首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用西安咸阳国际机场专用高速公路(以下简称西咸机场高速公路)段交通气象站及其10km范围内区(县)气象站的观测资料,以及MICAPS高空和地面资料,研究了西咸机场高速公路雾的变化特征、典型环流形势和气象影响因子。结果表明:雾主要发生在夜间至清晨,能见度越小的雾生成的时间越集中,2月、4月和10—12月出现的雾可持续较长的时间;典型雾日,500hPa陕西关中地区为一致的西北或偏西气流,850hPa陕西关中及其以南地区受弱暖脊控制且处于反气旋环流的底部,西咸机场高速公路及其周边地区近地面层有逆温形成,且风速小,湿度大;有利于雾发生的气象条件包括相对湿度≥80%、地面风速≤3m/s和地表温度与气温之差≥-3℃等,14时相对湿度、14时气温与未来时刻气温的差都与相应时刻能见度密切相关。  相似文献   

2.
利用2012—2017年河北省高速公路沿线交通气象站观测资料以及因气象条件造成的高速公路交通事故和封闭管制资料,选取公路交通高影响天气的强度、持续时间、风险区划等级、单项车流量、地形、发生时段等多个因子,运用加权分析法,分别建立雾、路面结冰和强降雨3种气象灾害风险等级预报模型。在此基础上,构建综合3种高影响天气条件下的高速公路通行状况综合风险等级预报模型,并以3种天气条件造成的公路封闭时长为判别指标给出分级标准。经检验,基于3种高影响天气的河北高速公路通行状况综合风险等级预报模型,其产品准确率可达76.7%,能够满足日常交通气象服务需求。  相似文献   

3.
利用2008~2012年河北省高速公路交通事故资料和交通气象自动站、气象站观测资料,统计分析了高速交通事故的日、月及年变化特征及其与雨、雪、雾等灾害性天气的关系。在此基础上,基于气象、路网、交通和地形等因素,采用专家评分法和指标权重法,构建河北省雾天高速公路通行预警指标体系,并结合2013~2014年京沪、黄石高速河北段案例,对预警指标体系进行检验。结果表明:河北省高速公路交通事故年发生频次变化较大,总体呈下降趋势;每日00~05时为高速交通事故高发时段,12时、16时为次高峰;夏季是高速交通事故多发季节(30.2%),冬季最少(20.2%)。其中,7月交通事故最多,5月、6月、8月次之。5~9月、9月至翌年3月、12月至翌年2月,分别是河北雨、雾、雪等灾害性天气高速交通事故多发期,每日06~08时是雾天高速交通事故高发时段。2013~2014年试预报检验京沪、黄石高速通行预警级别准确率分别为84%、75.9%,精度较高,该指标体系可为河北省交通气象服务及防灾减灾提供一定参考。  相似文献   

4.
内蒙古高等级公路道路结冰预报方法初探   总被引:1,自引:0,他引:1  
利用1990—2007年内蒙古高等级公路包头—兴和段4个气象站监测的结冰和积雪资料,分析得出可能发生道路结冰的天气气候背景。并利用1990—2000年包头—兴和段可能发生道路结冰现象的降水天气过程的气象资料,总结出6种天气环流概念模型,为预报内蒙古高等级公路道路结冰提供参考。  相似文献   

5.
利用2010年4月至2013年3月河北省气象台站监测资料、高速公路沿线气象监测资料和高速公路路况管制信息,分析灾害性天气对河北高速公路通行的影响。结果表明:1河北高速公路通行受阻有38.3%是气象因素造成的,其中以雾居多,冰雪次之;2雾造成的通行受阻月、季变化特征最显著,秋冬季节发生频次较春夏两季明显偏多、影响时间明显偏长;3雾造成的年平均通行受阻日数呈现东南部平原多、西部北部山区少的特征,冰雪则相反;4通过分析2010—2013年26次典型的高速公路雾天气过程,结合2013年1月雾多发时段能见度对高速公路通行的影响,初步建立了高速公路大雾预警模型,并提出灾害性天气下交通气象服务对策,为提高公路通行能力和应对灾害性天气提供参考。  相似文献   

