首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
使用常规地面、探空资料以及风廓线雷达和环境监测站污染物资料,对2015年11月7—11日沈阳市一次持续性重污染天气过程进行分析,结果表明:(1)此次污染过程持续时间长,PM2.5浓度维持在500μg·m-3以上近21 h,期间峰值达到1 287.83μg·m-3,主要污染物为CO;(2)平稳的高空环流、弱气旋性环流及高湿条件为这次重污染天气的发生、发展和维持提供了有利的气象条件,0℃左右的温度长时间维持也为该次过程的一个主要特征;(3)重污染期间从地面到850 h Pa高度上水平风速均接近2 m·s-1,整层大气静稳,伴随着较好的湿度条件和多个逆温层结的存在,抑制了污染物的垂直输送;(4)卫星遥感监测显示吉林和黑龙江一带有大量火点存在,此时正值冬季秸秆燃烧,大气轨迹分析显示,污染期间偏北风为污染物的传输提供了有利的气象条件。  相似文献   

2.
利用青岛市环境监测中心站环境监测资料、青岛市气象常规观测资料、美国国家环境预报中心(NCEP)再分析资料,对青岛地区2016年12月18—21日的一次雾霾重污染天气过程进行分析。结果表明:污染期间,亚欧大陆中高纬度地区500hPa呈两槽一脊的环流形式,青岛处于弱槽系统控制下,空气质量好转时,高空锋区明显增强,西北风加大,地面冷锋快速东移;此次雾霾重污染天气过程空气中近地面相对湿度一直维持较高,重污染期间小于2.6m·s~(-1)的地面风速对污染物扩散没有明显作用;污染物的浓度增加、持续阶段与气象要素能见度、风速、混合层厚度呈负相关性,与相对湿度呈正相关性,与温度的相关性较低;污染过程中青岛市区24h的输入污染源主要来自半岛北部地区,主要污染物为PM_(2.5)颗粒。  相似文献   

3.
成都地区一次持续性污染过程天气特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
利用NCEP/NCAR再分析资料、地面气象观测资料,重点分析了2013年1月成都地区一次重污染天气过程的天气背景以及地面气象要素演变。结果表明:(1)此次持续的污染天气出现在高空为弱脊控制且位势高度场异常偏高,地面处于变性高压脊或均压场且近地面层风速较弱的静稳天气背景下。(2)产生此次高污染(高AQI)的地面气象条件为:地面冷高压逐渐变性,近地面温度升高,海平面气压降低,近地面相对湿度升高至80%左右,无降水或弱降水,能见度将降低至于10km以下,地面风速减弱。(3)中低层弱风速,弱的水平风垂直切变,700h Pa层附近和近地面层的逆温层,不利于污染物在垂直方向上的扩散,使得污染进一步加剧。   相似文献   

4.
河北廊坊市连续重污染天气的气象条件分析   总被引:3,自引:0,他引:3  
利用2013年1月至2014年7月廊坊市空气污染资料及逐小时风向风速、相对湿度、气压等地面自动站观测资料,通过统计学方法对廊坊市该期间发生的17次连续3 d及以上重污染天气过程进行分析,结果表明:(1)17次连续重污染天气过程主要发生在1~3月和11~12月,1月最多,最长连续时间长达7 d;(2)连续重污染天气过程中,首要污染物主要是细颗粒物PM2.5;有高污染浓度持续日和高污染浓度间断分布日2种情况,平均浓度分别达到314μg/m3和193μg/m3,高污染浓度持续日的比例达60%;(3)500 h Pa高空廊坊市处于高压脊前西北偏西气流中,地面分别位于弱高气压场区及低压场(倒槽)区是连续重污染天气过程最主要的2类配置类型,后者是6级空气严重污染的主要控制形势;(4)连续重污染天气形成的气象条件是:廊坊市地面风向为西南风至偏西风或者为偏东风至东南风,风力≤2级;2~3月│ΔP3│≤3.0 h Pa,其余月│ΔP3│≤2.0 h Pa;相对湿度在40%~95%之间;日降水量≤0.6 mm,近地层有逆温层存在,平均高度900 h Pa以下,厚度≥10 h Pa,逆温层强度≥1℃;(5)当廊坊市地面处于低压场(倒槽)控制下,逆温层高度在925 h Pa以下、厚度≥20 h Pa及逆温层强度≥3℃,有利于严重污染天气的形成,若同时廊坊市地面风向为东北风至偏东风、风力为1级,相对湿度≥50%,则有利于高污染浓度持续日的形成和发展;(6)2014年2月11~15日河北省区域性空气重污染的演变状态及利用美国NOAA的Hysplit-4模式计算得到的空气质点的后向轨迹表明,燕山、太行山山脉的阻挡以及河北省和周边重污染区域分布导致的污染物区域输送是廊坊市连续重污染天气产生的重要因素之一。  相似文献   

