首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four gravity cores from the eastern Norwegian Sea are studied. Absolute accumulation rates are quantified and variations in carbonate sedimentation and their implications for the paleo-oceanographic history of the Norwegian Sea are described. In the eastern Norwegian Sea, interglacial, ice-free conditions were developed during oxygen-isotope stages 1 and 5e. Open water conditions were probably the norm during the summer season, also during glacial stages. Slightly elevated summer temperatures in periods during isotope stages 2 and 7 are demonstrated by increased contents of subpolar planktic foraminifera. The deep waters of the eastern Norwegian Sea have been well oxygenated during most of the last 250,000 years. Organic-rich sediments and intensive carbonate dissolution in some parts of isotope stages 4 and 6 indicate corrosive bottom waters. A permanent ice cover and low saline surface waters, as found in the Arctic Ocean today, may have been developed in these periods. Well-preserved foraminiferal assemblages from stage 2 show more oxygenated bottom waters and more effective bottom water renewal in this period than during stage 3.  相似文献   

2.
This paper addresses some problems concerning the geologic activity of sea ice and icebergs, as well as the influence of continental and shelf glaciations on the sedimentation in the Arctic Ocean during Recent and Quaternary times. Seasonal and circumcontinental zoning is clearly manifested in the sedimentation. The role of glacial material in the modern and older sediments was estimated. Mathematical statistical methods were employed for the reliable stratigraphic subdivision of Quaternary sequences and determination of main factors controlling their chemical composition. Silica content was proposed as an optimal parameter for the lithochemostratigraphic subdivision of Quaternary sediments.  相似文献   

3.
High‐resolution chirp sonar profiling in the northeastern Skagerrak shows acoustically stratified sediments draping a rough‐surfaced substratum. A 32 metre long sediment core retrieved from the survey area encompasses the entire Holocene and latest Pleistocene. The uppermost seismo‐acoustic units in the chirp profiles represent Holocene marine sediments. The lowermost unit is interpreted as ice‐proximal glacial‐marine sediments rapidly deposited during the last deglaciation. The end of ice‐proximal sedimentation is marked by a strong reflector, interpreted to have been formed during latest Pleistocene time as a consequence of rapid ice retreat and drastically lowered sedimentation rate. The subsequent distal glacial‐marine sediments were deposited with initially high sedimentation rates caused by an isostatic rebound‐associated sea‐level fall. Based on correlation between the core and the chirp sonar profiles using measured sediment physical properties and AMS 14C dating, we propose a revised position for the Pleistocene/Holocene boundary in the seismo‐acoustic stratigraphy of the investigated area. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
通过西北冰洋阿尔法脊B84A孔中—晚第四纪以来的沉积物颜色旋回,Mn、Ca元素相对含量、颜色反射率、有孔虫丰度、冰筏碎屑(IRD)含量、粒度组分及其敏感性分析的综合研究,建立了B84A孔的地层年代框架,其沉积物被划分为MIS 12~MIS 1的沉积序列。阿尔法脊B84A孔可以识别出12个IRD事件,它们大多出现在冰消期,并认为其源区为加拿大北极群岛地区。这些IRD事件反映了加拿大北极冰盖的崩塌和气候变化。阿尔法脊B84A孔沉积物的环境敏感组分分别为细组分(4~9μm)和粗组分(19~53μm),两者的变化趋势相反,主要由海冰和洋流进行搬运,指示了洋流的强度变化。B84A孔的平均沉积速率约为0.4 cm/ka,与阿尔法脊周围地区沉积速率相近。相比于近岸的高沉积速率,其限制因素主要为大面积海冰覆盖造成的较低的生产力和由于长距离搬运造成的较低的陆源输入量。  相似文献   

5.
Using the methodology of A.B. Ronov, we compiled lithofacies maps for the Early and Middle-Late Pleistocene pelagic sedimentation of the Pacific Ocean, accounting for sediment thicknesses. We calculated areas, volumes, masses, and accumulation rates of main sediment types for both Pleistocene subdivisions. A comparison of the results confirmed a strong increase in the rates of terrigenous and biogenic sedimentation. Special emphasis was laid on intensification of sea-ice and eolian sedimentation for the terrigenous types of sediments and on the evolution of siliceous and carbonate sedimentation for the biogenic types of sediments.  相似文献   

