首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structures consisting of two parts, a lower part made of concrete and an upper part made of steel are investigated. In code-based seismic design of such structures several practical difficulties are encountered, due to inherent differences in the nature of dynamic response of each part. The specific issue addressed here is the analysis complications due to the different damping ratios of the two parts. Such structures are irregularly damped and have complex modes of vibration, so that their analysis cannot be handled with readily available commercial software. This work aims at providing a simple yet sufficiently accurate methodology for handling the damping irregularity of such structures, by proposing an overall equivalent damping ratio that can be applied to the complete structure for obtaining its dynamic response. This is achieved by first transforming MDOF irregular structures into equivalent 2-DOF oscillators, using the first mode characteristics of each part, and then using equivalent uniform damping ratios that are derived by means of a semi-empirical error minimization procedure. Thus, available commercial software can be applied for seismic analysis and design and the provisions of existing seismic codes can be adhered to.  相似文献   

2.
Equivalent viscous damping for steel concentrically braced frame structures   总被引:1,自引:1,他引:0  
The direct displacement based seismic design procedure utilises equivalent viscous damping expressions to represent the effect of energy dissipation of a structural system. Various expressions for the equivalent viscous damping of different structural systems are available in the literature, but the structural systems examined in the past have not included concentrically braced frame structures. Thus, this study describes the development of an equivalent viscous damping equation for concentrically braced frame structures based on the hysteretic response of 15 different single storey models. Initially, equivalent viscous damping is calculated based on the area based approach and then corrected for the earthquake excitation. An iterative procedure is adopted to calibrate the equivalent viscous damping expression to the results of inelastic time history analyses using a number of spectrum-compatible real accelerograms. From the results of this research, a new damping expression is developed as a function of the ductility and the non dimensional slenderness ratio.  相似文献   

3.
Damping modification factors (DMF) are used in modern seismic codes to adjust elastic response spectral values corresponding to 5% of viscous damping to other higher or lower damping levels. This paper presents a simple and effective procedure to estimate DMF for single‐degree‐of‐freedom systems. Empirical expressions are proposed for displacement, velocity and acceleration response spectra, where four types of soil conditions, from hard rock to soft soil are considered. This study also examines, for the first time, the influence of artificial earthquakes on DMF. Furthermore, natural near‐fault and far‐fault seismic ground motions are considered where it is testified that the fault distance has no impact on DMF. Finally, it confirms that, in contrast to the considerations of many seismic codes, DMF are strongly dependent on the period of structural vibration while there are significant problems of using the same modification factor to estimate maximum displacement, velocity and seismic forces. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Selecting, scaling and matching accelerograms are critically important to engineering design and assessment, enabling structural response to be determined with greater confidence and through fewer analyses than if unscaled accelerograms are employed. This paper considers the response of an 8‐storey multiple‐degree‐of‐freedom reinforced concrete structure to accelerograms selected, linearly scaled or spectrally matched using five different techniques. The first method consists of selecting real records on the basis of seismological characteristics, while the remaining methods make an initial selection on the basis of magnitude and spectral shape before (1) scaling to the target spectral acceleration at the initial period; (2) scaling to the target spectrum over a range of periods; (3) using wavelet adjustments to match the target spectrum and (4) using wavelet adjustments to match multiple target spectra for multiple damping ratios. The analyses indicate that the number of records required to obtain a stable estimate of the response decreases drastically as one moves through these methods. The exact number varies among damage measures and is related to the predictability of the damage measure. For measures such as peak roof and inter‐storey drift, member end rotation and the Park and Ang damage index, as few as one or two records are required to estimate the response to within ±5% (for a 64% confidence level) if matching to multiple damping ratios is conducted. Bias checks are made using predictive equations of the expected response derived from the results of 1656 nonlinear time‐domain analyses of the structure under the action of unscaled accelerograms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A new neural‐network‐based methodology for generating artificial earthquake spectrum compatible accelerograms from response spectra was proposed in 1997, in which, the learning capabilities of neural networks were used to develop the knowledge of the inverse mapping from the response spectra to earthquake accelerograms. Recently, this methodology has been further extended and enhanced. This paper presents a new stochastic neural network that is capable of generating multiple earthquake accelerograms from a single‐response spectrum. A new stochastic feature to the neural network has been combined with a new scheme for data compression using the replicator neural networks developed in the original method. A benefit of this extended methodology is gaining efficiency in compressing the earthquake accelerograms and extracting their characteristics. The proposed method produces a stochastic ensemble of earthquake accelerograms from any response spectra or design spectra. An example is presented that used 100 recorded accelerograms to train the neural network and several design spectra and response spectra to test this improved methodology. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Asymmetrically yielding single-degree-of-freedom elastoplastic systems are subjected to simulated accelerograms based on El Centro-NS, 1940 ground motion (wide frequency band) to calculate the corresponding ductility demands. Results are compared with those corresponding to simulated accelerograms of the SCT-EW, 1985 Mexico earthquake (narrow frequency band) obtained in a previous work. Results obtained reveal that the characteristics of the excitation influence the response of asymmetrically yielding structures and that the differences found on responses corresponding to both earthquakes are due to frequency content, duration and/or intensity of motion. The effect of the latter concepts is studied using modulating sinusoidal excitations as well as accelerograms recorded on soft and hard soils of Mexico City. Two alternate expressions are proposed to evaluate the increase in ductility demands of structures with asymmetric force-displacement curves with respect to symmetric ones. Those expressions take into account motion intensity and duration, as well as seismic design coefficient.  相似文献   

