首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,国内学者强调对于复杂和超限结构需进行中震性能设计,即在小震弹性设计后进行中震下的承载力复核及调整,然而中震设计能否提高结构整体抗震性能仍存在争议.为探究中震设计与小震设计方法的差异,本文依据现行规范,以设防烈度、结构高度和场地类别为变化参数,建立了48个典型RC剪力墙模型,并分别以"小震"、"高规中震"、"广东...  相似文献   

2.
钢筋混凝土结构是一种广泛使用的结构形式,其耐久性设计是一个十分迫切需要解决的问题。在一般大气环境下,混凝土碳化和钢筋锈蚀是钢筋混凝土结构耐久性的重要影响因素,在其作用下结构的抗震承载力发生变化,因此可将结构抗震承载力因素引入结构的耐久性设计中。采用改进能力谱法,以罕遇地震下薄弱层的弹塑性层间位移作为结构承载力指标,研究了一般大气环境下钢筋锈蚀因素对钢筋混凝土结构抗震耐久性的影响,提出了基于抗震承载力和改进的能力谱法的钢筋混凝土结构耐久性设计方法。通过一个五层钢筋混凝土结构的算例说明了验算结构抗震性能耐久行的必要性。  相似文献   

3.
Nonlinear static (pushover) analysis has become a popular tool during the last decade for the seismic assessment of buildings. Nevertheless, its main advantage of lower computational cost compared to nonlinear dynamic time‐history analysis (THA) is counter‐balanced by its inherent restriction to structures wherein the fundamental mode dominates the response. Extension of the pushover approach to consider higher modes effects has attracted attention, but such work has hitherto focused mainly on buildings, while corresponding work on bridges has been very limited. Hence, the aim of this study is to adapt the modal pushover analysis procedure for the assessment of bridges, and investigate its applicability in the case of an existing, long and curved, bridge, designed according to current seismic codes; this bridge is assessed using three nonlinear static analysis methods, as well as THA. Comparative evaluation of the calculated response of the bridge illustrates the applicability and potential of the modal pushover method for bridges, and quantifies its relative accuracy compared to that obtained through other inelastic methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
本文通过对一幢中高层住宅在不同水准地震作用下进行的弹性计算和弹塑性动力时程分析,研究了钢筋混凝土异形柱框架-剪力墙结构的动力特性和抗震能力。结果显示该结构整体抗侧刚度大,抗震性能较好。进入塑性阶段后,塑性铰分布合理,满足了结构延性设计的要求。  相似文献   

5.
RC框架结构直接基于位移的抗震优化设计方法   总被引:2,自引:0,他引:2  
探讨了静力弹塑性分析验证过程中遇到的几种情况及其产生原因,指出建筑结构设计方案在基于位移的抗震设计中的重要性。从框架结构的侧移模式出发,导出结构一定性能水平的目标顶点位移,建立结构目标顶点位移与等效位移的关系式,根据位移反应谱,由等效位移推出框架结构在各性能水平的目标周期。然后,由pushover曲线确定结构刚度退化机理,导出结构各性能水平相应的自振周期比例关系,根据结构各性能水平自振周期与目标周期的关系确定结构最优设计方案。通过例题加以验证,说明了此设计方法的可行性。  相似文献   

6.
本文用墙单元将剪力墙中断的框架-剪力墙结构离散,利用传递矩阵技术探讨此不规则框架-剪力墙结构的地震反应,四阶Runge-Kutta法用来求解用正则坐标写出的对应于第j个振型的运动方程.将得到的3个不同剪力墙高度的钢筋混凝土框架-剪力墙模型结构的固有频率、最大位移反应和基底剪力与振动台的试验结果进行对比,说明本数值方法是正确的、有效的.最后得出了并不是对所有的框架-剪力墙结构都需把其剪力墙延伸到整个结构高度的结论以及用墙单元和传递矩阵技术求解能有效地减少计算单元、取得同样精度的计算结果.  相似文献   

7.
利用我国现行抗震规范,直接根据结构的底层层间目标位移反向求取结构的底层层间屈服剪力;给出了该屈服剪力与结构基底剪力之比的数学表达式,初步分析了影响该比值的主要因素及其影响规律。在此基础上,提出了一种新的直接基于位移的结构抗震设计方法。最后,通过算例分析初步考察了该方法的可行性。  相似文献   

8.
钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法   总被引:4,自引:5,他引:4  
框架柱的变形能力主要取决于轴压比和约束箍筋用量,本文建立了柱塑性铰区配箍特征值λcv,轴压比n及塑性铰极限转动量θplc^u之间的函数关系,即λcv-n-θplc^u关系式,并与柱试验数据进行了对比,计算公式与试验结果在平均意义上吻合很好。文中推导了柱截面λcv-n-μcφ关系式,建立了配箍特征值λcv、轴压比n、柱曲率延性μcφ之间的关系。在本文公式的基础上,讨论了按现行抗震设计规范最小配箍要求的RC框架柱所达到的最大变形能力,同时指出规范的构造要求并不总满足特定的变形要求。文中提出了框架柱的性能设计方程,给出了框架柱在指定性能目标DI下基于性能的抗震设计方法的基本过程。  相似文献   