5.
利用常规地面与高空观测资料、自动站逐时资料、NECP1°×1°再分析资料,对阿克苏地区2015年9月7日局地暴雨进行分析。结果表明,此次暴雨的主要成因有:(1)100hPa南亚高压双体型、200 hPa高空急流以及500 h Pa中亚槽提供了有利的环流背景,"三支气流"配合加强了动力以及热力条件并促使水汽快速汇集,强度为8 g·cm~(-1)·hPa~(-1)·s~(-1);(2)暴雨过程的大部分水汽是通过低层偏东气流接力输送,水汽的来源主要为南海及孟加拉湾;(3)暴雨发生前阿克苏处于高能高湿不稳定区域,存在315.9 J·kg~(-1)的不稳定能量,水汽上干下湿体现了一定的对流特征,同时锋区、垂直风切变、湿层以及不稳定能量的突变预示了强对流天气的发生;(4)低层风场辐合触发对流,地面辐合线及偏东风输送位置影响暴雨落区,加之较好的地面热力条件以及独特的地形增益暴雨强度。  相似文献   

6.
利用地面污染物监测数据、常规气象数据,ECMWF再分析数据以及L-波段无线电探空数据,并结合后向轨迹模型,对2017年5月长三角地区的一次沙尘重污染天气过程进行成因分析。结果表明:此次沙尘重污染过程是天气系统、地面及边界层气象条件共同作用的结果。东亚大槽东移、冷空气南下并配合地面高压的发展使河西走廊、宁夏大部、内蒙古西部出现沙尘天气,为后期长三角地区沙尘的输送提供了沙源; 850 h Pa上较大的风速为上游沙尘源区向下游长三角地区输送提供了通道;高压中心的下沉运动和白天增强的热对流活动使得高层沙尘影响地面具备了足够的动力条件;当沙尘抵达长三角上游地区后,不断减弱的冷空气和趋于静稳的近地面形势不利于污染物扩散,加剧了此次污染过程。  相似文献   

7.
武威  顾佳佳  鲍玉辉 《湖北气象》2020,39(3):259-268
利用常规气象资料、颗粒物观测数据、NCEP 1°×1°分析资料、GDAS 1°×1°数据、激光雷达资料等,对2018年11月下旬河南漯河一次连续重污染天气过程成因与污染物传输特征进行了分析。结果表明:(1)本次污染与天气形势关系密切,前期受静稳纬向环流和地面均压场影响,有利污染积累;中期高空槽与地面变性高压引导弱冷空气东移南下,产生滞留效应,污染物迅速增加;后期因低层东路冷空气扩散与静稳形势恢复,污染继续积累增长,形成连续性重污染。(2)PM_(2.5)造成重污染时因辐射逆温持续稳定,导致污染加剧;PM_(10)重污染时因逆温层减弱消失,有利污染物输送沉降;混合重污染时因近地层湍流混合加强形成逆温,污染持续发展。(3)本次重污染天气主要有5条传输路径,西南路径和偏东路径污染比例较高,其轨迹短,高度在900 hPa以下,对PM_(2.5)近距离输送作用明显;西北路径和偏北路轨迹长,起始高度在700—600 hPa之间,高空中远距离输送以PM_(10)为主。(4)受静稳条件和近地层高湿影响,高消光带维持在600 m以下,较低边界层抑制垂直扩散,导致污染细颗粒物与沙尘积累并长时间共存。(5)本次重污染是本地污染累积和高空外源污染输送共同影响。除漯河本地污染贡献较高外,高潜在源区主要集中河南西南部、东北部以及与山东交界处,这也是本次持续性污染发展的重要原因。(6)重污染时地面偏北风占主导,其他方向风速较小,有利形成污染辐合以及污染物二次转化并加剧污染。  相似文献   

