首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Midcourse Space eXperiment and Infrared Astronomical Satellite colour diagnostics as well as OH maser profile characteristics were used to select a sample of post-asymptotic giant branch (pAGB) candidates for a radio continuum detection experiment with the Australia Telescope Compact Array. Seven out of 28 sources, six of which are new detections, show a continuum. A planetary nebula serendipitously detected in the field of an undetected pAGB candidate also reveals radio continuum. The radio continuum properties of these eight sources are described. Almost half have non-thermal emission. dusty modelling of the infrared spectral energy distributions (SEDs) of the three strongest detections reveals that they all have central stars with temperatures substantially lower than that required for significant photoionization, leading us to infer that the radio continuum has arisen from wind–shock interactions. This hypothesis is consistent with the detection of non-thermal radio emission in one of these three objects.  相似文献   

2.
We propose a scheme to classify planetary nebulae (PNe) according to their departure from axisymmetric structure. We consider only departure along and near the equatorial plane, i.e. between the two sides perpendicular to the symmetry axis of the nebula. We consider six types of departure from axisymmetry: (1) PNe where the central star is not at the centre of the nebula; (2) PNe having one side brighter than the other; (3) PNe having unequal size or shape of the two sides; (4) PNe where the symmetry axis is bent, e.g. the two lobes in a bipolar PN are bent toward the same side; (5) PNe where the main departure from axisymmetry is in the outer regions, e.g. an outer arc; and (6) PNe that show no departure from axisymmetry, i.e. any departure, if it exists, is on scales smaller than the scale of blobs, filaments and other irregularities in the nebula. PNe that possess more than one type of departure are classified by the most prominent type. We discuss the connection between departure types and the physical mechanisms that may cause them, mainly resulting from the influence of a stellar binary companion. We find that ∼50 per cent of all PNe in the analysed sample possess large-scale departure from axisymmetry. This number is larger than that expected from the influence of binary companions, namely ∼25–30 per cent. We argue that this discrepancy comes from many PNe where the departure from axisymmetry, mainly unequal size, shape or intensity, results from the presence of long-lived and large (hot or cool) spots on the surface of their asymptotic giant branch progenitors. Such spots locally enhance the mass-loss rate, leading to a departure from axisymmetry, mainly near the equator, in the descendent PN.  相似文献   

3.
Interaction with the interstellar medium (ISM) cannot be ignored in understanding planetary nebula (PN) evolution and shaping. In an effort to understand the range of shapes observed in the outer envelopes of PNe, we have run a comprehensive set of three-dimensional hydrodynamic simulations, from the beginning of the asymptotic giant branch (AGB) superwind phase until the end of the post-AGB/PN phase. A 'triple-wind' model is used, including a slow AGB wind, fast post-AGB wind and third wind reflecting the linear movement through the ISM. A wide range of stellar velocities, mass-loss rates and ISM densities have been considered.
We find that ISM interaction strongly affects outer PN structures, with the dominant shaping occurring during the AGB phase. The simulations predict four stages of PN–ISM interaction whereby (i) the PN is initially unaffected, (ii) then limb-brightened in the direction of motion, (iii) then distorted with the star moving away from the geometric centre, and (iv) finally so distorted that the object is no longer recognizable as a PN and may not be classed as such. Parsec-size shells around PNe are predicted to be common. The structure and brightness of ancient PNe are largely determined by the ISM interaction, caused by rebrightening during the second stage; this effect may address the current discrepancies in Galactic PN abundance. The majority of PNe will have tail structures. Evidence for strong interaction is found for all known PNe in globular clusters.  相似文献   

4.
We have evaluated the likely progenitor masses M PG of nebulae having elliptical, circular and bipolar morphologies, using observed ratios between the populations of these sources, and deduced central star mass functions. We find that most bipolar nebulae (BPNe) are likely to arise from progenitors having mass M PG>2.3 M and spectral types earlier than A3.2, whilst circular sources are associated with progenitors of mass 1.0 M< M PG<1.2 M and spectral range G1.9–F7.8 . Elliptical sources arise from intermediate-mass progenitors. The procedures employed to determine these values are relatively insensitive to uncertainties in scaleheights and population ratios, and completely insensitive to uncertainties in the distance scale. They are, however, dependent upon the precise forms adopted for the initial–final and central star mass functions, and we discuss the sensitivity of M PG to uncertainties in these functions.  相似文献   

