, dextral-reverse shear zones associated with regional thin-skinned thrusting of the Canastra Group. From a preliminary fluid inclusion study it is deduced that low salinity, 7 eq. wt% NaCl, moderately dense, H2O-CO2 ± CH4 ore fluids deposited gold at temperatures of 300 ± 75°C and pressures of 1.5 to 3 kb in the filling stage of the vein formation. Post-filling stage gold deposition probably occured by mixing of fluids at higher crustal levels (1.5–2 kb). During thrusting, prograde metamorphism released pore water which penetrated along thrust planes that acted as high permeability zones for the ponding and release, by hydraulic fracturing, of overpressured fluids. Later in the tectonic evolution and at shallower crustal levels, there was likely an incursion of near suface water into the fault zone.  相似文献   

11.
Scheelite-bearing calc-silicate gneisses (CSG) oceur in the Montagne Noire within a series of dominant micaschists. Detailed petrographical and mineralogical studies reveal three successive stages of metamorphism and hydrothermal alteration: (1) stage 1, a regional metamorphism at 550°C and 4.5 kb where no mineralization is formed; (2) stage 2a, a hydrothermal alteration at 500 to 450°C and 4 to 3 kb which is characterized by an intense sericitization of feldpars and deposition of Sn in Sn-bearing cale-silicates; and (3) stage 2b, a hydrothermal alteration characterized by the crystallization of idocrasegrossular in CSG with concomittant precipitation of scheelite. Tungsten was transported through the micaschist environment and deposited as scheelite only in the CSG of stage 2b at relatively low pressures. To characterize the mechanism of tungsten transport, tungsten speciation at high P-T and scheelite solubility in aqueous solations buffered by the CSG and by the micaschists assemblages were calculated. It was found that H2WO 0 4 , HWO - 4 and WO 2- 4 are the dominant tungsten aqueous species in H2O–NaCl (one molal) solutions at 500°C and 2–4 kb. Calculations also indicate that scheelite deposition is controlled by decreasing pressure and increasing activity of aqueous calcium in this system. This is consistent with the petrographical and mineralogical observations. The consequences of the presence of volatiles (N2, CH4, CO2) in the regional fluids were examined by determining the effect of N2 on tungsten speciation and scheelite solubility. The addition of N2 (up to 10 mol%) to the mineralizing fluids results in a marked increase in H2WO 0 4 and HWO - 4 concentrations relative to WO 2- 4 and in a large decrease of scheelite solubility. This mechanism favours scheelite precipitation and accounts for the commonly observed association of W (and Sn) deposits with graphitic series generating mixed volatiles fluids.  相似文献   

12.
Aluminous pelitic rocks of the Late Precambrian Horsethief Creek Group of southeastern British Columbia contain the assemblage chloritoidmuscovite-paragonite-quartz-chlorite (biotite zone). Additional members of the assemblage may include graphite, Fe-Mg carbonate, rutile, ilmenite and pyrite. No albite was detected. Lower grade pelitic rocks (chlorite zone) contain muscovite-chlorite and rare paragonite.Chloritoids from carbonate-free assemblages show a narrow range of composition (85±5 mol % Fe-chtd) and most porphyroblasts are zoned with higher Mn in cores and higher Mg in rims. For eight chloritoid-chlorite pairs, K D = (Mg/Fe chtd/Mg/Fe chl) = 0.188±0.0234.Correlation of these mineral assemblages with experimental and computed phase equilibria and oxygen isotope temperatures suggest a minimum pressure near 4.5 Kbar, a minimum temperature near 335 ° C and an upper limit on temperature near 460 ° C. Variation in X CO 2 content of fluids attending metamorphism is inferred from the alternate appearance of either Fe-Mg carbonate + rutile or ilmenite-bearing assemblages. The assemblage paragonite-chloritoid-quartz-Fe-Mg carbonate-rutile is inferred to be stable at a T near 360 ° C, an X CO 2 near 0.9 and P near 5 Kbar.  相似文献   