6.
The St George Group consists of peritidal carbonate rocks deposited on the continental shelf of North America bordering the ancient Iapetus Ocean. These Lower Ordovician rocks are similar to other lower Palaeozoic limestones and dolostones that accumulated in epeiric seas and veneer cratonic areas worldwide. A wide variety of facies in the St George is grouped into seven lithotopes, interpreted to represent supratidal, intertidal and shallow, high- and low-energy subtidal environments. Rapid lateral facies changes can be observed in some field exposures, and demonstrated by correlation of closely spaced sections. The stratigraphic array of these lithotopes, although too irregular to be simplified into shallowing-upward cycles, suggests that they were deposited as small tidal flat islands and banks. Shallow subtidal areas around islands generated sediment and permitted tidal exchange. Tidal flat islands were somewhat variable in character at any one time, and evolved with changing regional hydrographic conditions. The St George rocks suggest an alternative theory of carbonate sedimentation in large, shallow epeiric seas, namely as small islands and banks built by processes that operated in a tidal regime. Furthermore, this island model provides a framework for a mechanism of cyclic carbonate sedimentation, by which small-scale, peritidal cycles represent tidal flat islands that accreted vertically and migrated laterally as local sediment supply from neighbouring subtidal areas waxed and waned during relatively constant subsidence.  相似文献   

7.
The sedimentation rates in the Sea of Azov for the period of the last 2000 years (Late Azov stage) were studied by methods of absolute geochronology, lithology, and biostratigraphy. The average sedimentation rate of the Late Azov deposits varied from 0.4–0.8 to 1.5–2.0 mm per year. It reached as much as 4.0–6.0 mm per year in the areas close to the sharp coasts and was defined by the area geomorphology. The scheme of the lithological transects, sedimentation rates, and absolute age of the sediments is presented. The palaeoecology peculiarities of deposit accumulation during the Late Azov stage are described from the diatom and spore-pollen analyses.  相似文献   

8.
In this paper, the intra-annual and interannual variability of the sea ice is analysed over the period 1979–2012 from the data and images facilitated by the “National Snow and Ice dates Center”. These data are related to the annual average temperature. The annual average of the marine ice surface area (1979–2012) is very similar in both poles, although its temporary evolution is opposed in both hemispheres. In the Arctic Ocean there is an abrupt reduction of the surface area of the ice during this period. As opposed to it, the marine seas surrounding the Antarctic show an increase of the extension of the ice, especially in the last 15 years, with a maximum value in 2012. With respect to the total of the marine ice over the period 1979–2012, there is an overall deficit balance, because the reduction of the Arctic ice is greater than the increase of the Antarctic ice.  相似文献   

