共查询到20条相似文献,搜索用时 0 毫秒
1.
Baselyan L. L. Goncharov N. Yu. Zaitsev V. V. Zinichev V. A. Rapoport V. O. Tsybko Ya. G. 《Solar physics》1974,39(1):223-231
The paper deals with the observations of the fine structure of type III bursts in the 12.5–25 MHz band using the UTR-2 (IRE AN UkSSR, Kharkov) radio telescope. A fine structure arises in the form of chains of short-lived narrow-band bursts. The chains have a frequency drift analogous to type III bursts. Observations allow two different-type chains to be singled out. Ordinary stria-bursts, split-pairs and triplets belong to the first type chains. They may also involve the echo-type phenomena The second type chains (IIId) involve diffusive stria-bursts, diffusive split-pairs and triplets. The analysis of a harmonic structure of chains incidates that the first type chains are generated at the frequencies close to the local plasma electron frequency
pe
. The second type chains and, consequently, diffusive stria-bursts correspond to the second harmonic of the plasma frequency 2
pe
. Experimental data evidence that the type III bursts with a fine structure are excited by the faster particle streams than the ordinary type III bursts with a diffusive character both of the fundamental and the second harmonic. 相似文献
2.
The time structure of solar radio decametre Type III bursts occurring during the periods of enhanced emission is investigated.
It is found that the time profiles can take a variety of forms of which three distinct types are the following: (1) profiles
where the intensity rises to a small but steady value before the onset of the main burst, (2) the intensity of the main burst
reduces to a finite level and remains steady before it decays to the base level, (3) the steady state is present during the
rise as well as the decay phase of the main burst.
It is shown that these profiles are not due to random superposition of bursts with varying amplitudes. They are also probably
not manifestations of fundamental-harmonic pairs. Some of the observed time profiles can be due to superposition ot bursts
caused by ordered electron beams ejected with a constant time delay at the base of the corona. 相似文献
3.
A special fine structure (slowly drifting chains of narrowband fiber bursts), firstly observed during the solar type-IV radio burst on April 24, 1985, is interpreted as the radio signature of whistler waves periodically excited by a switch-on/switch-off process of a loss-cone instability in a localized wave packet of the fast magnetoacoustic mode. 相似文献
4.
One recent discovery that provides a strong constraint on the mechanisms of astrophysical activities is the correlation between the flux and the root-mean-squared (rms) variability of X-ray emission. In this work we study the flux-rms relation of solar radio bursts. Four flares observed by the Solar Radio Broadband Spectrometer (SRBS) of China are analyzed. In these flares, fine structures (FSs) emerge at least in one frequency band of SRBS. We find that the flux-rms relation consists of two components. One relates to the non-FS emission and the other to the FS emission. The flux-rms relationship for the non-FS part of the radio bursts is clearly different from that for the FS part. The former shows a curve-like behavior, while the latter shows a dramatic variation. We propose a model to describe the flux-rms relation of the non-FS part. Our results imply that the non-FS part emission could be triggered by some multiplicative processes. On the contrary, multiplicative mechanisms should be excluded from the explanations of FSs in the radio bursts. 相似文献
5.
Solar noise storms (NS) are analyzed by an algorithm which separates a random signal into pulses. The burst duration distribution is shown to be inversely proportional to the squared duration of bursts. The distribution ordinates are proportional to the average pulse repetition frequency, and the distribution maximum corresponds to the limiting pulse duration equal to 0.4–0.6 s. The aggregate lifetime of all short-lasting bursts is approximately equal to the aggregate lifetime of bursts of any other duration. The energy of short-lasting bursts with a duration of 0.2–0.4 s is five times smaller than the energy of longer bursts, and it constitutes only 2–5 percent of the energy of the NS burst component. The power of bursts increases as their duration changes from 0.2 to 1.2 s until it reaches some limit at a duration of 1.2–1.4 s. The power of longer bursts remains almost unchanged up to the end of the investigated duration interval (up to durations of 300 s). Solar burst chains can be some superposition of short-lasting bursts on one longer burst. Thus, the burst energy measurements do not support the widespread point of view that solar noise storms consist of short-lasting type I bursts. 相似文献
6.
G. M. Simnett 《Solar physics》1986,104(1):67-91
The relationship between solar radio emissions and transient interplanetary phenomena is reviewed. It is believed that the most significant advance in recent years has come from coordinated studies of coronal mass ejections and moving type IV bursts, where the evidence appears to favour the Langmuir wave hypothesis as the emission mechanism. Type II bursts are not generally a signature of the main energetic particle acceleration in flares. They do, however, occasionally propagate to 1 AU, and beyond, where they are normally accompanied by protons in the 20 MeV region. Apart from the impulsive microwave burst, there is no reliable radio signature associated with energetic particle acceleration in flares, although many phenomena have high correlations with radio emissions. The exceptions suggest that such correlations may be incidental. Therefore, it is concluded that attention should also be given to events with a positive absence of radio emission in order to make progress in understanding solar processes.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985. 相似文献
7.
