首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Abstract Small unexploited copper-lead-zinc deposits, characterized by a distinctive wall-rock association of cordierite quartzite, silica-undersaturated rocks, calc-silicate rocks and impure marbles, occur in quartzofeldspathic gneisses and mafic granulites of the Strangways Metamorphic Complex, central Arunta Block, central Australia. Available data support the hypothesis that these are metamorphosed volcanogenic ore bodies. The chemical compositions of the quartzofeldspathic gneisses are comparable with those of less metamorphosed felsic igneous rocks, particularly the felsic igneous rocks emplaced in the North Australian Orogenic Province in the interval 1880–1800 Ma; and the mafic granulites are chemically similar to basalts (olivine-normative tholeiites). The wall-rock suite can be correlated from chemistry and lithological association with the suites of wall rocks found in unmetamorphosed volcanogenic ore deposits. That the protolith of the cordierite quartzites may well have been leached tuff, similar to the illite-chlorite-quartz tuff found in volcanogenic ore deposits, is also shown by retrogression of the granulitefacies assemblage: cordierite-garnet-ortho-pyroxene-biotite-quartz in the cordierite quartzites to cordierite-anthophyllite-bearing assemblages and thence to chlorite-muscovite-quartz assemblages. Lenses of silica-undersaturated rocks with spinel and, less commonly, sapphirine are interpreted as the metamorphosed equivalents of chlorite-rich pods found within leached tuffs in volcanogenic ore deposits. The wall rocks form sheet-like bodies; this suggests that they were deposited in relatively shallow water, thus precluding the formation of massive sulphides.  相似文献   

2.
The ranges of the Sierras Valle Fértil-La Huerta expose natural cross sections through a paleo-arc crust that formed in the Late Cambrian - Early Ordovician Famatinian magmatic arc, northwestern Argentina. Thick mafic sequences of amphibole gabbronorites to orthopyroxene-amphibole-biotite diorites form the lower levels of the exposed paleo-arc section. This mafic unit includes lens-shaped bodies of olivine-bearing cumulate rocks and tabular-shaped sill/dike intrusions of fine-grained chilled amphibole gabbro. The mafic magmas were emplaced into regional metasedimentary sequences at lower crustal levels, corresponding to pressure from 5 to 7 kbar. Gabbronorites likely representing the parental magmas that fluxed into the exposed paleo-arc crust differ from primitive magmatic arc rocks in having somewhat lower Mg-number (ca. 0.60) and compatible (Cr and Ni) trace element contents, and slightly higher Al2O3 contents. This difference is taken to indicate that a pyroxene-rich olivine-bearing assemblage with a bulk high Mg/Fe ratio and low Al2O3 content crystallized from mantle-derived melts before mafic magmas reached the crustal levels currently exhumed. However, some gabbronorites have incompatible trace element signatures typical of primitive mafic arc magmatism. Igneous rocks to some extent more evolved than those of the mafic unit make up a tonalite-dominated intermediate unit. The intermediate unit consists of a heterogeneous suite that ranges from orthopyroxene-bearing amphibole-rich diorites to biotite-rich amphibole-poor tonalites. Within the intermediate unit, chilled mafic rocks are found as a network of dikes, whereas metasedimentary migmatites appear interlayered as m-wide septa and km-long strips. The tonalite-dominated intermediate unit passes into a granodiorite batholith through a transitional zone that is up to 2-km wide. The boundary zone separating the tonalite-dominated and granodiorite-dominated units is characterized by mingling of tonalitic and leucogranitic magmas, which together appear multiply-intruded by mafic sill/dike bodies. Within the tonalite- and granodiorite-dominated units, the less evolved mafic rocks occur as: (1) bodies tens of meters long, (2) chilled dikes and sills, and (3) microgranular inclusions (enclaves), supporting the inference that mafic magmatism was the main source for generating a vast volume of intermediate and silicic igneous rocks. Mass balance calculations and trace element systematics are combined to demonstrate that tonalites and granodiorites formed by concurrent closed-system fractional crystallization and open-system incorporation of paragneissic migmatites and/or anatectic leucogranites into the evolving igneous sequence. This study argues that the sequence of igneous rocks from Valle Fértil-La Huerta was formed as the result of complementary petrogenetic processes that operated concurrently at different levels of the Famatinian arc crust.  相似文献   