9.
The depositional processes associated with late Devensian ice in areas bordering the Irish Sea basin have been the subject of considerable debate. Among the key areas around the Irish Sea, southwest Wales occupies a particularly crucial position because it is here that ice flowing from the north impinged upon the coast orthogonally and encroached inland. Two main hypotheses have emerged concerning deglaciation of the Irish Sea basin. The traditional hypothesis holds that sedimentation was ice‐marginal or subglacial, whereas an alternative hypothesis that emerged in the 1980s argued that sedimentation was glaciomarine. Southwest Wales is well‐placed to contribute to this debate. However, few detailed sedimentological studies, linked to topography, have been made previously in order to reconstruct glacial environments in this area. In this paper, evidence is presented from four boreholes drilled recently in the Cardigan area, combined with data from coastal and inland exposures in the lower Teifi valley and adjacent areas. A complex history of glaciation has emerged: (i) subglacial drainage channel formation in pre‐Devensian time, (ii) deposition of iron‐cemented breccias and conglomerates possibly during the last interglacial (or in the early/mid‐Devensian interstadial), (iii) late Devensian ice advance across the region, during which a glaciolacustrine sequence over 75 m thick accumulated, within a glacial lake known as Llyn Teifi, (iv) a second high‐level glaciolacustrine succession formed near Llandudoch, (v) outside the Teifi valley, ice‐marginal, subglacial and glaciofluvial sediments were also laid down, providing a near‐continuous cover of drift throughout the area. Glacial advance was characterized by reworking, deformation and sometimes erosion of the underlying sediments. The glaciomarine hypothesis is thus rejected for southwest Wales. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Although the principle of uniformitarianism may be applied to the Precambrian sedimentary record as a whole, certain periods of the Archaean and Palaeoproterozoic witnessed a changing pattern of prime influences controlling the depositional systems. This paper examines the major controls on sedimentation systems and environments during the Archaean and Palaeoproterozoic within the broader perspective of Earth evolution. Earth's earliest sedimentary system (4.4?-3.7 Ga) was presumably comprised of deep oceanic realms and probably influenced primarily by bolide impacts, major tsunamis, localized traction and global contour current patterns, and bathymetry. As continental crust began to form, the impact-dominated, tsunami type sedimentation gave way to wider varieties of sedimentary environments, known from the oldest sedimentary records. During early continental crustal evolution (c. 3.7–2.7 Ga), sedimentation was essentially of greenstone-type. Volcanic and volcaniclastic rocks were the major components of the greenstone belts, associated with thin carbonates, stromatolitic evaporites, BIF, pelites and quartzites and lesser synorogenic turbidites, conglomerates and sandstones. Volcanism and active tectonism (reflecting dynamic depositional settings during island arc and proto-continental nucleus formation) were the predominant factors influencing sedimentation during this phase of Earth evolution. Transgressions and regressions under the combined influence of tectonics and eustasy are reflected in fining- and coarsening-upwards successions from the proto-cratonic settings; low freeboard enabled the transgression to affect large areas of the proto-cratons. As the earliest, relatively stable craton formed, through a combination of plate tectonic and mantle-thermal processes, continents and supercontinents with the potential for supercontinental cycles started to influence sedimentation strongly. Major controls on Neoarchaean–Palaeoproterozoic sedimentation systems (2.7–1.6 Ga) were provided by a combination of superplume events and plate tectonics. Two global-scale ‘superevents’ at c. 2.7 Ga and c. 2.2–1.8 Ga were accompanied by eustatic rise concomitant with peaks in crustal growth rates, and large epeiric seas developed. The operation of first-order controls leading to development of vast chemical sedimentary platforms in these epeiric seas and concomitant palaeo-atmospheric and palaeo-oceanic evolution combined to provide a second-order control on global sedimentary systems in the Neoarchaean–Palaeoproterozoic period. The supercontinental cycle had become well established by the end of the Palaeoproterozoic, with the existence of large cratons across broad spectrums of palaeolatitude enabling erg development. The entire spectrum of sedimentary systems and environments came into existence by c. 1.8 Ga, prime influences on sedimentation and depositional system possibly remaining essentially uniform thereafter.  相似文献   