B. L. Gotwols 《Solar physics》1973,33(2):475-482
Several models for pulsating type IV radio bursts are presented based on the assumption that the pulsations are the result of fluctuations in the synchrotron emission due to small variations in the magnetic field of the source. It is shown that a source that is optically thick at low frequencies due to synchrotron self-absorption exhibits pulsations that occur in two bands situated on either side of the spectral peak. The pulsations in the two bands are 180° out of phase and the band of pulsations at the higher frequencies is the more intense. In contrast, a synchrotron source that is optically thin at all frequencies and whose low frequency emission is suppressed due to the Razin effect develops only a single band of pulsations around the frequency of maximum emission. However, the flux density associated with the later model would be too small to explain the more intense pulsations that have been observed unless the source area is considerably larger than presently seems reasonable. 相似文献
8.
We compare the millimeter, microwave, and soft X-ray emission from a number of solar flares in order to determine the properties of the high-frequency radio emission of flares. The millimeter observations use a sensitive interferometer at 86 GHz which offers much better sensitivity and spatial resolution than most previous high-frequency observations. We find a number of important results for these flares: (i) the 86 GHz emission onset appears often to be delayed with respect to the microwave onset; (ii) even in large flares the millimeter-wavelength emission can arise in sources of only a few arc sec dimension; (iii) the millimeter emission in the impulsive phase does not correlate with the soft X-ray emission, and thus is unlikely to contain any significant thermal bremsstrahlung component; and (iv) the electron energy distributions implied by the millimeter observations are much flatter (spectral indices of 2.5 to 3.6) than is usual for microwave or hard X-ray observations. 相似文献
9.
Peak flux spectra of solar radio bursts in a wide frequency band have been statistically determined for different morphological types of bursts, for various ranges of magnetic field of the burst-associated sunspots and also for the bursts occurring in the central and limb region of the solar disk. Important results obtained are: (i) The generalised spectra have two peaks, one near to meter-wave and the other in the centimeter-wave region, the former peak being more pronounced than the latter; (ii) identical spectral shape is observed for the great and impulsive types and also for GRF and PBI types of bursts; (iii) the radio emission intensity is relatively higher in the central part than that in the limb part of the solar disk for frequencies 1–10 GHz, while the reverse is true for frequencies 0.245–1 GHz and 10–35 GHz; (iv) the optical depth of the absorbing layer above the source of a burst is found to be the same for meter to centimeter-wavelength bursts, implying that the radio sources in this wide band have uniform characteristics with respect to optical thickness; (v) in case of simultaneous emission in the dekameter to X-ray band, most of the decimetric bursts are seen to be very prompt and coincident with the associated flare's starting time. The interpretations of the obtained spectra give an insight into the possible generation mechanisms, pointing to the location of the source region in the solar atmosphere. 相似文献
10.
Ya. G. Tsybko 《Solar physics》1984,92(1-2):299-315
Type-IIIb, IIId, and III solar decametric radio bursts, being distinguished by the typical negative drift rate of their dynamic spectra, are compared. Observational data were obtained with a UTR-2 antenna during the period 1973–1982. During the analysis of the bursts of all these spectral varieties, the frequency drift time (drift delay) was measured in the ranges 25 to 12.5 MHz, 25 to 20 MHz, and 12.5 to 10 MHz. Durations of type-III bursts were determined at the harmonically-related frequencies of 25 and 12.5 MHz; radio source locations were also used.It is shown that these decametric bursts are distinctly divided into two groups: (1)type-IIIb chains of simple stria bursts and also normal type-III storm bursts observed at central regions constitute a group of events with a fast drifting spectrum; (2) type-III bursts from type-IIIb-III pairs and the limb variant of normal III bursts, as well as peculiar type-IIId chains of diffuse striae and related chains with an echo component, constitute a second group of events with comparatively slow drift rates.The first group of the phenomena is associated with the fundamental F frequency and the second one, with the harmonic H of the coronal plasma frequency. The results of the present investigation agree well with earlier conclusions on the harmonic origin of decametric chains and type-III bursts. Measurements of drift delays in narrow frequency ranges, an octave apart, as well as type-III burst durations at harmonically-related frequencies confirm the existence of both F and H components in the solar radiation. The essential result of 10 years of decametric observations is that the frequency drift rates and durations are rather stable parameters for the various type-III bursts and stria-burst chains. The stability characterizes some unspecified conditions of burst generation in the middle corona. 相似文献
11.
A. D. Fokker 《Solar physics》1970,11(1):92-103
Radiospectrographic observations of some U-like bursts have been employed in combination with a model coronal condensation due to Waldmeier to derive trajectories along which the disturbing agency, which excites the radio emission, may have travelled. Such trajectories as connect regions of opposite magnetic polarity within one centre of activity should have a parachute-like shape in order to account for the observations. Travelling velocities are of the order of 35000 to 55000 km/sec. Moreover, the distribution of U-like bursts in heliographic longitude is investigated and an attempt is made to explain the fact that the second branches of U-like bursts are less developed than the first branches. 相似文献
12.