5.
We examine the possibility of detecting signatures of surviving Uranus/Neptune-like planets inside planetary nebulae. Planets that are not too close to the stars (orbital separation larger than ∼5 au) are likely to survive the entire evolution of the star. As the star turns into a planetary nebula, it has a fast wind and strong ionizing radiation. The interaction of the radiation and wind with a planet may lead to the formation of a compact condensation or tail inside the planetary nebula, which emits strongly in H α , but not in [O  iii ]. The position of the condensation (or tail) will change over a time-scale of ∼10 yr. Such condensations might be detected with currently existing telescopes.  相似文献   

6.
7.
8.
We present near-infrared polarimetric images of the dusty circumstellar envelope (CSE) of IRAS 19306+1407, acquired at the United Kingdom Infrared Telescope (UKIRT) using the UKIRT 1–5 μm Imager Spectrometer (UIST) in conjunction with the half-waveplate module IRPOL2. We present additional 450- and 850-μm photometry data obtained with the Submillimetre Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT), as well as archived Hubble Space Telescope ( HST ) F606W - and F814W -filter images. The CSE structure in polarized flux at J and K bands shows an elongation north of north-east and south of south-west with two bright scattering shoulders north-west and south-east. These features are not perpendicular to each other and could signify a recent 'twist' in the outflow axis. We model the CSE using an axisymmetric light scattering ( als ) code to investigate the polarization produced by the CSE, and an axisymmetric radiation transport ( dart ) code to fit the spectral energy distribution. A good fit was achieved with the als and dart models using silicate grains, 0.1–0.4 μm with a power-law size distribution of a −3.5, and an axisymmetric shell geometry with an equator-to-pole ratio of 7:1. The spectral type of the central star is determined to be B1 i supporting previous suggestions that the object is an early planetary nebula. We have constrained the CSE and interstellar extinction as 2.0 and 4.2 mag, respectively, and have estimated a distance of 2.7 kpc. At this distance, the stellar luminosity is ∼4500 L and the mass of the CSE is ∼0.2 M. We also determine that the mass loss lasted for ∼5300 yr with a mass-loss rate of ∼3.4 × 10−5 M yr−1.  相似文献   

9.
I study some effects of aspherical mass loss during the last stages of the asymptotic giant branch (AGB) on the appearance of proto-planetary nebulae (proto-PNs) and young PNs. The aspherical mass loss can be small-scale inhomogeneities, and/or axially symmetric mass-loss geometry. I first examine the role of the dust opacity in the optical band on the appearance of proto-PNs. I conclude that large optical depths will be found in proto-PNs that are post-AGB stars having high equatorial mass-loss rates, which require a stellar binary companion for their existence. In these cases light from the central star will reach larger distances along and near the polar directions, leading to the appearance of an elongated reflection nebula. These proto-PNs will become bipolar PNs, i.e., PNs with two lobes and an equatorial waist between them, or extreme ellipticals, e.g., a ring but no lobes on the two sides of the equatorial plane. I then derive the conditions for the enhancement of non-radial density inhomogeneity by the propagation of the ionization front at the early PN stages. The ionization will proceed faster in the radial direction along low-density regions. The low-density regions will be heated earlier, and they will expand as a result of their higher pressures, reducing further their densities. The opposite occurs in high-density regions. The condition for this ionization instability to develop is that the ionization time difference between two directions at the same radius is longer than the sound crossing time between these two regions. This condition for the ionization front instability can be expressed as a condition on the mass-loss rate inhomogeneity, i.e., its dependence on direction.  相似文献   

10.
Several stars at the low-metallicity extreme of the Galactic halo show large spreads of lead and associated 'heavy' s-process elements ([Pb/hs]). Theoretically, an s-process pattern should be obtained from an AGB star with a fixed metallicity and initial mass. For the third dredge-up and the s-process model, several important properties depend primarily on the core mass of AGB stars. Zijlstra reported that the initial-to-final mass relation steepens at low metallicity, due to low mass-loss efficiency. This might affect the model parameters of the AGB stars, e.g. the overlap factor and the neutron irradiation time, in particular at low metallicity. The calculated results do indeed show that the overlap factor and the neutron irradiation time are significantly small at low metallicities, especially for  3.0 M AGB  stars. The scatter of [Pb/hs] found in low metallicities can therefore be explained naturally when varying the initial mass of the low-mass AGB stars.  相似文献   