11.
During an early phase of the Last Ice Age (Weichselian, Valdaian), about 90 000 yr ago, an ice sheet formed over the shallow Barents and Kara seas. The ice front advanced on to mainland Russia and blocked the north‐flowing rivers (Yenissei, Ob, Pechora, Dvina and others) that supply most of the freshwater to the Arctic Ocean. The result was that large ice‐dammed lakes were formed between the ice sheet in the north and the continental water divides to the south. Here we present reconstructions and calculations of the areas and volumes of these lakes. The lake on the West Siberian Plain was nearly twice as large as the largest lake on Earth today. The well‐mapped Lake Komi in northeast Europe and a postulated lake in the White Sea Basin would also rank before the present‐day third largest lake. The lakes overflowed towards the south and thus the drainage of much of the Eurasian continent was reversed. The result was a major change in the water balance on the continent, decreased freshwater supply to the Arctic Ocean, and increased freshwater flow to the Aral, Caspian, Black and Baltic seas. A sudden outburst of the lakes' water to the Arctic Ocean when the ice sheet thinned is postulated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
楚科奇海融冰过程中的海水结构研究   总被引:6,自引:0,他引:6  
楚科奇海是北冰洋的陆架海,中部凸起的Herald浅滩对海水流动和海冰融化过程有显著影响。利用我国1999年夏季北冰洋考察数据,讨论了楚科奇海海冰融化过程中的海水结构。结果表明,海区内存在2个相继进入的水团,一个是海冰覆盖期进入的阿纳德尔水(AW),具有低温、高盐、高硅酸盐的特点;另一个是海冰融化后进入的白令海陆架水(BSW),具有高温、低盐、低硅酸盐的特点。在开阔水域,表层水温度达到7℃以上,高于当地气温,是当地太阳辐射的加热作用形成的。开阔海域的水体向冰下扩展,表层水温在1℃以上,形成冰下暖水区,加速了海冰的融化;Her-ald浅滩阻挡了海水的流动形成绕流,其北部处于绕流的死角,表层水温在-1℃以下,形成冰下冷水区。在开阔海域,上层海水的混合深度达到15~20 m,而渗入冰下的暖水深度小于5 m,体现了海冰对暖水渗入的阻滞作用。所有海冰覆盖站位10 m层的叶绿素-a含量都很高,表明冰下海水处于浮游植物大量繁殖的状态,有可能对海水吸收热量和海冰融化产生显著的影响。  相似文献   

13.
《Sedimentary Geology》2007,193(1-4):193-201
We investigated proglacial fluvial sedimentation processes in the SE Lithuanian Plain by means of lithofacies analysis. The main parameters on which interpretations were based, were depositional structures of sandy sediments, paleohydraulic parameters and grain-size distribution. The development of the SE Lithuanian Plain illustrates the phenomenal shift of proglacial fluvial sedimentation from outwash plain to ice-marginal river during the ice retreat of the last glaciation. Three facies assemblages of braidplain deposits and two facies assemblages of palaeovalley deposits were distinguished in the sandy plain by means of qualitative and quantitative sedimentological research. This raises the question how the commonly accepted development of a SE orientated outwash plain could turn into an almost perpendicular (SW running) ice-marginal river. The vertical and lateral transitions of outwash plain facies present a classical example of braidplain evolution on slightly inclined lowlands, with well expressed proximal, middle and distal parts. Mid- and side-channel (point-bar) deposits of the proglacial valley point, however, which is unusual for proglacial fluvial systems, to a meandering character of the ice-marginal river. River types of various scale show a change from braided into meandering in the proglacial subenvironment. Lithofacies analysis and paleohydraulic parameters show distinct differences of the hydrodynamic regime during the first stage of the sandy plain development: from sedimentation on an outwash plain in a proglacial valley to sedimentation on a braidplain in a wide ice-marginal valley. The outwash system is characterized by a distinct downstream decrease in energy, whereas the ice-marginal river maintained most of its power and velocity.  相似文献   

14.
Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover   总被引:7,自引:0,他引:7  
Lake Hoare in the Dry Valleys of Antarctica is covered with a perennial ice cover more than 3 m thick, yet there is a complex record of sedimentation and of growth of microbial mats on the lake bottom. Rough topography on the ice covering the lake surface traps sand that is transported by the wind. In late summer, vertical conduits form by melting and fracturing, making the ice permeable to both liquid water and gases. Cross-sections of the ice cover show that sand is able to penetrate into and apparently through it by descending through these conduits. This is the primary sedimentation mechanism in the lake. Sediment traps retrieved from the lake bottom indicate that rates of deposition can vary by large amounts over lateral scales as small as 1 m. This conclusion is supported by cores taken in a 3 × 3 grid with a spacing of 1.5 m. Despite the close spacing of the cores, the poor stratigraphic correlation that is observed indicates substantial lateral variability in sedimentation rate. Apparently, sand descends into the lake from discrete, highly localized sources in the ice that may in some cases deposit a large amount of sand into the lake in a very short time. In some locations on the lake bottom, distinctive sand mounds have been formed by this process. They are primary sedimentary structures and appear unique to the perennially ice-covered lacustrine environment. In some locations they are tens of centimetres high and gently rounded with stable slopes; in others they reach ~ 1 m in height and have a conical shape with slopes at angle of repose. A simple formation model suggests that these differences can be explained by local variations in water depth and sedimentation rate. Rapid colonization and stabilization of fresh sand surfaces by microbial mats composed of cyanobacteria, eukaryotic algae, and heterotrophic bacteria produces a complex intercalation of organic and sandy layers that are a distinctive form of modern stromatolites.  相似文献   