Pulsating type IV solar radio bursts with beat structure are presented and analysed in this paper. Based upon the theory of whistler soliton emission we interpret the beat structure by the combination of two components with different pulsation frequencies due to radial oscillations of two legs of the magnetic loop. The large depth of pulsation is also explained in this model.Proceedings if the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.On leave from the Department of Astronomy, Nanjing University, Nanjing, The People's Republic of China. 相似文献
13.
We investigate the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. We show that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21% of all type II bursts show herringbone, about 60% of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. We also show that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. We argue that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares. 相似文献
14.
Yu. F. Yurovsky 《Bulletin of the Crimean Astrophysical Observatory》2010,106(1):38-48
The multibeam propagation of radio waves in the solar plasma is analyzed, because the emission from a solar flare passes through
an inhomogeneous solar atmosphere on its way to the observer. A formula (a mathematical model) for calculating the structure
of the dynamic spectrum for flare radio bursts has been obtained. Comparison of the calculated spectra with the observed ones
shows that the results of interference explain the formation of a zebra structure and the separation of its stripes into individual
spikes, describe the time profile of the spikes, and explain the properties of fibers, ropes of fibers, and chains of “point”
bursts. The similarity of the dynamic spectra testifies that the fine structure of the spectra is formed not in the emission
source but as a result of the propagation of waves through the solar corona and interplanetary space. 相似文献
15.
R. D. Robinson 《Solar physics》1978,56(2):405-416
A model for the solar Type V event is developed. This model assumes that the basic difference between Type III and Type V bursts is the evolution of the electron beam. For a Type V this beam rapidly elongates, so that it takes progressively longer times to pass higher plasma levels. Physical process influencing the beam development, including Coulomb collisions, non-linear interactions with Langmuir waves and wave-particle scattering from various hydromagnetic wave modes is discussed. The model is compared with previously derived models and with observations.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation. 相似文献
16.
Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type III bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type III radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere. 相似文献
17.
R. D. Robinson 《Solar physics》1977,55(2):459-472
Results of an observational study of Type V bursts are presented. Observations were made using the C.S.I.R.O. radioheliograph at Culgoora. Source parameters studied included flux evolution, polarization, size, shape, position, motions and brightness temperature at 160, 80 and 43 MHz. Comparisons of source characteristics observed at different frequencies are made.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation. 相似文献
18.
In this paper, a new method of estimating the spatial directivity (in the form of center-to-limb variation) of microwave burst emission is proposed and derived. Estimations of radioemission directivity values vs observation frequency are obtained. Results are compared to the radio source model using an inhomogeneous magnetic field, source size and particle density, and show a high degree of agreement. Values of model parameters from earlier estimations are confirmed. 相似文献
19.
M. L. Kaiser 《Solar physics》1975,45(1):181-187
Over 500 days of low-frequency (<1 MHz) radio observations from the IMP-6 spacecraft have been accumulated to produce a two-dimensional map (frequency vs elongation) of solar type III burst occurrences. This map indicates that most solar bursts in this frequency range are observed at the second harmonic of the plasma frequency rather than the fundamental. The map also shows that the solar wind electron density varies as R ?γ , where γ can be somewhat less than 2 to perhaps 3 or higher. 相似文献
20.
Gennady P.Chernov 《中国天文和天体物理学报》2010,10(9)
This review covers the most recent experimental results and theoretical research on zebra patterns(ZPs)in solar radio bursts.The basic attention is given to events with new peculiar elements of zebra patterns received over the last few years.All new properties are considered in light of both what was known earlier and new theoretical models.Large-scale ZPs consisting of small-scale fiber bursts could be explained by simultaneous inclusion of two mechanisms when whistler waves"highlight"the levels of double plasma resonance(DPR).A unique fine structure was observed in the event on 2006 December 13: spikes in absorption formed dark ZP stripes against the absorptive type Ⅲ-like bursts.The spikes in absorption can appear in accordance with well known mechanisms of absorptive bursts.The additional injection of fast particles filled the loss-cone(breaking the loss-cone distribution),and the generation of the continuum was quenched at these moments.The maximum absorptive effect occurs at the DPR levels.The parameters of millisecond spikes are determined by small dimensions of the particle beams and local scale heights in the radio source.Thus,the DPR model helps to understand several aspects of unusual elements of ZPs.However,the simultaneous existence of several tens of the DPR levels in the corona is impossible for any realistic profile of the plasma density and magnetic field.Three new theories of ZPs are examined.The formation of eigenmodes of transparency and opacity during the propagation of radio waves through regular coronal inhomogeneities is the most natural and promising mechanism.Two other models(nonlinear periodic space-charge waves and scattering of fast protons on ion-sound harmonics)could happen in large radio bursts. 相似文献