3.
In this paper, we present data on major and trace elements in highly metamorphosed mafic rocks from the granulite-gneiss complex of the Angara-Kan block (southwestern Siberian craton), identify igneous protoliths of the metabasites, and assess the mobility of elements during metamorphism. Two types of rocks with different geologic relations and compositions were recognized. Garnet-bearing two-pyroxene granulites (Cpx + Pl + Grt + Opx) occur as sheet- and boudin-like bodies, which were folded and deformed with their host paragneisses. Dikes, which in most cases underwent only brittle deformation, are composed of metabasites characterized by the assemblage Cpx + Hbl + Pl + Grt. The major element compositions of igneous protoliths for the mafic granulites and metabasite dykes correspond to variously differentiated basaltic magmas. The protoliths of the metabasites are depleted in K2O, LILE, Zr, Nb, and LREE and were derived from a depleted mantle source. The major and trace element compositions of the dike metabasites are similar to those of low-K tholeiitic basalts of oceanic island arcs. Continental intraplate basalts derived from an enriched mantle source are possible igneous protoliths for the mafic granulites enriched in Ba, LREE, Nb, Ta, Zr, and Hf. It is assumed that lower Rb, Th, and U contents in the mafic granulites compared with continental flood basalts, high K/Rb and La/Th, and moderate Th/U ratios reflect the loss of Rb, Th and U during granulite-facies metamorphism.  相似文献   

4.
Age and geochemistry of Karoo dolerite dykes from northeast Botswana   总被引:1,自引:0,他引:1  
The Botswana Dyke Swarm is a prominent 800 km long and 100 km wide feature on aeromagnetic maps of southern Africa, but little has been published on its exact age or geochemical composition. New age, trace element and isotope data for this dyke swarm show that is magmatism is indistinguishable from Karoo continental flood basalts. Ar/Ar dating gives an age of 178.9 ± 1.4 Ma. Both high Ti-Zr and low Ti-Zr dolerites occur, but the high Ti-Zr rocks appear to be the dominant type of magmatism. Low Ti-Zr mafic rocks have isotopic and trace element characteristics similar to a combination of a normal mid-ocean ridge basalt source with sedimentary and fluid-enriched components, which are thought to reside in the sub-continental lithospheric mantle. A lithospheric component seen in the high Ti-Zr mafic rocks is similar to that in nephelinites from Zimbabwe.  相似文献   

5.
闽中地区马面山群东岩组变质岩形成的古构造环境研究   总被引:9,自引:0,他引:9  
闽中地区马面山群东岩组地层主要为绿片岩为主的一套古火山沉积建造。其主要岩性类型包括各种成分的绿片岩、大理岩、石英片岩及变粒岩类。绿片岩显示海底火山喷发特征,变粒岩原岩为中酸性岩类。东岩组变质岩岩石化学研究表明,绿片岩的原岩应为玄武岩类。变粒岩类主要属于英安岩及流纹岩。这些特征反映东岩组具双峰式火山岩特征,形成于大陆内部张性环境。绿片岩稀土元素特征也显示和大陆拉张环境中的火山岩类稀土特征非常相似,属大陆拉斑玄武岩;微量元素分布显示出该组变质岩原岩类似于大洋岛和大陆裂谷的板内碱性玄武岩。因此闽中地区中元古代可能处于板内古裂谷环境。  相似文献   

