首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Richard Woo 《Solar physics》2007,241(2):251-261
In the absence of magnetic field measurements of the solar corona, the density structure of white-light images has provided important insight into the coronal magnetic field. Recent work sparked by highly sensitive radio occultation measurements of path-integrated density has elucidated the density structure of unprocessed solar eclipse pictures. This paper does the same for processed images that reveal low-contrast small-scale structures, specifically Koutchmy’s edge-enhanced white-light image of the 11 August 1999 solar eclipse. This processed image provides visual evidence for two important results deduced from radio occultation measurements of small-scale density variations. First, in addition to the closed loops readily seen at the base of the corona in high-resolution EUV and soft X-ray images, open filamentary structures permeate the corona including active regions generally thought to be magnetically closed. Observed at the image resolution, the filamentary structures are 1° wide in latitude and an order of magnitude smaller than polar plumes. Second, although inhomogeneities that are convected along with the solar wind are also present, filamentary structures dominate the image because of their steeper density gradients. The quantitative profile of polarized brightness (pB) at the base of the corona shows that the filamentary structures have transverse density gradients that are proportional to their density. This explains why edge-enhanced images, limited in sensitivity to density gradients, tend to detect filamentary structures more readily in high-density regions (e.g., active regions, streamer stalks, and prominences) than in low-density polar coronal holes, and why filamentary structures seem more prevalent in solar eclipse pictures during solar maximum. The pB profile at the base of the corona also fills the gap in Doppler measurements there, reinforcing that open ultra-fine-scale filamentary structures observed by the radio measurements are predominantly radial and that they are an integral part of the radial expansion of the solar wind.  相似文献   

3.
The very steep decrease in density with heliocentric distance makes imaging of coronal density structures out to a few solar radii challenging. The radial gradient in brightness can be reduced using numerous image processing techniques, thus quantitative data are manipulated to provide qualitative images. We introduce a new normalizing-radial-graded filter (NRGF): a simple filter for removing the radial gradient to reveal coronal structure. Applied to polarized brightness observations of the corona, the NRGF produces images which are striking in their detail. Total-brightness, white-light images include contributions from the F corona, stray light, and other instrumental contributions which need to be removed as effectively as possible to properly reveal the electron corona structure. A new procedure for subtracting this background from LASCO C2 white-light, total-brightness images is introduced. The background is created from the unpolarized component of total-brightness images and is found to be remarkably time-invariant, remaining virtually unchanged over the solar cycle. By direct comparison with polarized-brightness data, we show that the new background-subtracting procedure is superior in depicting coronal structure accurately, particularly when used in conjunction with the NRGF. The effectiveness of the procedures is demonstrated on a series of LASCO C2 observations of a coronal mass ejection (CME).  相似文献   

4.
We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are, in principle, no worse than more familiar remotely sensed photospheric vector fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe xi] line (J=2 to J=1) at 789.2 nm as a prime target line (for the Advanced Technology Solar Telescope (ATST) for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe xiii] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possible with the new generation of coronagraphs, in three distinct ways: i) through single-point inversions (which encompasses also the analysis of MHD wave modes), ii) using direct comparisons of synthetic MHD or force-free models with polarization data, and iii) using tomographic techniques.  相似文献   

5.
From observations of the solar white-light corona at 65 eclipses from 1851 to 2015 we confirm earlier findings that the flattening index of the white-light corona depends on the phase, rather than the magnitude of solar cycles, which is in contrast with behavior of other major solar activity indices like the sunspot number, the 2800 MHz radio flux, etc. This indicates that mechanisms responsible for creation and distribution of helmet streamers, the most essential coronal structures influencing the flattening index, could be of different magnetic nature from those of other manifestations of solar surface activity.  相似文献   

6.
To quantify changes of the solar coronal field connectivity during eruptive events, one can use magnetic helicity, which is a measure of the shear or twist of a current-carrying (non-potential) field. To find a physically meaningful quantity, a relative measure, giving the helicity of a current-carrying field with respect to a reference (potential) field, is often evaluated. This requires a knowledge of the three-dimensional vector potential. We present a method to calculate the vector potential for a solenoidal magnetic field as the sum of a Laplacian part and a current-carrying part. The only requirements are the divergence freeness of the Laplacian and current-carrying magnetic field and the sameness of their normal field component on the bounding surface of the considered volume.  相似文献   