8.
2015年11月27日至12月1日,北京地区出现了一次十分严重的雾、霾天气过程。综合分析此次雾、霾天气过程的天气形势、加密自动站、探空、风廓线雷达以及连续观测的PM2.5资料,结果表明:本次雾、霾过程,能见度的恶化与天气形势、PM2.5持续性波动增长、相对湿度增加、逆温出现频率高、近地层风速小及近地面偏南风输送有密切关系:(1)此次雾、霾过程期间,华北地区较长时间被地面高压后部的弱气压场和低压辐合区控制,地面风速和近地层风速较小,北京大部分地区处于弱的偏南风或偏东风控制中,很不利于污染物的水平扩散;(2)地面增湿趋势明显,低层偏南和偏东气流将水汽和上游污染物向北京地区输送,加之29日气温明显回升,导致地面积雪融化,近地面相对湿度增加,有时接近饱和;(3)边界层逆温一直存在,很不利于污染物的垂直扩散。  相似文献   

9.
利用NCEP 1°×1°再分析资料和国家级自动站逐时观测资料及NOAA的2.5°×2.5°每月再分析资料,对2013年8月16—17日发生在辽宁抚顺地区清原县的特大暴雨过程进行水汽特征分析。结果表明:本次暴雨为副热带高压北抬促使高空槽在中国东北地区停滞少动,使得东北冷涡持续影响辽宁地区,切变线、低空急流为此次暴雨过程的主要影响系统;辽宁抚顺清原县这次暴雨过程的底层和中层的水汽来源主要为南海和孟加拉湾以及西太平洋两条通道;暴雨发生主要时间,南海和孟加拉湾及西太平洋提供重要水汽持续输送,这为暴雨的发展提供了充足的水汽。抚顺地区清原县暴雨发生的前期和发生时均存在强烈的水汽向上输送,高湿层即比湿大值区集中在从对流层一直延伸到500 h Pa;地面水汽通量散度极值中心比降水的极值中心提前出现2 h,且二者具有一定的正相关关系。地面水汽通量散度负值中心出现后2 h内对暴雨中心位置具有一定的预报意义。  相似文献   

10.
利用常规气象站地面观测资料、环境监测站污染物监测资料以及欧洲中心再分析资料等,对辽宁省一次秸秆燃烧引起的重污染天气过程进行分析,探讨不同城市间污染程度的差异及成因。结果表明:(1)此次重污染过程主要污染物成分为CO,PM_(2.5)质量浓度与CO和NO_2质量浓度的时间变化有很好的对应关系,能见度受PM_(2.5)质量浓度和相对湿度共同影响;(2)营口和盘锦前期1.0 mm以上的弱降水过程对污染物湿沉降作用明显,而其他城市降水量较小反而有利于污染物的吸湿增长;(3)重污染期间,地面至700 hPa高度的水平风速均接近4 m·s~(-1),大气层结稳定,逆温层明显,抑制了污染物的垂直扩散;(4)除锦州外,其他4市850 hPa和900 hPa高度间0℃左右的暖层长时间维持,可能为污染物颗粒表层水分相态的变化、碰并增长提供了有利的环境;(5)污染期间,吉林和黑龙江一带存在大量火点,大面积秸秆集中燃烧是下风向辽宁中部地区主要污染源,在有利于污染物积累的天气条件下,需要加强本地和外来污染源的控制。  相似文献   

11.
大气污染除了受本地污染源的影响外,外来污染物的输送也是重要的影响因子之一。本文基于拉格朗日混合单粒子轨迹模型(HYSPLIT)分析了河南省重污染过程空气输送通道的特征,并结合地面风场观测资料和NCEP再分析资料对污染发生时的气象背景场进行了探讨。结果表明:在1986—2015年冬季气候平均态下,河南省盛行西北气流,空气输送主要来自西北欧亚大陆,经河北、陕西和山西等地区进入河南地区。2015年河南省17次重污染过程主要空气污染输送分别来自南方(32%)、偏北方(24%)和偏东方(27%),3条通道在输送过程中高度基本维持在900 h Pa以下;重污染过后西北风加强,南风消失,污染物迅速扩散。由2015年12月5—13日河南地区重污染过程的模拟表明,偏北空气输送通道所占比例虽然不是最高的,但经过污染物浓度高值区携带的污染物较多,同时由于风速减弱,不利于污染物扩散。气象观测资料进一步证明河南省重污染过程发生时处于静稳天气状态,同时东南风带来了较多的水汽输送,相对湿度偏高不利于污染扩散。  相似文献   