6.
Abstract Cordierite-anthophyllite rocks and related cordierite-rich, talc-rich and chlorite-rich rocks occur in the Rosebud Syncline, north-west Queensland, Australia, as part of a Proterozoic metasedimentary sequence. Field relations and rock compositions attest the sedimentary origin of these rather unusual metamorphic rocks. Their chemical composition is comparable to that of unmetamorphosed, alkali- and Ca-poor pelites, which are associated with some evaporite deposits. Other occurrences of cordierite-anthophyllite rocks have commonly been interpreted as metamorphosed chloritic alteration products derived from mafic or felsic volcanics. A comparative chemical study, using analyses of cordierite-anthophyllite rocks from such alteration zones and analyses of unmetamorphosed magnesian pelites, demonstrates the general chemical similarity between these two rock groups of entirely different origin. However, distinct differences in major element relations help to distinguish these two genetic groups. Particularly useful are Al2O3–FeO–MgO plots, in which evaporitic pelites occupy the Fe-poor side. The highly magnesian metamorphic rocks from the Rosebud Syncline fall entirely into the compositional field of evaporitic clays and shales. Furthermore, analyses of relatively immobile trace elements give supporting evidence for the sedimentary origin of these cordierite-anthophyllite rocks. The correlation with trace element ranges of clays and shales is very good. However, the correlation with trace element ranges of mafic and felsic volcanics is poor, and major discrepancies occur with Cr, Ni, Co, Nb, Sc, Th and Ti. Thus, the magnesian metamorphics of the Rosebud Syncline appear to be derived from evaporitic clays rich in magnesian clay minerals, such as palygorskite, sepiolite, chlorite or corrensite. The complete metamorphic rock assemblage of interlayered calcareous, aluminous and magnesian rocks is interpreted as a metamorphosed carbonate-evaporite-pelite sequence.  相似文献   

7.
Pre-Cretaceous metasedimentary rocks occurring in the Inner Zone of the Southwest Japan Arc can be divided into three major groups, namely, high P/T metamorphic (Renge and Suo belts), low P/T metamorphic (Hida-Oki, Ryoke and Higo belts), and accretionary terranes (Akiyoshi, Maizuru, Mino-Tamba, and Ashio belts). Major and trace element compositions of most of the sedimentary rocks are typical of relatively mature sedimentary rocks, although abundances of ferromagnesian elements also suggest the presence of a significant mafic to intermediate igneous component. The sedimentary rocks with older Nd model ages (> 2.0 Ga) have high εSr values and major and trace element geochemical signatures typical of mature sediments, whereas those with younger model ages (< 1.45 Ga) have low εSr values and immature geochemical characteristics. With the exception of Hida samples, the sedimentary rocks from other districts have geochemical and isotopic features intermediate between the rocks with old and young Nd model ages. Some of the Hida samples have old Nd model ages, but others are influenced by younger rock fragments and have immature geochemical features. Based on combined isotopic and geochemical evidence, Inner Zone sedimentary rocks with older Nd model ages are interpreted to have been derived from felsic upper continental crustal materials such as Sino-Korean or northwest Yangtze craton granitoids. Compositions of rocks with younger Nd model ages reflect addition of mafic to intermediate detritus, such as island arc basalts and andesites. The rocks with intermediate Nd model ages may have formed in and around the Asian continental margin. The Hida metasedimentary rocks may have been derived from several terranes of varying age and geochemical composition.  相似文献   

8.
Post-collisional magmatism in the southern Iberian and northwesternAfrican continental margins contains important clues for theunderstanding of a possible causal connection between movementsin the Earth's upper mantle, the uplift of continental lithosphereand the origin of circum-Mediterranean igneous activity. Systematicgeochemical and geochronological studies (major and trace element,Sr–Nd–Pb-isotope analysis and laser 40Ar/39Ar-agedating) on igneous rocks provide constraints for understandingthe post-collisional history of the southern Iberian and northwesternAfrican continental margins. Two groups of magmatic rocks canbe distinguished: (1) an Upper Miocene to Lower Pliocene (8·2–4·8Ma), Si–K-rich group including high-K (calc-alkaline)and shoshonitic series rocks; (2) an Upper Miocene to Pleistocene(6·3–0·65 Ma), Si-poor, Na-rich group includingbasanites and alkali basalts to hawaiites and tephrites. Maficsamples from the Si–K-rich group generally show geochemicalaffinities with volcanic rocks from active subduction zones(e.g. Izu–Bonin and Aeolian island arcs), whereas maficsamples from the Si-poor, Na-rich group are geochemically similarto lavas found in intraplate volcanic settings derived fromsub-lithospheric mantle sources (e.g. Canary Islands). The transitionfrom Si-rich (subduction-related) to Si-poor (intraplate-type)magmatism between 6·3 Ma (first alkali basalt) and 4·8Ma (latest shoshonite) can be observed both on a regional scaleand in individual volcanic systems. Si–K-rich and Si-poorigneous rocks from the continental margins of southern Iberiaand northwestern Africa are, respectively, proposed to havebeen derived from metasomatized subcontinental lithosphere andsub-lithospheric mantle that was contaminated with plume material.A three-dimensional geodynamic model for the westernmost Mediterraneanis presented in which subduction of oceanic lithosphere is inferredto have caused continental-edge delamination of subcontinentallithosphere associated with upwelling of plume-contaminatedsub-lithospheric mantle and lithospheric uplift. This processmay operate worldwide in areas where subduction-related andintraplate-type magmatism are spatially and temporally associated. KEY WORDS: post-collisional magmatism; Mediterranean-style back-arc basins; subduction; delamination; uplift of marine gateways  相似文献   