7.
Damping coefficients are frequently used in earthquake engineering as a simple way to adjust the pseudo-acceleration or displacement response spectra associated with a viscous damping ratio of 5% to the higher values of viscous damping needed for design of structures equipped with base isolation and/or supplemental energy dissipation devices. In this study, damping coefficients for the single-degree-of-freedom system subjected to near-fault ground motions are calculated for a large range of periods and damping levels. The results indicate that damping coefficients proposed in design codes and previous studies, based primarily on far-field ground motion records, tend to not be conservative for near-fault seismic excitations. A new approach is recommended for the derivation of damping coefficients appropriate for engineering analysis and design in the immediate vicinity of the earthquake fault. This includes the normalization of the period axis with respect to the duration of the ground velocity pulses recorded in the near-fault region. The pulse duration is controlled by the rise time on the fault plane and scales directly with earthquake magnitude.  相似文献   

8.
An integrated approach for addressing the problem of synthesizing artificial seismic accelerograms compatible with a given displacement design/target spectrum is presented in conjunction with aseismic design applications. Initially, a stochastic dynamics solution is used to obtain a family of simulated non-stationary earthquake records whose response spectrum is on the average in good agreement with the target spectrum. The degree of the agreement depends significantly on the adoption of an appropriate parametric evolutionary power spectral form, which is related to the target spectrum in an approximate manner. The performance of two commonly used spectral forms along with a newly proposed one is assessed with respect to the elastic displacement design spectrum defined by the European code regulations (EC8). Subsequently, the computational versatility of the family of harmonic wavelets is employed to modify iteratively the simulated records to satisfy the compatibility criteria for artificial accelerograms prescribed by EC8. In the process, baseline correction steps, ordinarily taken to ensure that the obtained accelerograms are characterized by physically meaningful velocity and displacement traces, are elucidated. Obviously, the presented approach can be used not only in the case of the EC8, for which extensive numerical results/examples are included, but also for any code provisions mandated by regulatory agencies. In any case, the presented numerical results can be quite useful in any aseismic design process dominated by the EC8 specifications.  相似文献   

9.
A versatile approach is employed to generate artificial accelerograms which satisfy the compatibility criteria prescribed by the Chinese aseismic code provisions GB 50011-2001. In particular, a frequency dependent peak factor derived by means of appropriate Monte Carlo analyses is introduced to relate the GB 50011 -2001 design spectrum to a parametrically defined evolutionary power spectrum (EPS). Special attention is given to the definition of the frequency content of the EPS in order to accommodate the mathematical form of the aforementioned design spectrum. Further, a one-to-one relationship is established between the parameter controlling the time-varying intensity of the EPS and the effective strong ground motion duration. Subsequently, an efficient auto-regressive moving-average (ARMA) filtering technique is utilized to generate ensembles of non-stationary artificial accelerograms whose average response spectrum is in a close agreement with the considered design spectrum. Furthermore, a harmonic wavelet based iterative scheme is adopted to modify these artificial signals so that a close matching of the signals' response spectra with the GB 50011-2001 design spectrum is achieved on an individual basis. This is also done for field recorded accelerograms pertaining to the May, 2008 Wenchuan seismic event. In the process, zero-phase high-pass filtering is performed to accomplish proper baseline correction of the acquired spectrum compatible artificial and field accelerograms. Numerical results are given in a tabulated format to expedite their use in practice.  相似文献   