9.
钢筋混凝土框架梁的变形能力及基于性能的抗震设计方法   总被引:6,自引:0,他引:6  
本文以Priestley改进的Mander约束混凝土模型为基础推导了RC梁截面λbv-ξn-μbψ关系的一般计算公式和简化计算公式λbv-ξ-μbψ,建立了配箍特征值λbv、相对受压区高度ξn及曲率延性μbψ三者之间的量化关系式,用于梁截面在目标曲率延性下的变形能力设计,给出了梁截面在目标曲率延性下的设计流程图.对所设计的梁截面进行变形能力验算,均可达到设定的目标曲率延性.在简化的λbv-ξ-μbψ公式基础上建立了框架梁的性能设计方程,即λbv-ξ-θplb关系式,给出了RC框架梁基于性能的抗震设计方法的一般步骤.设计者可灵活地根据性能要求设定可接受的破损指标DI进行梁的性能设计.  相似文献   

10.
In this paper, seismic analysis of plane RC frame structures with High Damping Rubber Bearings (HDRBs) base-isolation systems is performed in the non linear range. For RC members, a modified version of hysteretic Park model is used. For HDRB isolators, a new hysteretic model is presented, which is able to accurately predict the mechanical response in the large strain range. The dynamic equilibrium equations are solved making use, at each time step, of a block iterative Newton–Raphson scheme: the frame is divided into superelements (beams and columns) with master nodes at the extremities and internal local nodes for the computation of relations between end moments and relative rotations at superelement extremities. The effectiveness of HDRB base-isolation systems to reduce inelastic deformations in the RC superstructures is investigated through some numerical examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
An approximate procedure is introduced to analyse non-linear multistorey structures within the framework of the conventional response spectrum method. Its derivation is based on the use of non-linear response spectra and an approximate decomposition of the equation of motion for multi-degree-of-freedom non-linear systems. The decomposition is attained by considering the non-linear terms in this equation of motion as additional external forces and, thus, by interpreting it as the equation of motion of linear systems with the initial properties of the non-linear ones when subjected to a modified set of inertia forces. For simplicity, the procedure is herein limited to elastoplastic systems of the shear-beam type. Its accuracy is evaluated by comparing the approximate and step-by-step integration solutions of systems with three and ten degrees of freedom when subjected to three different earthquake ground motions.  相似文献   

12.
在现有抗震设计方法研究的基础上,提出了直接基于损伤性能的设计方法。首先,建立等效位移延性系数与结构损伤指标的关系,得到了反映不同设防水准损伤目标的结构等效位移延性系数;其次,运用R-μ关系模型,根据等效位移延性系数确定地震折减系数,从而计算出结构弹塑性地震作用;然后,建立结构的需求曲线与推覆曲线,对结构在强震作用下的性能进行评价;最后,通过算例说明了该方法的设计步骤及其可行性。  相似文献   

13.
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.  相似文献   

14.
框架剪力墙结构模态静力非线性抗震分析方法研究   总被引:3,自引:2,他引:3  
本文在模态pushover分析方法基础上推导建立了模态静力非线性分析方法,对一栋10层框架剪力墙结构进行了静力非线性分析,提出了目标位移求解的等效单自由度体系弹塑性时程分析迭代法,计算结果与相应时程分析结果进行了比较,表明两者吻合较好,验证了本文计算方法的有效性。另外,对同一结构,计算分析了在不同水平荷载模式下的静力非线性分析结果,比较不同荷载模式对计算结果的影响,为静力非线性分析方法的推广使用提供参考。  相似文献   

15.
A method for seismic design of plane steel moment resisting frames based on the use of equivalent modal damping ratios is developed. The method determines the design base shear of the structure through spectrum analysis using rationally obtained equivalent modal damping ratios instead of the crude strength reduction (behavior) factor. An equivalent linear structure, which retains the mass and initial stiffness of the original non-linear structure and takes into account geometrical non-linearity and inelasticity in the form of equivalent, time-invariant, modal damping ratios is established. The equivalent damping ratios for the first few significant modes are numerically computed by first iteratively forming a frequency response transfer function modulus until it satisfies certain smoothness criteria and then by solving a set of non-linear algebraic equations. Thus, design equations providing equivalent damping ratios as functions of period and allowable deformation and damage are constructed using extensive numerical data coming from plane steel moment resisting frames excited by various seismic motions. These equations can be used in conjunction with a design spectrum, appropriately constructed for high damping values, and modal synthesis tools to calculate the seismic design forces of the structure. The proposed method is illustrated by numerical examples. It is concluded that unlike the usual approach of seismic codes employing a single common value of the strength reduction factor value for all modes, the proposed approach working with deformation and damage dependent equivalent modal damping ratios leads to more accurate and deformation and damage controlled results.  相似文献   