13.
The high-pressure schist terranes of New Caledonia and Sanbagawa were developed along the oceanic sides of sialic forelands by tectonic burial metamorphism. The parent rocks were chemically similar, as volcanic-sedimentary trough or trench sequences, and metamorphic temperatures in both belts were 250° to 600° C. From phase equilibria curves, total pressures were higher for New Caledonia (6–15 kb) than for Sanbagawa (5–11 kb) and the estimated thermal gradients were 7–10° C/km and 15° C/km respectively.PT paths identify the higher pressure in New Caledonia (P differences 2 kb at 300° C and 4 kb at 550° C) with consequent contrast in progressive regional metamorphic zonation for pelites in the two areas: lawsonite-epidote-omphacite (New Caledonia) and chlorite-garnet-biotite (Sanbagawa). In New Caledonia the Na-amphibole is dominantly glaucophane and Na-pyroxenes associated with quartz are Jadeite (Jd95–100) and omphacite; in Sanbagawa the amphibole is crossite or riebeckite and the pyroxene is omphacite (Jd50). For both areas, garnet rims show increase in pyrope content with advancing grade, but Sanbagawa garnets are richer in almandine. Progressive assemblages within the two belts can be equated by such reactions as:New Caledonia Sanbagawa glaucophane+paragonite+H2Oalbite+chlorite+quartz glaucophane+epidote+H2Oalbite+chlorite+actinolite and the lower pressure Japanese associations appear as retrogressive phases in the New Caledonia epidote and omphacite zones.The contrasts inPT gradient, regional zonation and mineralogy are believed due to differences in the tectonic control of metamorphic burial: for New Caledonia, rapid obduction of an upper sialic plate over an inert oceanic plate and sedimentary trough; and for Sanbagawa, slower subduction of trench sediments beneath a relatively immobile upper plate.  相似文献   

14.
The stability of merwinite (Mw) and its equivalent assemblages, akermanite (Ak)+calcite (Cc), diopside (Di)+calcite, and wollastonite (Wo)+monticellite (Mc)+calcite was determined at T=500–900° C and P f=0.5–2.0 kbar under H2O–CO2 fluid conditions with X CO 2=0.5, 0.1, 0.05, and 0.02. Merwinite is stable at P f=0.5 kbar with T>700° C and X CO 2<0.1. At P f=2.0 kbar, the assemblage Di+Cc replaces merwinite at all T and X CO 2 conditions. At intermediate P f=1 kbar, the assemblage Ak+Cc is stable above 707° C and Wo+Mc+Cc is stable below 707° C. The univariant curve for the reaction Di+Cc=Wo+Mc+CO2 is almost parallel to the T axis and shifts to low P f with increasing X CO 2, with the assemblage Di+Cc on the high-P f side. The implications of the experimental results in regard to contact metamorphism of limestone are discussed using the aureole at Crestmore, California as an example.  相似文献   

15.
High pressure phase transformations for all the mineral phases along the joins Mg2SiO4-Ca2-SiO4 and MgO-CaSiO3 in the system MgO-CaO-SiO2 were investigated in the pressure range between 100 and 300 kbar at about 1,000 °C, by means of the technique involving a diamond-anvil press coupled with laser heating. In addition to the four end-members, there are three stable intermediate mineral components in these two joins. Phase behaviour of all the end-member components at high pressure have been reported earlier and are reviewed here. Results of this study reveal that the three intermediate components are all unstable relative to the end-members at pressures greater than 200 kbar. Ultimately, monticellite (CaMgSiO4) decomposes into CaSiO3 (perovskite-type)+MgO; merwinite (Ca3MgSi2O8) decomposes into Ca2SiO4(K2NiF4-type)+CaSiO3 (perovskite-type)+MgO; and akermanite (Ca2MgSi2O7) decomposes into CaSiO3 (perovskite-type)+MgO. Note that the decomposition reactions of all phases studied here result in the formation of MgO. Intermediate Ca-Mg silicates transform to pure Ca-silicates plus MgO, while pure Mg2SiO4 transforms to MgSiO3+MgO.  相似文献   

16.
Enthalpies of solution of synthetic enstatite (Mg2Si2O6), forsterite (Mg2SiO4), akermanite (Ca2MgSi2O7), monticellite (CaMgSiO4), and merwinite (Ca3MgSi2O8) and their component oxides were determined in eutectic (Li, Na)BO2 at 1073 K. Resulting enthalpies of formation at 1073 are enstatite: ?8.10 ± 0.42 kcal; forsterite: ?14.23 ± 0.45 kcal; akermanite: ?42.60 ± 0.39 kcal; monticellite: ?25.05 ± 0.41 kcal; and merwinite: ?51.10 ± 0.49 kcal. The value for the synthetic monticellite of composition Mo.965Fo.035 was corrected slightly for non-stoichiometry based on experimental monticellite-forsterite phase equilibrium relations.The enthalpies of formation of enstatite and forsterite are somewhat less negative than yielded by several other solution calorimetric studies but are in good agreement with the recent Pb2B2O5 solution calorimetry of Kiselevaet al. (1979), and are in good agreement with values to be derived from reliable phase equilibrium data in the system MgO-Al2O3-SiO2. The enthalpies of formation of akermanite, monticellite and merwinite are all much less negative than values tabulated by robieet al. (1978) and helgesonet al. (1978) but are shown to be compatible with reliable phase equilibrium data for the system CaO-MgO-SiO2, whereas the tabulated values are not. Several methods of analysis yield an entropy of monticellite at 1000 K of 69.9 ± 0.2 cal/K.  相似文献   