9.
Geochemical compositions of mafic igneous rocks in the Katangan basin in Central Africa (Democratic Republic of Congo, hereafter Congo, and Zambia) provide the basis for the geodynamic interpretation of the evolution of this Neoproterozoic basin located between the Congo and Kalahari cratons. The Katangan basin is subdivided into five major tectonic units: the Katangan Aulacogen, the External Fold and Thrust Belt, the Domes Region, the Synclinorial Belt and the Katangan High. The metamorphosed mafic igneous rocks investigated occur in the Katangan Aulacogen, the External Fold and Thrust Belt and the Domes Region. The earliest magmatic activity produced continental tholeiites emplaced on Paleoproterozoic crust during the early stages of intraplate break-up. This continental tholeiite magmatism was followed by an association of alkaline and tholeiitic basalts emplaced in the Katangan continental rift and then by tholeiitic basalts with E-MORB affinity marking a young oceanic crust. These volcanic associations mark different stages of evolution from pre-rift continental break-up up to a continental rift similar to the East African rift system and then to a Red Sea type incipient oceanic rift. A similar evolution occurs in the Damaran basin in southwestern Africa, although no pre-rift continental tholeiites have been recorded in this segment of the Pan-African belt system.  相似文献   

10.
A small isolated mafic body occurs to the south of Sirohi near village Daba within the Neoproterozoic Erinpura Granite in the southern sector of the Proterozoic Delhi Fold Belt in NW India. This mafic body occurs close to a 100 m wide NE–SW trending shear zone (Daba Shear Zone) which overprints the felsic rock fabrics. Further south, a small mafic body near village Kui was also sampled which forms the southern limit of the Phulad Ophiolite Suite which is a 300 km long major NE–SW trending lineament, described as Western Margin Fault. Some of the lithological components of the Daba mafic body show locally preserved magmatic fabric but completely transformed mineralogies under lower amphibolites facies metamorphic conditions where two-stage deformation has been inferred. Magnetic fabric analysis underlines a general correspondence of structural elements in both felsic and mafic lithologies. Binary correlations of Zr with other high field strength elements underline fractionation as the main process in the evolution of Daba and Kui rocks. Geochemical characteristics indicate subalkaline tholeiitic basalt affinity for these mafic rocks. The trace element characteristics, such as enriched LIL elements, high Th, absence of negative Nb anomalies and depletion in compatible elements in Daba samples suggest an enriched mantle source and lower degree of melting. The trace and rare earth element characteristics for Kui (Th anomaly, Nb–Ta trough and less spiked patterns, flat REE trends) indicate derivation from a refractory mantle source affected by fluids derived from subduction. Distinct differences in trace and REE characteristics between Daba and Kui can be interpreted in terms of different stages of ophiolite development.  相似文献   