16.
This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.  相似文献   

17.
When performing the seismic risk assessment of new or existing buildings, the definition of compact indexes able to measure the damaging and safety level of structures is essential, also in view of the economic considerations on buildings rehabilitation. This paper proposes two series of indexes, named, respectively, Global Damage Indexes (GDIs), which are representative of the overall structure performance, and Section Damage Indexes (SDIs), which assess the conditions of reinforced concrete (RC) beam‐column sections. Such indexes are evaluated by means of an efficient numerical model able to perform nonlinear analyses of the RC frame, based on the continuum damage mechanics theory and fiber approach. An improvement of a two‐parameter damage model for concrete, developed by some of the authors, which guarantees a better correlation between the Local Damage Indexes (LDIs) and the material's mechanical characteristics, is also presented. For the reinforcement, a specific LDI, named ‘steel damage index’, which takes into account the plastic strain development and the bar buckling effect, is proposed. The numerical model has been employed to simulate several experimental tests, in order to verify the accuracy of the proposed approach in predicting the RC member's behavior. Nonlinear static and dynamic analyses of two RC frames are carried out. The robustness of the method, as well as the effectiveness of the GDIs in assessing the structural conditions, are demonstrated here. Finally, comparisons between the evolution of GDIs and the achievement of the performance levels as proposed in FEMA 356 are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The paper deals with the topic of analyses performed according to modern code provisions, in particular Eurocode 8 (EC8) rules. Non linear static and non linear dynamic analyses of a plan irregular multi-storey r/c frame building designed according to Eurocode 2 (EC2) and EC8 provisions are carried out.The extension of the N2 method to torsionally flexible structures, as applied in previous papers, does not consider the accidental eccentricity, which is prescribed by EC8 also in the case of non linear static analysis. In this paper, three methods combining the accidental eccentricity prescribed by EC8 to the procedure which extends the N2 method to torsionally flexible structures are proposed and discussed. Each of them provides four modal response spectrum analyses (one for each model, corresponding to each position of centre of mass) and eight non linear static analyses (two signs for four models). NLSA(meth. n.2) seems to be the more reliable method of the three proposed, because it better fits absolute displacements obtained by non linear dynamic analysis.In the paper it is also observed that the value of the behaviour factor assigned by EC8 to torsionally flexible systems seems too conservative.  相似文献   

19.
A displacement-based design procedure is proposed for proportioning hysteretic damped braces in order to attain, for the in-plan least seismic capacity direction and a specific level of seismic intensity, a designated performance level of a reinforced concrete (r.c.) irregular framed building to be retrofitted. To this end, a computer code for the nonlinear static analysis of spatial frames is developed to obtain the pushover curve for an assigned in-plan direction of the seismic loads. The town hall of Spilinga (Italy), a two-storey r.c. framed structure with an L-shaped plan built at the beginning of the 1960s, has been considered as case study. Four alternative structural solutions are examined, derived from the first one by the insertion of hysteretic damped braces, considering: the extended N2 and the extended pushover methods combined with a proportional and an inversely proportional in-plan stiffness distributions of hysteretic damped braces. To check the effectiveness and reliability of the design procedure, the nonlinear static response of the unbraced and damped braced frames is compared for different in-plan directions of the seismic loads. Frame members are simulated with a lumped plasticity model, including a flat surface modeling of the axial load-biaxial bending moment elastic domain, while the behavior of a hysteretic damped brace is idealized through the use of a bilinear law. Vulnerability index domains are adopted to estimate the directions of least seismic capacity at the ultimate (i.e. life-safety and collapse prevention) limit states prescribed by Italian and European seismic codes.  相似文献   

20.
A displacement-based design procedure is proposed for proportioning hysteretic damped braces (HYDBs) in order to attain, for a specific level of seismic intensity, a designated performance level of a reinforced concrete (r.c.) in-elevation irregular framed building which has to be retrofitted. To check the effectiveness and reliability of the design procedure, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, originally designed according to an old Italian seismic code (1996) for a medium-risk zone, has to be retrofitted by inserting of HYDBs to attain performance levels imposed by the current Italian code (NTC08) in a high-risk zone. To simulate a vertical irregularity, a change of use of the first two floors, from residential to office, is also supposed; moreover, masonry infill walls, regularly distributed along the perimeter, are substituted with glass windows on these floors. Nonlinear dynamic analyses of unbraced (UF), infilled (IF) and damped braced infilled (DBIF) frames are carried out considering sets of artificially generated and real ground motions, whose response spectra match those adopted by NTC08 for different performance levels. To this end, r.c. frame members are idealized by a two-component model, assuming a bilinear moment–curvature law whose ultimate bending moment depends on the axial load, while the response of an HYDB is idealized by a bilinear law, to prevent buckling. Finally, masonry infills are represented as equivalent diagonal struts, reacting only in compression, with an elastic–brittle linear law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号