15.
A new approach using dispersed organic matter of the water column in sedimentation traps in comparison with the surface layer of the bottom sediments is applied for the study of marine sedimentation. This approach provides the opportunity for an in situ (by fluxes of sedimentary matter in the water column) study of modern sedimentation in the surface layers of the bottom sediments and tracing the changes in the environment and climate at a new technological level. This also allows us to choose the reverse task: to reconstruct the fluxes of the matter and chemical elements in ancient seas by the rates (or absolute masses) of sedimentation.  相似文献   

16.
The theoretical rates of deposition for fine sediments over the last 10 ka have been deduced and plotted for the Kieler Bucht. Assumptions are that the bay has remained as a closed sedimentary system, and that the fine sediments deposit in water deeper than 10 m. A sharp peak of sedimentation activity is indicated between 7.5 and 8.5 ka B.P. with low rates prior to 9.5 ka and since 6 ka. Comparison of rates obtained from dated cores extracted from different parts of the Kieler Bucht with the theoretical curve shows general conformity, and confirms that peak sedimentation rates exceeding 3 mm/a, as averaged over 100–200 years, occurred between 8 and 9 ka, with the suggestion of a minor activity peak between 3 and 4 ka. The overall consistency supports the view that the bay has acted essentially as a closed sedimentary basin during the Holocene marine transgression and subsequently.  相似文献   

17.
《Quaternary Science Reviews》2004,23(11-13):1435-1454
Numerous short sediment cores have been retrieved from the central Arctic Ocean, many of which have been assigned sedimentation rates on the order of mm/ka implying that the Arctic Basin was starved of sediments during Plio–Pleistocene times. A review of both shorter-term sedimentation rates, through analysis of available sediment core data, and longer-term sedimentation rates, through estimates of total sediment thickness and bedrock age, suggests that cm/ka-scale rates are pervasive in the central Arctic Ocean. This is not surprising considering the physiographic setting of the Arctic Ocean, being a small land-locked basin since its initial opening during Early Cretaceous times. We thus conclude that the central Arctic Ocean has not been a sediment starved basin, either during Plio–Pleistocene times or during pre-Pliocene times. Rigorous chronstratigraphic analysis permits correlation of sediment cores over a distance of ∼2600 km, from the northwestern Amerasia Basin to the northwestern Eurasia Basin via the Lomonosov Ridge, using paleomagnetic, biostratigraphic, and cyclostratigraphic data.  相似文献   

18.
Significant short-term fluctuations are characteristic of geological history since Precambrian times. Only the younger Quaternary climatic fluctuations are known in more detail as a result of a high grade time resolution. Climatic change can also be postulated with respect to older, cold periods during which polar inland ice sheets developed. From a discussion of endogene and exogene interpretations it is shown that global climatic changes, and the sea-level changes induced by them, as well as changes in the position and extent of climatic zones throughout the world provide a control mechanism for sedimentation which is consistent with cyclic sedimentation in Late Palaeozoic times, and also if the basin subsides non-cyclically. The model allows an explanation of the development of the Permo-Carboniferous sedimentary cycles without numerous short-term vertical oscillations of the earth's crust. In reality, exogene and endogene controls on sedimentation act together in great variety of combinations.  相似文献   