7.
8.
Coronal Flux Rope Equilibria in Closed Magnetic Fields   总被引:1,自引:0,他引:1  
Using a 2.5-dimensional ideal MHD model in Cartesian coordinates,we investigate the equilibrium properties of coronal magnetic flux ropes in background magnetic fields that are completely closed.The background fields are produced by a dipole,a quadrupole,and an octapole,respectively,located below the photosphere at the same depth.A magnetic flux rope is then launched from below the photo-sphere,and its magnetic properties,i.e,the annular magnetic fluxφp and the axial magnetic fluxφz,are controlled by a single emergence parameter.The whole sys-tem eventually evolves into equilibrium,and the resultant flux rope is characterized by three geometrical parameters:the height of the rope axis,the half-width of the rope,and the length of the vertical current sheet below the rope.It is found that the geometrical parameters increase monotonically and continuously with increasing φp and φz:no catastrophe occurs.Moreover,there exists a steep segment in the profiles of the geometrical parameters versus either φp or φz,and the faster the background field decays with height,the larger both the gradient and the growth amplitude within the steep segment will be.  相似文献   

9.
As demonstrated by many previous studies, a system consisting of an isolated coronal flux rope and a surrounding background magnetic field exhibits a catastrophic behavior. In particular, if the magnetic field of the system is force-free and axisymmetric in spherical geometry, the magnetic energy at the catastrophic point, referred to as the catastrophic energy threshold, is found to be larger than the corresponding partly or fully open field energy. This paper takes an octapole field as the background and introduces a flux rope within the central arcade of the octapole field. A relaxation method based on time-dependent ideal magnetohydrodynamic (MHD) simulations is used to find axisymmetric force-free field solutions in spherical geometry associated with the flux rope system. With respect to an increase of either the annular flux Φp or the axial flux Φϕ of the rope, the system exhibits a catastrophic behavior as expected, and the catastrophic energy threshold is larger than that of the corresponding partly open field, in which the central arcade is opened up, but the remainder remains closed. For a given octapole field, the energy threshold depends on either Φp or Φϕ at the catastrophic point, and it increases with increasing Φp or decreasing Φϕ. On the other hand, the extent to which the central bipolar component of the octapole field is open also affects the energy threshold. These results differ from those for the bipolar background field case, in which the catastrophic energy threshold is almost independent of the magnetic properties of the flux rope at the catastrophic points and the extent to which the background field is open. The reason for such a difference is briefly discussed.  相似文献   

10.
This paper is the second in a series of studies working towards constructing a realistic, evolving, non-potential coronal model for the solar magnetic carpet. In the present study, the interaction of two magnetic elements is considered. Our objectives are to study magnetic energy build-up, storage and dissipation as a result of emergence, cancellation, and flyby of these magnetic elements. In the future these interactions will be the basic building blocks of more complicated simulations involving hundreds of elements. Each interaction is simulated in the presence of an overlying uniform magnetic field, which lies at various orientations with respect to the evolving magnetic elements. For these three small-scale interactions, the free energy stored in the field at the end of the simulation ranges from 0.2 – 2.1×1026 ergs, whilst the total energy dissipated ranges from 1.3 – 6.3×1026 ergs. For all cases, a stronger overlying field results in higher energy storage and dissipation. For the cancellation and emergence simulations, motion perpendicular to the overlying field results in the highest values. For the flyby simulations, motion parallel to the overlying field gives the highest values. In all cases, the free energy built up is sufficient to explain small-scale phenomena such as X-ray bright points or nanoflares. In addition, if scaled for the correct number of magnetic elements for the volume considered, the energy continually dissipated provides a significant fraction of the quiet Sun coronal heating budget.  相似文献   