11.
12.
We study the formation of radially aligned condensations and tails through the compression of material inside ionization shadows at early ionization phases of planetary nebulae. A dense clump, formed before ionization starts, forms an ionization shadow behind it. The surroundings, which are ionized before the shadow, have a higher temperature, and as a result compress the material in the shadow, forming a compressed tail. If the compressed tail crosses a dense shell, a dense condensation (clump) is formed there. At later stages this condensation is ionized and observed as a bright knot, radially aligned with the inner clump. We find that for the shadow to be effective, the clump should be already present as the ionization by the central star starts, and its density enhancement should be by a factor of ≳ 5. We propose this mechanism as an explanation for the radially aligned condensations recently found in the planetary nebula IC 4593.  相似文献   

13.
14.
15.
16.
17.
I propose a mechanism for axisymmetrical mass loss on the asymptotic giant branch (AGB) that may account for the axially symmetric structure of elliptical planetary nebulae. The proposed model operates for slowly rotating AGB stars, having angular velocities in the range of 10−4ω Kep  ω  10−2 ωKep, where ωKep is the equatorial Keplerian angular velocity. Such angular velocities could be gained from a planet companion of mass  0.1  M Jupiter, which deposits its orbital angular momentum to the envelope at late stages, or even from single stars that are fast rotators on the main sequence. The model assumes that dynamo magnetic activity results in the formation of cool spots, above which dust forms much more easily. The enhanced magnetic activity towards the equator results in a higher dust formation rate there, and hence higher mass-loss rate. As the star ascends the AGB, both the mass-loss rate and magnetic activity increase rapidly, and hence the mass loss becomes more asymmetrical, with higher mass-loss rate closer to the equatorial plane.  相似文献   

18.
We present the many evolutionary routes that progenitors of bipolar planetary nebulae (BPNe) can take. Overall, there are about a hundred qualitatively different evolutionary routes, hence about a hundred qualitatively different types of BPNe. Within each type there are quantitative differences as well. Adding the dependence of the appearance on inclination, we find that the number of different apparent structures of BPNe is about equal to, or even larger than, the number of known BPNe and proto-BPNe. Accordingly we argue that every BPN is a 'unique' object in its appearance, but all can be explained within the binary model paradigm. Therefore, we request a stop to the attaching of adjectives such as 'unique', 'peculiar', and 'unusual' to BPNe and proto-BPNe, thereby removing the need to invoke a new model for almost every 'unusual' BPN. As a case study we try to build a binary model for the proto-BPN OH 231.8+4.2. In our preferred model the AGB Mira-type star has a main sequence companion of mass ∼1 M, orbital period of ∼5 yr, and eccentricity of ≳0.1.  相似文献   

19.
20.
A sample of 25 infrared-bright planetary nebulae (PNe) towards the Galactic bulge is analysed through 8–13 μm spectroscopy. The classification of the warm dust emission features provides a measure of the C/O chemical balance, and represents the first C/O estimates for bulge PNe. Out of 13 PNe with identified dust types, four PNe have emission features associated with C-based grains, while the remaining 9 have O-rich dust signatures. The low fraction of C-rich PNe, ≲ 30 per cent, contrasts with that for local PNe, around ∼ 80 per cent, although it follows the trend for a decreasing frequency of C-rich PNe with galactocentric radius (Paper I). We investigate whether the PNe discussed here are linked to the bulge stellar population (similar to type IV, or halo, PNe) or the inner Galactic disc (a young and super-metal-rich population). Although 60 per cent of the PNe with warm dust are convincing bulge members, none of the C-rich PNe satisfies our criteria, and they are probably linked to the inner Galactic disc. In the framework of single star evolution, the available information on bulge PNe points towards a progenitor population similar in age to that of local PNe (type I PNe are found in similar proportions), but super-metal-rich (to account for the scarcity of C-rich objects). Yet the metallicities of bulge PNe, as inferred from [O/H], fail to reach the required values – except for the C-rich objects. It is likely that the sample discussed here is derived from a mixed disc/bulge progenitor population and dominated by type IV PNe, as suggested by Peimbert. The much higher fraction of O-rich PNe in this sample than in the solar neighbourhood should result in a proportionally greater injection of silicate grains into the inner Galactic medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号