11.
Strontium and Nd isotopic compositions and trace element abundances were determined for Cretaceous to late Cenozoic igneous rocks from the Japan Sea side of Southwest Japan in order to investigate the effect of the opening of the Japan Sea on igneous activity. The 87Sr/86Sr ratios for both high and low silica rocks decrease with decreasing age since the middle Miocene, when the opening occurred. Similarly, 143Nd/144Nd values for these rocks increase with decreasing age, and are negatively correlated with 87Sr/86Sr ratios. A two-component mixing process can best account for these isotopic and chemical characteristics. One end-member is likely the subcontinental lithospheric mantle (SCLM) and its derivative mafic to intermediate materials which had ɛNd values of around +3. The other endmember consists of mafic to intermediate rocks with low ɛNd values (e.g., −8), probably located in the lower crust. The mantle upwelling associated with the opening of the Japan Sea did not supply typical MORB or MORB-source materials to the crust, but did provide the heat that caused the melting of lithospheric mantle and lower crust. Received: 29 August 1996 / Accepted: 6 May 1997  相似文献   

12.
Mafic rocks are widespread on the Liaodong Peninsula and adjacent regions of the North China Craton. The majority of this magmatism was originally thought to have occurred during the Pre-Sinian, although the precise geochronological framework of this magmatism was unclear. Here, we present the results of more than 60 U–Pb analyses of samples performed over the past decade, with the aim of determining the spatial and temporal distribution of mafic magmatism in this area. These data indicate that Paleoproterozoic–Mesoproterozoic mafic rocks are not as widely distributed as previously thought. The combined geochronological data enabled the subdivision of the mafic magmatism into six episodes that occurred during the middle Paleoproterozoic, the late Paleoproterozoic, the Mesoproterozoic, the Late Triassic, the Middle Jurassic, and the Early Cretaceous. The middle Paleoproterozoic (2.1–2.2 Ga) mafic rocks formed in a subduction-related setting and were subsequently metamorphosed during a ca. 1.9 Ga arc–continent collision event. The late Paleoproterozoic (ca. 1.87–1.82 Ga) bimodal igneous rocks mark the end of a Paleoproterozoic tectono-thermal event, whereas Mesoproterozoic mafic dike swarms record global-scale Mesoproterozoic rifting associated with the final breakup of the Columbia supercontinent. The Late Triassic mafic magmatism is part of a Late Triassic magmatic belt that was generated by post-collisional extension. The Middle Jurassic mafic dikes formed in a compressive tectonic setting, and the Early Cretaceous bimodal igneous rocks formed in an extensional setting similar to a back-arc basin. These latter two periods of magmatism were possibly related to subduction of the Paleo-Pacific plate.  相似文献   

13.
Subduction of active spreading ridges most likely occurs throughout Earth's history. Interaction or collision between spreading center and trench, with the active spreading ridge downgoing and shallowly being buried in subduction zone, results in low-pressure but high-temperature near-trench magmatism in the forearc and accretionary prism setting. The Central Asian region, a complex orogenic belt created during the evolution and closure of the Paleo-Asian Ocean (PAO) at ~ 1000–300 Ma, provides an ideal place to study the subduction of PAO spreading ridges beneath ancient continental margins. It had been suggested that the low-pressure and high-temperature mafic and intermediate to felsic magmas from the Karamaili ophiolite (KO) in the NE corner of the Junggar basin (NW China) in Central Asia were likely produced by ridge subduction (Liu et al., 2007). In this paper, we combine our new geochemical data with previous results to show that the geochemical characteristics of the bulk of KO mafic rocks range from arc basalt-like to mid-ocean ridge basalt-like and ocean island basalt-like. Their trace element patterns range from depleted to enriched in highly incompatible elements, but depleted in Nb and Ta, indicating a subduction-influenced origin. The KO intermediate to felsic rocks are calc-alkaline and boninitic in composition and have trace element signatures similar to the associated mafic rocks. The low Nb/Ta ratios of some of the mafic rocks and boninitic character of some of the intermediate to felsic rocks reflect a highly depleted source, perhaps due to prior backarc magmatism. Major and trace element models indicate complex fractional crystallization histories of parental KO magmas to generate both the mafic and intermediate to felsic rocks, but in general, crystal fractionation occurred at 1000 to 1200 °C and moderate to low (0.5 kbar to 10 kbar) pressure or < 23 km depth. We conclude that the KO was formed in a forearc region of a subduction system that experienced ridge subduction.  相似文献   