11.
杨书红 《天文学报》2012,53(6):540-541
冕洞是太阳日冕中低温低密度的区域,是高速太阳风的源区.目前,冕洞的很多性质还远未被人们所理解.磁场研究是理解太阳上各种现象的重要手段.因此,我们力图通过研究冕洞内的磁场特别是矢量磁场的分布和演化,回答冕洞研究中存在的问题.综合利用SOHO、Hinode、STEREO、SDO等卫星数据,我们第1次对冕洞内矢量磁场的演化、冕洞磁场的非势性等方面进行了较详细的研究,取得了一系列的研究成果.(1)冕洞不同层次太阳大气对冕洞小尺度磁场结构分布和演化的响应.我们研究了冕洞内及冕洞边界上磁场的分布和演  相似文献   

12.
We report observations by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft of three coronal green-line transients that could be clearly associated with coronal mass ejections (CMEs) detected in Thomson-scattered white light. Two of these events, with speeds >25 km s-1, may be classified as ‘whip-like’ transients. They are associated with the core of the white-light CMEs, identified with erupting prominence material, rather than with the leading edge of the CMEs. The third green-line transient has a markedly different appearance and is more gradual than the other two, with a projected outward speed <10 km s-1. This event corresponds to the leading edge of a ‘streamer blowout’ type of CME. A dark void is left behind in the emission-line corona following each of the fast eruptions. Both fast emission-line transients start off as a loop structure rising up from close to the solar surface. We suggest that the driving mechanism for these events may be the emergence of new bipolar magnetic regions on the surface of the Sun, which destabilize the ambient corona and cause an eruption. The possible relationship of these events to recent X-ray observations of CMEs is briefly discussed. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004981125702  相似文献   

13.
T. Wiegelmann 《Solar physics》2007,240(2):227-239
We describe a newly developed code for the extrapolation of nonlinear force-free coronal magnetic fields in spherical coordinates. The program uses measured vector magnetograms on the solar photosphere as input and solves the force-free equations in the solar corona. The method is based on an optimization principle and the heritage of the newly developed code is a corresponding method in Cartesian geometry. We test the newly developed code with the help of a semi-analytic solution and rate the quality of our reconstruction qualitatively by magnetic field line plots and quantitatively with a number of comparison metrics. We find that we can reconstruct the original test field with high accuracy. The method is fast if the computation is limited to low co-latitudes (say 30°≤θ≤150°), but it becomes significantly slower if the polar regions are included.  相似文献   

14.
White  S. M.  Kundu  M. R. 《Solar physics》1997,174(1-2):31-52
We review the basic characteristics of thermal gyroresonance (also known as cyclotron) emission from solar active regions, and show how radio observations combined with our understanding of the basic mechanism can reveal much of the magnetic and thermal structure of the corona over active regions.  相似文献   

15.
This paper analyzes the magnetic field structure of active regions at coronal heights determined by means of multi-wavelength observations of polarized radio emission in the microwave range, and compares it with the force-free magnetic field extrapolation into the corona from the photospheric magnetograms. Our method of one-dimensional radio stereoscopy indicates higher magnetic field strength compared with the field reconstructed from photospheric magnetograms. It is shown that the sense of inclinations of the field lines we obtained from the radio data matches the shape of the reconstructed magnetic field lines, although the degree of the inclinations is very different.  相似文献   

16.
Sýkora  J.  Badalyan  O.G.  Obridko  V.N. 《Solar physics》2003,212(2):301-318
Observations of ten solar eclipses (1973–1999) enabled us to reveal and describe mutual relations between the white-light corona structures (e.g., global coronal forms and most conspicuous coronal features, such as helmet streamers and coronal holes) and the coronal magnetic field strength and topology. The magnetic field strength and topology were extrapolated from the photospheric data under the current-free assumption. In spite of this simplification the found correspondence between the white-light corona structure and magnetic field organization strongly suggests a governing role of the field in the appearance and evolution of local and global structures. Our analysis shows that the study of white-light corona structures over a long period of time can provide valuable information on the magnetic field cyclic variations. This is particularly important for the epoch when the corresponding measurements of the photospheric magnetic field are absent.  相似文献   