17.
The hydration of peridotites modelled by the system H2O-CaO-MgO-Al2O3-SiO2 has been treated theoretically after the method of Schreinemakers, and has been investigated experimentally in the temperature range 700°–900° C and in the pressure range of 8–14 kbar. In the presence of excess forsterite and water, the garnet- to spinel-peridotite transition boundary intersects the chlorite dehydration boundary at an invariant point situated at 865±5° C and 15.2±0.3 kbar. At lower pressures, a model spinel lherzolite hydrates to both chlorite- and amphibole-bearing assemblages at an invariant point located at 825±10° C and 9.3±0.5 kbar. At even lower pressures the spinel-to plagioclase-peridotite transition boundary intersects the dehydration curve for amphibole+forsterite at an invariant point estimated to lie at 855±10° C and 6.5±0.5 kbar.Both chlorite and amphibole were characterized along their respective dehydration curves. Chlorite was found to shift continuously from clinochlore, with increasing temperature, to more aluminous compositions. Amphibole was found to be tremolitic with a maximmum of 6 wt.% Al2O3.The experimentally determined curves in this study were combined with the determined or estimated stability curves for hydrous melting, plagioclase, talc, anthophyllite, and antigorite to obtain a petrogenetic grid applicable to peridotites, modelled by the system H2O-CaO-MgO-Al2O3-SiO2, that covers a wide range of geological conditions. Direct applications of this grid, although quite limited, can be made for ultramafic assemblages that have been extensively re-equilibrated at greenschist to amphibolite facies metamorphism and for some highgrade ultramafic assemblages that display clear signs of retrogressive metamorphism.  相似文献   

18.
Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica (Ellis et al. 1980) were metamorphosed at 8–10 kb pressure, 900°-980° C under very low conditions. Retrograde mineral coronas in these rocks record subsequent cooling from the peak of metamorphism at approximately constant pressure. The inferredP-T cooling-uplift path differs markedly from that evident in many other granulite terrains.Present garnet-cordierite geothermometers imply equilibration at temperatures of 500°–600° C, well within the kyanite stability field. These temperatures are inconsistent with the presence of sillimanite and the high temperature stability fields of the actual mineral assemblages. Examination of available garnetcordierite experimental data suggests a possible large increase in the Gt-Cd Fe-MgK D with increasingX Mg of the cordierite (and pressure). New experiments designed to test this possibility were inconclusive because of the failure to attain satisfactory equilibrium, even at 1,000° C.Possible reasons for the exposure of these unusual granulites in Enderby Land are considered. Although they formed at much higher temperatures than other granulites exposed on a regional scale, suchP-T conditions are not exceptional for the base of the crust. Instead, the unusual isobaric cooling to low temperatures followed by uplift to the surface which these granulites are inferred to have undergone is considered of importance. The unusual tectonic conditions are reflected in the disctinctive type of mineral reaction coronas found in these rocks. The common occurrence elsewhere of mineral reaction during uplift, and the role of anatexis during uplift in obliterating such high temperature assemblages elsewhere in the world are considered.  相似文献   

19.
Feldspathic hornblende granulites from Doubtful Sound, New Zealand with the assemblage plagioclase+hornblende+clinopyroxene+orthopy-roxene +oxide+apatite are criss-crossed by a network of garnetiferous anorthosite veins and pegmatites. The feldspathic gneiss in contact with anorthosite has a reaction zone containing the assemblage plagioclase +garnet+clinopyroxene+quartz+rutile+apatite. The garnet forms distinctive coronas around clinopyroxene. The origin of these rocks is discussed in the light of mineral and whole rock chemical analyses and published experimental work.It is thought that under conditions leading up to 750 °C, 8 kb load pressure and 5 kb H2O pressure, partial melting occured in feldspathic hornblende granulites. The melt migrated into extensional fractures and eventually crystallised as anorthosite pegmatites and veins. The gneisses adjacent to the pegmatites from which the melt was extracted changed composition slightly, by the loss of H2O and Na2O, so that plagioclase reacted simultaneously with hornblende, orthopyroxene, and oxide to form garnet, clinopyroxene, quartz and rutile.  相似文献   

