首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by 70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold–thrust belt at 40 Ma through the eastward propagation of a 200–400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera–Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24–23 Ma, and further volcanism recorded by 12–7 Ma crustal ignimbrites. 4) After 20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold–thrust belt indicate that the average shortening rate has remained fairly constant (8–10 mm/year) through time with possible slowing (5–7 mm/year) in the last 15–20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera–Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.  相似文献   

2.
In this work we analyse and check the results of anisotropy of magnetic susceptibility (AMS) by means of a comparison with palaeostress orientations obtained from the analysis of brittle mesostructures in the Cabuérniga Cretaceous basin, located in the western end of the Basque–Cantabrian basin, North Spain. The AMS data refer to 23 sites including Triassic red beds, Jurassic and Lower Cretaceous limestones, sandstones and shales. These deposits are weakly deformed, and represent the syn-rift sequence linked to basins formed during the Mesozoic and later inverted during the Pyrenean compression. The observed magnetic fabrics are typical of early stages of deformation, and show oblate, triaxial and prolate magnetic ellipsoids. The magnetic fabric seems to be related to a tectonic overprint of an original, compaction, sedimentary fabric. Most sites display a NE–SW magnetic lineation that is interpreted to represent the stretching direction of the Early Cretaceous extensional stage of the basin, without recording of the Tertiary compressional events, except for sites with compression-related cleavage.Brittle mesostructures include normal faults, calcite and quartz tension gashes and joints, related to the extensional stage. The results obtained from joints and tension gashes show a dominant N–S to NE–SW, and secondary NW–SE, extension direction. Paleostresses obtained from fault analysis (Right Dihedra and stress inversion methods) indicate NW–SE to E–W, and N–S extension direction. The results obtained from brittle mesostructures show a complex pattern resulting from the superposition of several tectonic processes during the Mesozoic, linked to the tectonic activity related to the opening of the Bay of Biscay during the Early Cretaceous. This work shows the potential in using AMS analysis in inverted basins to unravel its previous extensional history when the magnetic fabric is not expected to be modified by subsequent deformational events. Brittle mesostructure analysis seems to be more sensitive to far-field stress conditions and record longer time spans, whereas AMS records deformation on the near distance, during shorter intervals of time.  相似文献   

3.
The Twin Creek Limestone in the footwall of the Absaroka thrust sheet contains three sets of bed-normal syntectonic calcite veins. Vein formation occurred during Cretaceous motion along the Absaroka thrust fault as indicated by (1) crosscutting relationships among these vein sets, (2) a previously dated solution cleavage, and (3) calcite twin analysis. Fluid inclusions in the veins and overburden estimates constrain inclusion entrapment temperatures to be between 175 °C and 328 °C. Results from stable oxygen isotopes indicate that the host and vein fluid compositions were in near isotopic equilibrium. Applying both reasonable geothermal gradients and constraints on overburden temperature yields fluid pressures during vein precipitation that are near hydrostatic. All data taken together suggest both that vein formation within the Twin Creek Formation occurred in a relatively closed system, and that the veins filled near hydrostatic fluid pressure. Because the veins fill precursory cracks, vein filling might not reflect the maximum fluid pressure that existed during the complete vein forming process.  相似文献   

4.
The Melechov pluton, Bohemian Massif, is interpreted as a mid-crustal nested granitic diapir with an apical part exposed at the present-day erosion level. The diapir head exhibits a concentric structure defined by lithologic zoning and by the anisotropy of magnetic susceptibility (AMS). In concert with theoretical models, outward-dipping margin-parallel magnetic foliations are associated with oblate shapes of the susceptibility ellipsoids and higher degree of anisotropy, passing inward into weaker triaxial to prolate fabric. By contrast, magnetic fabric in an inner granite unit is in places oriented at a high angle to internal contacts and is interpreted as recording an internal diapir circulation. We use inverse modeling to calculate strain variations across the diapir from the AMS data. The magnetic fabric parameters and calculated strains are in agreement with strain distribution in heads of model Newtonian diapirs traveling a distance of two body radii and suggest granitic magma ascent as a crystal-poor suspension followed by crystallization of fabric markers and their response to strain near the final emplacement level. The intrusive fabric thus formed late but, though generally weak, was still capable of recording incremental strain gradient in the granite diapir.  相似文献   

5.
Burial depth, cumulative displacement, and peak temperature of frictional heat of a fault system are estimated by thermal analysis in the fold–thrust belt of the Western Foothills complex, western Taiwan based on the vitrinite reflectance technique. The regional thermal structure across the complex reveals that the rocks were exposed to maximum temperatures ranging from 100 °C to 180 °C, which corresponds to a burial depth of 3.7–6.7 km. A large thermal difference of 90 °C were observed at the Shuilikeng fault which make the eastern boundary of the fold–thrust belt where it is in contact with metamorphic rock of Hsuehshan Range. The large thermal difference corresponds to cumulative displacements on the Shuilikeng fault estimated to be in the range of 5.2–6.9 km. However, thermal differences in across the Shuangtung and Chelungpu faults cannot be determined apparently due to small vertical offsets. The large displacement observed across the Shuilikeng fault is absent at the other faults which are interpreted to be younger faults within the piggyback thrust system. Localized high temperatures adjacent to fault zones were observed in core samples penetrating the Chelungpu fault. Three major fracture zones were observed at core lengths of 225 m, 330 m, and 405 m and the two lower zones which comprise dark gray narrow shear zones. A value of vitrinite reflectance of 1.8%, higher than the background value of 0.8%, is limited at a narrow shear zone of 1 cm thickness at the fracture zone at 330 m. The estimated peak temperature in the range of 550–680 °C in the shear zone is far higher than the background temperature of 130 °C, and it is interpreted as due to frictional heating during seismic faulting.  相似文献   