17.
P. K. Manoharan 《Solar physics》2006,235(1-2):345-368
Knowledge of the radial evolution of the coronal mass ejection (CME) is important for the understanding of its arrival at the near-Earth space and of its interaction with the disturbed/ambient solar wind in the course of its travel to 1 AU and further. In this paper, the radial evolution of 30 large CMEs (angular width > 150, i.e., halo and partial halo CMEs) has been investigated between the Sun and the Earth using (i) the white-light images of the near-Sun region from the Large Angle Spectroscopic Coronagraph (LASCO) onboard SOHO mission and (ii) the interplanetary scintillation (IPS) images of the inner heliosphere obtained from the Ooty Radio Telescope (ORT). In the LASCO field of view at heliocentric distances R≤30 solar radii (R), these CMEs cover an order of magnitude range of initial speeds, VCME≈260–2600 km s−1. Following results have been obtained from the speed evolution of these CMEs in the Sun–Earth distance range: (1) the speed profile of the CME shows dependence on its initial speed; (2) the propagation of the CME goes through continuous changes, which depend on the interaction of the CME with the surrounding solar wind encountered on the way; (3) the radial-speed profiles obtained by combining the LASCO and IPS images yield the factual view of the propagation of CMEs in the inner heliosphere and transit times and speeds at 1 AU computed from these profiles are in good agreement with the actual measurements; (4) the mean travel time curve for different initial speeds and the shape of the radial-speed profiles suggest that up to a distance of ∼80 R, the internal energy of the CME (or the expansion of the CME) dominates and however, at larger distances, the CME's interaction with the solar wind controls the propagation; (5) most of the CMEs tend to attain the speed of the ambient flow at 1 AU or further out of the Earth's orbit. The results of this study are useful to quantify the drag force imposed on a CME by the interaction with the ambient solar wind and it is essential in modeling the CME propagation. This study also has a great importance in understanding the prediction of CME-associated space weather at the near-Earth environment.  相似文献   

18.
Gary  G. Allen  Alexander  David 《Solar physics》1999,186(1-2):123-139
A method is presented for constructing the coronal magnetic field from photospheric magnetograms and observed coronal loops. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal flux tubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures that (i) the normal component of the photospheric field remains unchanged, (ii) the field is given in the entire corona over an active region, (iii) the field remains divergence-free, and (iv) electric currents are introduced into the field. It is demonstrated that a parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 November 26. The result is a non-force-free magnetic field with the Lorentz force being of the order of 10–5.5 g cm s–2 resulting from an electric current density of 0.079 A m–2. Calculations show that the plasma beta becomes larger than unity at a relatively low height of 0.25 r supporting the non-force-free conclusion. The presence of such strong non-radial currents requires large transverse pressure gradients to maintain a magnetostatic atmosphere, required by the relatively persistent nature of the coronal structures observed in AR 7999. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.  相似文献   

19.
本文讨论了晚型星的磁场强度与ROSAT软X射线的相关性,用四种模型拟合了ROSAT的观测结果,讨论了各种模型的优缺点,同时发现单星的星冕温度与磁场强度的相关性很好.因此可以认为磁场是晚型星星冕很重要的加热机制.由处理ROSAT数据得到的星冕温度,可估计晚型星表面的磁场强度.  相似文献   

20.
Gopalswamy  N.  Cyr  O.C. St.  Kaiser  M.L.  Yashiro  S. 《Solar physics》2001,203(1):149-163
We report on a coronal shock wave inferred from the metric type II burst of 13 January 1996. To identify the shock driver, we examined mass motions in the form of X-ray ejecta and white-light coronal mass ejections (CMEs). None of the ejections could be considered fast (> 400 km s–1) events. In white light, two CMEs occurred in quick succession, with the first one associated with X-ray ejecta near the solar surface. The second CME started at an unusually large height in the corona and carried a dark void in it. The first CME decelerated and stalled while the second one accelerated, both in the coronagraph field of view. We identify the X-ray ejecta to be the driver of the coronal shock inferred from metric type II burst. The shock speed reported in the Solar Geophysical Data (1000–2000 km s–1) seems to be extremely large compared to the speeds inferred from X-ray and white-light observations. We suggest that the MHD fast-mode speed in the inner corona could be low enough that the X-ray ejecta is supermagnetosonic and hence can drive a shock to produce the type II burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号