14.
《Gondwana Research》2001,4(3):509-518
The Proterozoic Bandal mafic rocks, exposed in Kullu-Rampur window, Lesser Himalaya, Himachal Pradesh, indicate two distinct (high-Ti and low-Ti) magma types. The high-Ti basalts are characterised by high-TiO2 (> 2 wt%), Ti/Y, Ti/Zr, TiO2/K2O and low Rb/Sr ratios. They are enriched in high field strength (HFS) elements (Nb, Zr, Ti) relative to low field strength (LFS) incompatible elements (K, Rb). The low-Ti basalts are charactersied by low TiO2 (< 2 wt%), Ti/Y, Ti/Zr and high Rb/Sr and Rb/Ba ratios. Quartz-normative composition, continental tholeiite characteristics with Nb/La less than 1 are some of the common factors of the two groups of the Bandal mafic rocks. The trace element concentrations and their ratios of the two groups of the basalts indicate that they have been derived from the asthenosphere at different depths, low-Ti at shallow and high-Ti at deeper levels. Some of the chemical features like low Mg #, Cr, Ni, high incompatible element concentrations (especially Ba), light rare earth element (LREE) enriched patterns point towards assimilation and fractional crystallisation (AFC) process which may have played a significant role in the generation of these basalts.Furthermore, the Bandal mafic rocks, apart from field settings, are geochemically similar to other Proterozoic mafic bodies like the Rampur volcanics, Mandi-Darla volcanics, Garhwal volcanics and Bhimtal-Bhowlai volcanics of the Lesser Himalaya. This widespread Proterozoic continental tholeiitic magmatism over an area of 170,000 km2 in the Lesser Himalaya provides an evidence of plume activity in the region.  相似文献   

15.
《地学前缘(英文版)》2020,11(6):2323-2337
Petrological characterization, U–Pb geochronology, Lu–Hf analyses and major and trace element data from mafic intrusions in the Central Espinhaço (central portion of the Brazilian shield) are used here to investigate the geological significance of the Early Neoproterozoic magmatism in the context of the São Francisco-Congo paleocontinent. These mafic bodies are represented by medium to coarse-grained metagabbros with plagioclase, amphibole and clinopyroxene. Zircon U–Pb isotopic data from two samples yielded weighted mean 206Pb/238U ages of 895 ​± ​3.4 ​Ma (MSWD ​= ​1.7) and 896 ​± ​2.4 ​Ma (MSWD ​= ​0.64), regarded as the best estimates for the crystallization age of these mafic rocks. Major and trace element data (including REEs) show that the gabbros originated from a subalkaline tholeiitic magma, typical of intraplate magmatism. Such rocks are slightly enriched in LREEs and LILEs and depleted in HFSEs. Our new isotope and geochemical data, along with regional knowledge, indicate that these metagabbros mark the beginning of an important Tonian-age extensional tectonic event of the landmass of which the São Francisco-Congo paleocontinent was part (Rodinia supercontinent or Central African block?). We furthermore suggest that these rocks belong to a prominent suite of Tonian-age mafic rocks that mark a diachronic breakup attempt of this landmass which may have occurred from south to north along the Espinhaço mountain range.  相似文献   

16.
Felsic to intermediate igneous rocks from the Cuchilla Dionisio (or Punta del Este) Terrane (CDT) in Uruguay and the Várzea do Capivarita Complex (VCC) in southern Brazil were emplaced in the Tonian and experienced high-grade metamorphism towards the end of the Cryogenian. Geological and geochemical data indicate an S-type origin and formation in a continental within-plate setting by recycling of lower crustal material that was initially extracted from the mantle in the Palaeoproterozoic. Similar felsic igneous rocks of Tonian age occur in the Richtersveld Igneous Complex and the Vredefontein and Rosh Pinah formations in westernmost South Africa and southern Namibia and have been correlated with their supposed equivalents in Uruguay and Brazil. Geochemical and isotope data of the largely unmetamorphosed felsic igneous rocks in southwestern Africa imply a within-plate origin and formation by partial melting or fractional crystallization of mafic rocks that were extracted from the mantle in the Proterozoic. The parental melts of all of these Tonian igneous rocks from South America and southwestern Africa formed in an anorogenic continental setting at the western margin of the Kalahari Craton and were emplaced in, and/or contaminated by, Namaqua Province-type basement after separation from their source region. However, the source regions and the time of extractions thereof are different and, moreover, occurred at different palaeogeographical latitudes.New petrological data of CDT high-grade gneiss indicate a geothermal gradient of c. 20–25 °C/km, implying continental collisional tectonics following subduction and ocean basin closure at an active continental margin at the eastern edge of present-day South America in the late Cryogenian to early Ediacaran. The associated suture may be traced by the high-grade gneiss and amphibolite-facies mafic rocks in the CDT and probably continues northwards to the Arroio Grande Complex and the VCC in southern Brazil.  相似文献   