6.
Anisotropy of magnetic susceptibility (AMS) and paleomagnetic methods have been applied on the middle Miocene–Pleistocene sedimentary sequence in the Boso and Miura Peninsulas of central Japan in order to identify the invisible regional deformation sense as well as the intensity of deformation of sediments. The southern sequences of the two peninsulas were subjected to syn-sedimentary deformation of folding and faulting generated in compressional tectonics. A previous result of the AMS experiment on the sequences shows a development of a strong magnetic lineation. Thus, it is conceivable that the lineation had to be generated during the process of deformation, and in a direction perpendicular to the shortening. However, the orientation of the magnetic lineations is inconsistent among the different tectonic domains in the southern sequence. The paleomagnetic declination in each domain reveals a clockwise rotation in various degrees. Reconstructed directions of the magnetic lineations show a consistent pattern in the east–west direction, suggesting that the sedimentary sequence was subjected to a north-southward compression. In contrast, the compressive direction of the sediment cover on the Pliocene–Pleistocene sequence reveals a northwest direction. Our results suggest that the Philippine Sea Plate had been subducting northward during the middle Miocene–Pliocene, and changed its direction during the Pliocene.  相似文献   

7.
There are several pre-orogenic Neoproterozoic granitoid and metavolcanic rocks in the Lufilian–Zambezi belt in Zambia and Zimbabwe that are interpreted to have been emplaced in a continental-rift setting that is linked to the break-up of the Rodinia supercontinent. However, no geochemical data were previously available for these rocks in the Zambian part of the belt to support this model. We conducted petrographic and whole-rock chemical analyses of the Neoproterozoic Nchanga Granite, Lusaka Granite, Ngoma Gneiss and felsic metavolcanic rocks from the Lufilian–Zambezi belt in Zambian, in order to evaluate their chemical characteristics and tectonic settings. Other magmatic rocks of importance for understanding the evolution of the belt in Zambia, included in this study, are the Mesoproterozoic Munali Hills Granite and associated amphibolites and the Mpande Gneiss. The Neoproterozoic rocks have monzogranitic compositions, aluminum-saturation indices (ASI) < 1.1, and high contents of high field strength elements (HFSE) and rare earth elements (REE). The chondrite-normalised spider diagrams are similar to those of A-type granites from the Lachlan fold belt and show negative Sr, P, and Ti anomalies. On various tectonic discrimination diagrams the Neoproterozoic rocks plot mainly in A-type granite fields. These petrographic and trace element compositions indicate that these rocks are A-type felsic rocks, but they do not have features of granites and rhyolites emplaced in true continental-rift settings, as previously suggested. On the basis of the A-type features and independent regional geological and geochronological data, we suggest that the Neoproterozoic granitoid and felsic metavolcanic rocks were emplaced during the earliest extensional stages of continental rifting in the Lufilian–Zambezi belt. The apparent continental-arc like chemistry of the granitoid and felsic metavolcanic rocks is thus inferred to be inherited from calcalkaline sources. The Mesoproterozoic Munali Hills Granite and Mpande Gneiss have trace element features e.g., Nb–Ta depletions, which indicate that that these gneisses were emplaced in a convergent-margin setting. The MORB-normalised spider diagram of co-magmatic amphibolites exhibit a fractionated LILE/HFSE pattern recognized in subduction zones. This inference is consistent with remnants of ocean crust, juvenile Island arcs and ophiolites elsewhere in the Mesoproterozoic Irumide belt in Zambia and Zimbabwe. In addition, we report the first U–Pb zircon age of 1090.1 ± 1.3 Ma for the Munali Hills Granite. The age for the Munali Hills Granite provides new constraints on correlation and tectono-thermal activity in the Lufilian–Zambezi belt. The age of the Munali Hills Granite indicates that some supracrustal rocks in the Zambezi belt of Zambia, which were previously thought to be Neoproterozoic and correlated with the Katanga Supergroup in the Lufilian belt, are Mesoproterozoic or older. Consequently, previous regional lithostratigraphic correlations in the Lufilian–Zambezi belt would require revision.  相似文献   