12.
利用常规气象观测资料、探空站资料、环保部门提供的AQI监测数据,对2015年1月26—27日温州地区重度霾天气过程进行了综合分析。结果表明:此次重度霾过程影响时间之长,影响之严重,在温州霾气象记录中是十分罕见的;高空3层西北气流控制,风速较小,静稳天气,地面冷空气扩散南下,将浙北方污染物推至浙南,重度霾天气是由北方污染物输入和本地污染物叠加,地面存在弱辐合,近地面又存在逆温层不利于水汽和污染物在垂直方向扩散,利于大气颗粒污染物在浙南温州地区堆积,使得霾污染天气稳定维持;此后,冷空气主体南下,风速加大,气象扩散条件转好,污染物扩散至海上或福建,霾渐消散。  相似文献   

13.
选取2007年12月13—14日南京一次辐射雾的外场观测资料及NCEP的2.5°×2.5°NC再分析资料和GDAS全球1°×1°气象资料,从天气形势背景、气象要素以及物理量场等方面,探讨雾形成和持续的主要边界层物理和天气学成因;并利用HYSPLIT-4轨迹模式对此次雾过程进行后向轨迹分析。分析表明:(1)此次雾过程期间始终存在逆温层,甚至出现多层逆温。逆温层的存在,使大气层结更加稳定,利于雾的形成和发展。(2)此次辐射雾过程水汽输送较平流辐射雾小,水汽来源主要来自本地辐射降温后的水汽凝结。(3)此次雾过程地面受高压控制,低层水汽通量散度为正值,近地面有弱辐散,利于辐射降温水汽凝结,而持续的水汽辐散造成的水汽流出以及雾后期随着北部干冷空气南下使得这次辐射雾寿命较短。  相似文献   

14.
郭蕊  段浩  马翠平  赵娜  曲晓黎  郭卫红  张金满 《气象》2016,42(5):589-597
2013年12月14—25日,河北中南部地区发生了一次长达12 d的重霾污染天气过程。本文通过对同期气象条件、流场、污染物特征进行分析,探讨了这次过程的成因。此次污染过程与霾密切相关,具有持续时间长、范围广及强度大的特点;在静稳的大尺度气象条件和近地面大气层结下,污染物沿近地面风场的弱辐合区迅速积累,是重覆污染天气形成的关键;此次重霾污染天气过程中有两次弱冷空气活动,两次冷空气影响层次有所不同但影响时间均较短,不能彻底改变静稳大气层结,对污染物的扩散能力有限,重霾污染天气得以长时间持续。  相似文献   

15.
利用气象常规观测资料、NCEP 1°×1°再分析资料、卫星云图及呼和浩特多普勒天气雷达资料,对2015年11月22日内蒙古中部地区暴雪天气过程进行诊断分析,结果表明:在中高纬"两槽一脊"的环流形势下,500和700 h Pa短波槽、700h Pa西西南急流和地面倒槽是这次暴雪的主要影响系统,属于回流暴雪天气过程。700 h Pa西西南急流对暖湿空气的输送和水汽的强烈辐合为暴雪提供了充足的水汽条件,低层水汽辐合出现时刻降雪开始且辐合最强时出现最强降雪;高低空急流耦合加强了系统性上升运动,700 h Pa西西南暖湿空气在850 h Pa偏东气流上爬升,冷暖空气交汇及其垂直切变导致强烈的上升运动;"冷垫"与"暖盖"相配合是产生暴雪的热力条件,强降雪出现在锋区最强至减弱期间且低空急流建立后。中尺度系统云团是造成暴雪天气的直接系统,最强降雪中心与TBB≤220 K移动区域一致。片状回波中30~35 d Bz的强带状回波造成此次暴雪过程中局部强降雪,零速度线呈现"S"结构,当冷锋过境,低层转为偏北风后降雪趋于结束。  相似文献   