17.
The mafic granulites from the Northern Apennines commonly containsignificant amounts of either olivine or Fe–Ti-oxide phases.On the basis of mineralogy and whole-rock major and trace elementcompositions, their protoliths are recognized as cumulus rocksderived from variably evolved tholeiitic liquids. Clinopyroxenesfrom the olivine-bearing rocks show peculiar trace element compositions(e.g. low amounts of Cr, Zr and lanthanides, coupled with relativelyhigh Sr concentrations) that record a process of granulite-faciestrace element redistribution controlled by a reaction betweenolivine and plagioclase. The trace element compositions of clinopyroxenesfrom the Fe–Ti-oxide-bearing rocks point to igneous geochemicaltrends that argue for a common igneous parentage. The  相似文献   

18.
19.
戴立群  赵子福 《地球科学》2019,44(12):4128-4134
在大陆碰撞造山带中寻找消失的古洋壳再循环及其壳幔相互作用的证据,对理解从洋壳俯冲到陆壳俯冲化学地球动力学过程的转变,以及板块构造理论的发展具有重要意义.通过对桐柏-红安造山带晚古生代和晚中生代镁铁质岩浆岩的岩石地球化学特征进行总结,可以识别出俯冲古洋壳再循环的岩石学和地球化学记录.晚古生代岛弧型镁铁质岩石具有弧型微量元素特征和相对亏损的放射成因同位素组成,记录了俯冲古洋壳在弧下深度(80~160 km)的流体交代作用;而晚中生代洋岛型镁铁质岩石OIB型微量元素特征和亏损-弱富集的放射成因同位素组成,记录了俯冲古洋壳在弧后深度(>200 km)的熔体交代作用.这一定性的解释也进一步得到了定量计算的证实,其结果表明镁铁质岩浆岩中的不相容元素的含量以及放射性成因同位素的富集程度,主要受控于地幔源区中所加入的地壳组分的性质和比例.因此,碰撞造山带中的岛弧型和洋岛型镁铁质岩浆岩,分别记录了弧下和弧后深度的俯冲古洋壳物质再循环.   相似文献   

20.
Precambrian magmatism in the Biabanak-Bafq district represents an extensive sequence of mafic magmatic rocks. Major, trace and rare earth elements reveal that the low-Ti basement mafic rocks are magnesium tholeiite and low-Ti cover a mafic rock belongs to Fe-tholeiite, whereas, the high-Ti alkaline mafic rocks, as well as dolerites, show much more Fe–Ti enrichment. Primitive mantle normalized trace element patterns show a relative enrichment of LREE and LILE and depletion of HFSE, but have an equally distinct continental signature reflected by marked negative Nb, Sr, P, and Ti anomalies. The composition of the intrusive rocks is consistent with fractional crystallization of olivine ± clinopyroxene ± plagioclase, whereas variations in the Sr and Nd isotope compositions suggest heterogeneous sources and crustal contamination. Low-Ti group samples contain a crustal signature in the form of high La/Yb, Zr/Nb, and negative \(\varepsilon \hbox {Nd}\) values. In contrast, high-Ti mafic magmatic rocks display an increase in La/Yb with a decrease in Proterozoic alkaline rocks recognized across the central Iran. The presence of diverse mafic magmatic rocks probably reflects heterogeneous nature of sub-continental lithospheric mantle (SCLM) source. The mafic magmatism largely represents magmatic arc or rift tectonic setting. It is suggested that the SCLM sources were enriched by subduction processes and asthenospheric upwelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号