20.
Phase relations and mineral assemblages in the Ag-Bi-Pb-S system   总被引:1,自引:0,他引:1  
Phase relations within the Ag-Bi-S, Bi-Pb-S, and Ag-Pb-S systems have been determined in evacuated silica tube experiments. Integration of experimental data from these systems has permitted examination and extrapolation of phase relations within the Ag-Bi-Pb-S quaternary system. — In the Ag-Bi-S system liquid immiscibility fields exist in the metal-rich portion above 597±3°C and in the sulfur-rich portion above 563±3°C. Ternary phases present correspond to matildite (AgBiS2) and pavonite (AgBi3S5). Throughout the temperature range 802±2°C to 343±2°C the assemblage argentite (Ag2S) + bismuth-rich liquid is stable; below 343°C this assemblage is replaced by the assemblage silver + matildite. — Five ternary phases are stable on the PbS-Bi2S3 join above 400°C — phase II (18 mol-% Bi2S3), phase III (27 mol-% Bi2S3), cosalite (33.3 mol-% Bi2S3), phase IV (51 mol-% Bi2S3), and phase V (65 mol-% Bi2S3). Phase IV corresponds to the mineral galenobismutite and is stable below 750±3°C. Phases II, III, and V do not occur as minerals, but typical lamellar and myrmekitic textures commonly observed among the Pb-Bi sulfosalts and galena evidence their previous existence in ores. Phase II and III are stable from 829±6°C and 816±6°C, respectively, to below 200°C; Phase V, stable only between 730±5°C and 680±5°C in the pure Bi-Pb-S system is stabilized to 625±5°C by the presence of 2% Ag2S. Experiments conducted with natural cosalites suggest that this phase is stable only below 425±25°C in the presence of vapor. — In the Ag-Pb-S system the silver-galena assemblage is stable below 784±2°C, whereas the argentite + galena mineral pair is stable below 605±5°C. — Solid solution between matildite and galena is complete above 215±15°C; below this temperature characteristic Widmanstätten structure-like textures are formed through exsolution. Schematic phase relations within the quaternary system are presented at 1050°C, at 400°C, and at low temperature.
Zusammenfassung Die Phasenbeziehungen in den Systemen Ag-Bi-S, Bi-Pb-S und Ag-Pb-S wurden durch Versuche in evakuierten Quarzglasröhrchen bestimmt. Die Auswertung aller experimentellen Daten gestattete eine Extrapolation der Phasenbeziehungen im quaternären System Ag-Bi-Pb-S. — Im System Ag-Bi-S besteht ein Zwei-Schemlzenfeld im metallreichen Teil über 597±3°C und im schwefelreichen Teil über 563±3°C. Die ternären Phasen entsprechen den Mineralien Schapbachit (AgBiS2) und Pavonit (AgBi3S5). Zwischen 802±2°C und 343±2°C ist die Paragenese Silberglanz (Ag2S) + Bi-reiche Schmelze stabil; unterhalb 343°C wird sie jedoch ersetzt durch die Paragenese Silber + Schapbachit. — Fünf ternäre Phasen sind stabil im Schnitt PbS-Bi2S3 oberhalb von 400°C: Phase II (18 Mol-% Bi2S3), Phase III (27 Mol-% Bi2S3), Cosalite (33.3 Mol-% Bi2S3), Phase IV (51 Mol-% Bi2S3) und Phase V (65 Mol-% Bi2S3). Phase IV entspricht dem Mineral Galenobismutit und ist stabil unterhalb 750±3°C. Die Phasen II, III und V kommen zwar nicht in der Natur vor, jedoch weisen typische myrmekitische und lamellare Gefüge, die man häufig in Pb-Bi-Sulfosalzen und deren Verwachsungen mit Bleiglanz beobachtet, auf die ehemalige Existenz solcher Phasen in diesen Erzen hin. Die Phasen II und III sind stabil von 829±6°C bzw. 816±6°C bis unter 200°C. Die Phase V, die im reinen System Bi-Pb-S zwischen 730±5°C und 680±5°C auftritt, wird in Gegenwart von 2% Ag2S stabilisiert bis herab zu 625±5°C. Versuche mit natürlichen Cosaliten lassen darauf schließen, daß diese Phase nur unterhalb 425±25°C in Gegenwart einer Gasphase stabil ist. — Im System Ag-Pb-S ist die Paragenese Silber-Bleiglanz unterhalb von 784±2°C stabil, die Paragenese Silberglanz-Bleiglanz dagegen unterhalb 605±5°C. — Die Mischkristallreihe von Schapbachit und Bleiglanz ist vollständig oberhalb 215±15°C; unterhalb dieser Temperatur entstehen charakteristische Entmischungsgefüge ähnlich den Widmannstättenschen Figuren. Für das quaternäre System werden schematische Phasenbeziehungen für 1050°C, 400°C und eine noch tiefere Temperatur gegeben.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号