10.
The next generation of seismic design codes, especially those adopting the framework of performance‐based design, will include the option of design based on displacements rather than forces. For direct displacement‐based design using the substitute structure approach, the spectral ordinates of displacement need to be specified for a wide range of response periods and for several levels of damping. The code displacement spectra for damping values higher than the nominal value of 5% of critical will generally be obtained, as is the case in Eurocode 8 and other design codes, by applying scaling factors to the 5% damped ordinates. These scaling factors are defined as functions of the damping ratio and, in some cases, the response period, but are independent of the nature of the expected ground shaking. Using both predictive equations for spectral ordinates at several damping levels and stochastic simulations, it is shown that the scaling factors for different damping levels vary with magnitude and distance, reflecting a dependence of the scaling on the duration of shaking that increases with the damping ratio. The options for incorporating the influence of this factor into design code specifications of displacement response spectra are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A displacement-based design (DBD) procedure aiming to proportion hysteretic damped braces (HYDBs) in order to attain, for a specific level of seismic intensity, a designated performance level of a structure is proposed for the retrofitting of framed buildings. A key step for the reliability of the DBD procedure is the selection of the equivalent viscous damping in order to account for the energy dissipated by the damped braced frame. In this paper, expressions of the equivalent damping are obtained considering the energy dissipated by the HYDBs and the framed structure. To this end, dynamic analyses of an equivalent single degree of freedom system, whose response is idealized by a trilinear model, are carried out considering real accelerograms matching, on the average, Eurocode 8 (EC8) response spectrum for a medium subsoil class. Then, a three-storey reinforced concrete (r.c.) framed structure of a school building, designed in a medium-risk seismic region according to the Italian code in force in 1975, is supposed as retrofitted as if in a high-risk seismic region of the current seismic code (NTC08) by the insertion of HYDBs. Nonlinear static analyses are carried out to evaluate the vulnerability of the primary structure, characterized by the lack of interior girders along the floor slab direction, and to select optimal properties of the HYDBs. The effectiveness of the retrofitting solutions is checked referring to nonlinear dynamic analyses, considering artificially generated accelerograms whose response spectra match those adopted by NTC08 for the earthquake design levels corresponding to the serviceability and ultimate limit states.  相似文献   

12.
俯冲带地区竖向地震动的阻尼修正系数在工程结构抗震设计中起着重要作用。由于俯冲带地区的板块构造复杂,俯冲带地区的地震可划分为浅壳上地幔地震、板内地震和板间地震3种类型。为研究不同类型俯冲带地震的竖向地震动阻尼修正系数间是否具有显著差异而需要分别建立不同的阻尼修正系数模型,采用日本俯冲带地区的地震动数据,通过假设检验和构造差异指标的方式对不同类型地震的竖向加速度和位移反应谱的阻尼修正系数进行两两比较。结果显示:不同地震类型的竖向地震动阻尼修正系数在众多谱周期上存在统计意义和工程实际意义上的显著差异。该研究表明:研究俯冲带地区竖向地震动阻尼修正系数时需要考虑地震类型的影响。  相似文献   

13.
基于非线性有限元理论,以某独塔双索面刚构体系斜拉桥为例建立了动力空间有限元模型,对该桥的动力特性进行了研究。在此基础上通过三角级数拟合规范反应谱的方法,合成了适用于结构分析的人造地震波,并以此和两条实际地震记录作为输入地震动,应用时程分析法对比分析了一致激励和行波激励下的结构地震反应。研究结果表明,在考虑纵向+竖向组合作用时,独塔双索面斜拉桥的内力和位移反应比纵向分量单独作用时更为显著;行波效应可以明显减小结构的位移反应,对结构抗震来讲是有利的。以上结论将为此类桥梁的设计和发展提供一定的理论依据。  相似文献   

14.
In damage‐based seismic design it is desirable to account for the ability of aftershocks to cause further damage to an already damaged structure due to the main shock. Availability of recorded or simulated aftershock accelerograms is a critical component in the non‐linear time‐history analyses required for this purpose, and simulation of realistic accelerograms is therefore going to be the need of the profession for a long time to come. This paper attempts wavelet‐based simulation of aftershock accelerograms for two scenarios. In the first scenario, recorded main shock and aftershock accelerograms are available along with the pseudo‐spectral acceleration (PSA) spectrum of the anticipated main shock motion, and an accelerogram has been simulated for the anticipated aftershock motion such that it incorporates temporal features of the recorded aftershock accelerogram. In the second scenario, a recorded main shock accelerogram is available along with the PSA spectrum of the anticipated main shock motion and PSA spectrum and strong motion duration of the anticipated aftershock motion. Here, the accelerogram for the anticipated aftershock motion has been simulated assuming that temporal features of the main shock accelerogram are replicated in the aftershock accelerograms at the same site. The proposed algorithms have been illustrated with the help of the main shock and aftershock accelerograms recorded for the 1999 Chi–Chi earthquake. It has been shown that the proposed algorithm for the second scenario leads to useful results even when the main shock and aftershock accelerograms do not share the same temporal features, as long as strong motion duration of the anticipated aftershock motion is properly estimated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A regression analysis was made on 277 acceleration response spectra computed from Japanese accelerograms by subdividing the data into discrete categories. Five magnitude and distance categories, and four ground condition categories were used. The maximum absolute acceleration amplitude is predicted as a product of three factors, each representing a weighting factor for magnitude, distance and ground condition category at each of the 18 response spectrum periods from 0·1 s to 4 s at a damping value of 5 per cent of critical. A method was then developed to evaluate seismic hazard in terms of acceleration response spectrum by using the prediction model and the seismicity data, and it was applied to obtain seismic macro-zoning maps of Japan which are dependent on the natural period of a structure. The results of the analysis indicated that a single seismic zoning map may not be sufficient to cover a variety of structures with a wide range of periods because the expected spectral shape differs according to the seismicity of the area.  相似文献   