19.
Nares Strait, a major connection between the Arctic Ocean and Baffin Bay, was blocked by coalescent Innuitian and Greenland ice sheets during the last glaciation. This paper focuses on the events and processes leading to the opening of the strait and the environmental response to establishment of the Arctic‐Atlantic throughflow. The study is based on sedimentological, mineralogical and foraminiferal analyses of radiocarbon‐dated cores 2001LSSL‐0014PC and TC from northern Baffin Bay. Radiocarbon dates on benthic foraminifera were calibrated with ΔR = 220±20 years. Basal compact pebbly mud is interpreted as a subglacial deposit formed by glacial overriding of unconsolidated marine sediments. It is overlain by ice‐proximal (red/grey laminated, ice‐proximal glaciomarine unit barren of foraminifera and containing >2 mm clasts interpreted as ice‐rafted debris) to ice‐distal (calcareous, grey pebbly mud with foraminifera indicative of a stratified water column with chilled Atlantic Water fauna and species associated with perennial and then seasonal sea ice cover) glacial marine sediment units. The age model indicates ice retreat into Smith Sound as early as c. 11.7 and as late as c. 11.2 cal. ka BP followed by progressively more distal glaciomarine conditions as the ice margin retreated toward the Kennedy Channel. We hypothesize that a distinct IRD layer deposited between 9.3 and 9 (9.4–8.9 1σ) cal. ka BP marks the break‐up of ice in Kennedy Channel resulting in the opening of Nares Strait as an Arctic‐Atlantic throughflow. Overlying foraminiferal assemblages indicate enhanced marine productivity consistent with entry of nutrient‐rich Arctic Surface Water. A pronounced rise in agglutinated foraminifers and sand‐sized diatoms, and loss of detrital calcite characterize the uppermost bioturbated mud, which was deposited after 4.8 (3.67–5.55 1σ) cal. ka BP. The timing of the transition is poorly resolved as it coincides with the slow sedimentation rates that ensued after the ice margins retreated onto land.  相似文献   

20.
The Gulf of Corinth is a graben, which has undergone extension during the Late Quaternary. The subsidence rate is rapid in the currently marine part whereas uplift now affects a large part of the initially subsiding area in the North Peloponnese. In this paper, we document the rates of subsidence/uplift and extension based on new subsurface data, including seismic data and long piston coring in the deepest part of the Gulf. Continuous seismic profiling data (air gun) have shown that four (at least) major oblique prograding sequences can be traced below the northern margin of the central Gulf of Corinth. These sequences have been developed successively during low sea level stands, suggesting continuous and gradual subsidence of the northern margin by 300 m during the Late Quaternary (last 250 ka). Subsidence rates of 0.7–1.0 m kyr− 1 were calculated from the relative depth of successive topset to foreset transitions. The differential total vertical displacement between the northern and the southern margins of the Corinth graben is estimated at about 2.0–2.3 m kyr− 1.

Sequence stratigraphic interpretation of seismic profiles from the basin suggests that the upper sediments (0.6 s twtt thick) in the depocenter were accumulated during the last 250 ka at a mean rate of 2.2–2.4 m kyr− 1. Long piston coring in the central Gulf of Corinth basin enabled the recovery of lacustrine sediments, buried beneath 12–13.5 m of Holocene marine sediments. The lacustrine sequence consists of varve-like muddy layers interbedded with silty and fine sand turbidites. AMS dating determined the age of the marine–lacustrine interface (reflector Z) at about 13 ka BP. Maximum sedimentation rates of 2.4–2.9 m kyr− 1 were calculated for the Holocene marine and the last glacial, lacustrine sequences, thus verifying the respective rates obtained by the sequence stratigraphic interpretation. Recent accumulation rates obtained by the 210Pb-radiometric method on short sediment box cores coincide with the above sedimentation rates. Vertical fault slip rates were measured by using fault offsets of correlated reflector Z. The maximum subsidence rate of the depocenter (3.6 m kyr− 1) exceeds the maximum sedimentation rate by 1.8 m kyr− 1, which, consequently, corresponds to the rate of deepening of the basin's floor. The above rates indicate that the 2.2 km maximum sediment thickness as well as the 870 m maximum depth of the basin may have formed during the last 1 Ma, assuming uniform mean sedimentation rate throughout the evolution of the basin.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号