8.
9.
A geochemical and isotopic study was carried out for the Mesozoic Yangxin, Tieshan and Echeng granitoid batholiths in the southeastern Hubei Province, eastern China, in order to constrain their petrogenesis and tectonic setting. These granitoids dominantly consist of quartz diorite, monzonite and granite. They are characterized by SiO2 and Na2O compositions of between 54.6 and 76.6 wt.%, and 2.9 to 5.6 wt.%, respectively, enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), and relative depletion in Y (concentrations ranging from 5.17 to 29.3 ppm) and Yb (0.34–2.83 ppm), with the majority of the granitoids being geochemically similar to high-SiO2 adakites (HSA). Their initial Nd (εNd = − 12.5 to − 6.1) and Sr ((87Sr/86Sr)i = 0.7054–0.7085) isotopic compositions, however, distinguish them from adakites produced by partial melting of subducted slab and those produced by partial melting of the lower crust of the Yangtze Craton in the Late Mesozoic. The granitoid batholiths in the southeastern Hubei Province exhibit very low MgO ranging from 0.09 to 2.19 wt.% with an average of 0.96 wt.%, and large variations in negative to positive Eu anomalies (Eu/Eu = 0.22–1.4), especially the Tieshan granites and Yangxin granite porphyry (Eu/Eu = 0.22–0.73). Geochemical and Nd–Sr isotopic data demonstrate that these granitoids originated as partial melts of an enriched mantle source that experienced significant contamination of lower crust materials and fractional crystallization during magma ascent. Late Mesozoic granitoids in the southeastern Hubei Province of the Middle–Lower Yangtze River belt were dominantly emplaced in an extensional tectonic regime, in response to basaltic underplating, which was followed by lithospheric thinning during the early Cretaceous.  相似文献   

10.
Field, microstructural, and anisotropy of magnetic susceptibility (AMS) or magnetic fabric studies were applied to identify the sequence and character of the Pan-African structures in the basement of Eastern Cameroon at both sides of the regional scale Bétaré-Oya Shear Zone (BOSZ). The NE-SW trending BOSZ separates older gneisses and migmatites towards SE (domain I) from the younger rocks of the Lom meta-volcano-sedimentary basin towards NW (domain II). In domain I, early, ductile compressional deformation occurred in two events, D1 and D2, under relatively high T conditions. During subsequent cooling, strain partitioned between the competent basement gneisses with only mild compression and the bordering shear zone (BOSZ) with intense simple shear-wrenching (D3). Strain in the less competent rocks of domain II is dominated by simple shear, strike-slip wrenching (D3), with an earlier stage of compressional deformation preserved only in some low strain pods.Magnetic fabrics (AMS) document a progressive change from oblate ellipsoids towards prolate ellipsoids in domain I, when proceeding from the south towards the BOSZ. Foliations are mostly steep but define a girdle with a pole plunging gently towards WSW. The magnetic lineations also plunge mostly towards WSW at shallow angles. These fabrics indicate a compression approximately normal to the BOSZ, which is also the SE margin of the Lom Basin. In the Lom metasediments (domain II), AMS ellipsoids are typically oblate. Foliations trend NE-SW with mostly steep dips. Magnetic lineations plunge gently NE or SW. This fabric with foliations mostly steep and subparallel with the major BOSZ, combined with generally subhorizontal lineations implies the BOSZ as a Pan-African strike–slip shear zone with a subordinate component of compression.At a larger scale, the area is part of a continent-scale shear zone, separating external Pan-African domains of compression along the northern margin of the Congo craton from internal domains dominated by high-angle strike–slip and transpressional deformation. Together with published data, the present study thus demonstrates that transpression is a regional phenomenon in the Pan-African orogen of central and eastern Cameroon.  相似文献   

11.
GPS-derived velocities (1993–2002) in northwestern California show that processes other than subduction are in part accountable for observed upper-plate contraction north of the Mendocino triple junction (MTJ) region. After removing the component of elastic strain accumulation due to the Cascadia subduction zone from the station velocities, two additional processes account for accumulated strain in northern California. The first is the westward convergence of the Sierra Nevada–Great Valley (SNGV) block toward the coast and the second is the north–northwest impingement of the San Andreas fault system from the south on the northern California coastal region in the vicinity of Humboldt Bay. Sierra Nevada–Great Valley block motion is northwest toward the coast, convergent with the more northerly, north–northwest San Andreas transform fault-parallel motion. In addition to the westward-converging Sierra Nevada–Great Valley block, San Andreas transform-parallel shortening also occurs in the Humboldt Bay region. Approximately 22 mm/yr of distributed Pacific–SNGV motion is observed inland of Cape Mendocino across the northern projections of the Maacama and Bartlett Springs fault zones but station velocities decrease rapidly north of Cape Mendocino. The resultant 6–10 mm/yr of San Andreas fault-parallel shortening occurs above the southern edge of the subducted Gorda plate and at the latitude of Humboldt Bay. Part of the San Andreas fault-parallel shortening may be due to the viscous coupling of the southern edge of the Gorda plate to overlying North American plate. We conclude that significant portions of the upper-plate contraction observed north of the MTJ region are not solely a result of subduction of the Gorda plate but also a consequence of impingement of the western edge of the Sierra Nevada–Great Valley block and growth of the northernmost segments of the San Andreas fault system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号