16.
文章利用常规气象资料、自动站气象资料、NCEP2.5°×2.5°资料以及环境气象资料,分析了2014年2月23—26日在呼和浩特市、包头市、鄂尔多斯市全面爆发的一次持续性雾霾天气过程,得出西伯利亚地区冷高压异常偏弱,北半球西风指数较常年明显偏大,表明高空西风分量较强,环流比较平直,经向型环流较弱,不利于引导极地冷空气进入我国;中东部大部地区的海平面气压值较常年偏小1-5h Pa,处于弱气压梯度区,地面风速不大,垂直和水平方向扰动小,静风和小风天气多,形成持续静稳天气。地面风速1-3m,低层垂直速度小,近地层西南气流为主;近地层湿,700h Pa及以上干;地层存在逆温,大气层结稳定。  相似文献   

17.
利用Micaps资料、地面加密自动观测资料、NCEP/NCAR的1°×1°每6h再分析资料,对2014年5月10-11日发生在柳州的一次强降水过程进行了诊断分析。结果表明:500h Pa南支槽、850h Pa低涡切变线及低空急流、地面冷锋为此次降雨过程提供了有利的天气尺度背景场;近地层冷空气入侵是本次过程的触发机制,高层强辐散以及低层辐合的有利配置为此次强降水的产生提供了较好的动力条件;强盛的西南急流提供了较好的水汽及能量条件;水汽通量散度、涡度中心值的强弱变化及移动均与强降水中心有着很好的对应关系。  相似文献   

18.
应用多种常规观测资料、NCEP 1°×1°再分析资料,通过天气图的分析以及对物理量的诊断,对2013年4月3日夜间至4日早晨酒泉市瓜州县出现的罕见春季暴雪天气进行较为全面的认识。结果表明:此次天气的主导系统为伊朗和乌拉尔山高压脊同位相叠加;500h Pa低槽、700h Pa中尺度辐合的配合是影响系统;地面气温在0℃以下和充足的水汽条件和不断的水汽输送,构成了此次暴雪的有利物理条件;垂直环流,增强高低空急流的耦合作用,为暴雪提供动力条件。由于酒泉在春季出现暴雪天气过程极其罕见,分析此次暴雪天气过程,对提高预报员对此类罕见天气的认识和把握大有帮助。  相似文献   

19.
北京一次持续霾天气过程气象特征分析   总被引:6,自引:0,他引:6       下载免费PDF全文
2013年1月10-14日,北京平原地区出现了水平能见度在2 km以下、以PM2.5为首要污染物、空气质量持续5 d维持在重度以上污染水平的霾天气。综合分析此次霾天气过程的天气形势、北京地区常规和加密气象资料以及城郊连续观测的PM2.5浓度资料。结果表明:此霾过程期间,北京高空以平直纬向环流为主,受西北偏西气流控制,没有明显冷空气南下影响北京地区,地面多为不利于污染物扩散和稀释的弱气压场;大气层结稳定、风速小(日平均风速小于2 m·s-1)、相对湿度较大(日平均相对湿度在70 %以上)、逆温频率高强度大,边界层内污染物的水平和垂直扩散能力差;北京城区及南部的京津冀地区人类活动排放污染物强度大,在相对稳定和高湿的天气背景下,受地形和城市局地环流的影响,北京本地污染物累积和区域污染物输送以及PM2.5细粒子在高湿条件下的物理化学转化等过程共同作用造成此次北京城区及平原地区污染物浓度快速增长并持续偏高,高浓度PM2.5对大气消光有显著影响,造成低能见度和持续霾天气。  相似文献   

20.
利用常规气象资料、FY-2C卫星云图和鄂尔多斯多普勒雷达资料,对2017年2月20—21日内蒙古河套地区的暴雪天气过程进行分析,结果表明:此次暴雪天气是在两脊一槽的环流形势中,高空槽、低层切变线与低空急流配合地面倒槽产生的;高低空急流耦合,为降雪天气的发生提供动力条件,低层700h Pa低空急流源源不断的将南海水汽输送至河套地区上空,为降雪天气的发生提供水汽条件;卫星云图上显示,强降雪主要发生在明亮密实的盾状云区,高低空急流与云区一一对应;雷达回波强度整体偏弱且稳定,但持续时间近12h,长时间的停留是此次暴雪天气发生的主要原因,回波顶高度基本位于6km以下,低层有暖平流进入,反映出此次降雪过程为稳定的层状云降雪。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号