16.
Modern engineering design methods require ground motion time histories as input for non-linear dynamic structural analysis. Non-linear dynamic methods of analysis are increasingly applied in the context of probabilistic risk assessments and for cost-effective design of critical infrastructures. In current engineering practice artificial time histories matching deterministic design spectra or probabilistic uniform hazard spectra are most frequently used for engineering analysis. The intermediate step of generation of response spectra can lead to a biased estimate of the potential damage from earthquakes because of insufficient consideration of the true energy content and strong motion duration of earthquakes. Thus, assessment of seismic risk may seem unrealistic. An engineering approach to the development of three-component ground motion time histories has been established which enables consideration of the typical characteristics of seismic sources, regional ground motion attenuation, and the main geotechnical characteristics of the target site. Therefore, the approach is suitable for use in scenario-based risk analysis a larger number of time histories are required for representation of the seismic hazard. Near-field effects are implemented in the stochastic source model using engineering approximations. The approach is suggested for use in areas of low seismicity where ground motion records of larger earthquakes are not available. Uncertainty analysis indicates that ground motions generated by individual earthquakes are well constrained and that the usual lognormal model is not the best choice for predicting the upper tail of the distribution of the ground motions.  相似文献   

17.
This paper investigates damping modification factors in eastern Canada based on historical and simulated records compatible with seismic hazard in this region. Damping modification factors are characterized as a function of magnitude, distance, site condition, and damping ratio. Damping modification factors corresponding to historical and simulated ground motions on rock sites are shown to exhibit the same trends for all damping levels. In addition to period dependency of damping modification factors, we demonstrate their sensitivity to magnitude variations at longer periods. The effect of distance is shown to be less pronounced. It is also observed that soil conditions affect damping modification factors at short as well as longer periods. Period-dependent equations are proposed for practical assessment of damping modification factors corresponding to damping ratios between 1 and 40%, considering different magnitude–distance combinations and soil conditions representative of seismic hazard in eastern Canada.  相似文献   

18.
Tall buildings and flexible structures require a better characterization of long period ground motion spectra than the one provided by current seismic building codes. Motivated by that, a methodology is proposed and tested to improve recorded and synthetic ground motions which are consistent with the observed co-seismic displacement field obtained from interferometric synthetic aperture radar (InSAR) analysis of image data for the Tocopilla 2007 earthquake (Mw=7.7) in Northern Chile. A methodology is proposed to correct the observed motions such that, after double integration, they are coherent with the local value of the residual displacement. Synthetic records are generated by using a stochastic finite-fault model coupled with a long period pulse to capture the long period fling effect.It is observed that the proposed co-seismic correction yields records with more accurate long-period spectral components as compared with regular correction schemes such as acausal filtering. These signals provide an estimate for the velocity and displacement spectra, which are essential for tall-building design. Furthermore, hints are provided as to the shape of long-period spectra for seismic zones prone to large co-seismic displacements such as the Nazca-South American zone.  相似文献   

19.
Flat slab system is becoming widely popular for multistory buildings due to its several advantages. However, the performance of flat slab buildings under earthquake loading is unsatisfactory due to their vulnerability to punching shear failure. Several national design codes provide guidelines for designing flat slab system under gravity load only. Nevertheless, flat slab buildings are also being constructed in high seismicity regions. In this paper, performance of flat slab buildings of various heights, designed for gravity load alone according to code, is evaluated under earthquake loading as per ASCE/SEI 41 methodology. Continuity of slab bottom reinforcement through column cage improves the performance of flat slab buildings to some extent, but it is observed that these flat slab systems are not adequate in high seismicity areas and need additional primary lateral load resisting systems such as shear walls. A displacement-based method is proposed to proportion shear walls as primary lateral load resisting elements to ensure satisfactory performance. The methodology is validated using design examples of flat slab buildings with various heights.  相似文献   

20.
Assessment of seismic design response factors of concrete wall buildings   总被引:3,自引:2,他引:1  
To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号