6.
利用青海省主要公路沿线43个气象站和26个交通气象站2004年10月—2016年5月的地面气象观测中的降雪量和积雪深度资料及2013—2016年的交通事故、交通管制、道路形态和车流量等资料,在分析青海省公路沿线强降雪时空分布特征、引起交通事故天气类型、路面状况和交通管制气象因素的基础上,分析了青海省公路交通沿线道路孕灾环境、承灾体和致灾因子。以强降雪致灾因子为基础,加上承灾体、孕灾环境权重系数,最终研究建立了青海省公路沿线强降雪灾害性天气风险等级区划模型,并绘制了等级区划图。西宁地区、海北地区、都兰县是强降雪灾害性天气高风险区,此外,东部地区强降雪灾害性天气风险显著高于西部地区。  相似文献   

7.
基于河北省2011—2015年10月至第二年4月国家气象站数据、交通气象站数据、路面结冰风险普查数据、因路面结冰造成的交通管制和交通事故数据、车流量数据以及地理信息等数据,从致灾因子危险性、孕灾环境脆弱性和承载体敏感性构建了高速公路路面结冰风险区划评价指标,利用层次分析法和GIS技术制定了河北省高速公路路面结冰风险区划。结果表明:河北省北部及邯郸西部山区高速公路为路面结冰高风险路段;张家口东部、承德南部、保定西部和石家庄西部山区和河北省东南部地区部分高速公路为路面结冰较高风险路段;京秦高速迁西支线、京昆、津汕、黄石、邢衡等高速部分路段为路面结冰低风险路段。  相似文献   

8.
北京市气象局早在90年代开始开展交通气象服务,重点高速公路(八达岭高速、机场高速路等)在2005年开始建立道面气象监测站。结合北京市灾害天气预警项目陆续建设,到2008年初北京交通气象监测网到达18个,主要在环线和主要高速路北京段,观测内容除常规的温压湿风降水量外,  相似文献   

9.
北京地区高速公路道面结冰特征及气象条件   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对2007—2010年北京市气象局交通气象监测站所采集的数据进行分析,研究了北京市高速公路道面结冰特征及气象条件。结果表明:北京市的道面结冰主要出现在西北部和城市环线高速公路;结冰次数年际变化显著,且同降水和气温之间关系密切。除此之外,北京地区高速公路内、外车道的结冰时刻均存在显著日变化,80%以上的结冰事件发生在20:00(北京时,下同) 到08:00之间,又以发生在后半夜为主,且前半夜结冰的持续时间明显长于后半夜。发生降雪结冰的气象条件:道面温度和气温均低于0℃,且道面温度略高于气温,环境风速较小,一般低于4 m·s-1。  相似文献   

10.
选取2006—2015年近10 a遵义市14个国家气象站观测资料,分析统计了大雾天气的时空分布,雾日的季节和月频率分布以及区域性大雾年际变化;并通过2015—2017年遵义市市区空气质量指数资料和能见度等地面气象资料,浅析其时间变化特征。结果表明:遵义大雾区主要有西部河谷大雾区、中部偏南大雾区、东部大雾区、北部雾区等4个。遵义市12月—次年1月出现的雾日最多,6—8月出现最少。近10 a区域性大雾天气次数随着年代的增加,总体呈现逐年减少的趋势。遵义秋冬季节空气质量状况不佳,空气中污染颗粒物较多,此时较高的相对湿度有助于形成能见度较差的天气。  相似文献   

11.
选取2006—2015年近10 a遵义市14个国家气象站观测资料,分析统计了大雾天气的时空分布,雾日的季节和月频率分布以及区域性大雾年际变化;并通过2015—2017年遵义市市区空气质量指数资料和能见度等地面气象资料,浅析其时间变化特征。结果表明:遵义大雾区主要有西部河谷大雾区、中部偏南大雾区、东部大雾区、北部雾区等4个。遵义市12月—次年1月出现的雾日最多,6—8月出现最少。近10 a区域性大雾天气次数随着年代的增加,总体呈现逐年减少的趋势。遵义秋冬季节空气质量状况不佳,空气中污染颗粒物较多,此时较高的相对湿度有助于形成能见度较差的天气。  相似文献   

12.
通过对凯里.黄平机场气象站2010年3月23日凌晨雷击事故发生时的天气系统、雷达资料、闪电定位监测资料和机场观测场土壤墒情、机场气象站地形地貌的分析,并结合雷击事故现场勘察和该站雷电防护设施检测结果分析,找出造成该站雷击事故的原因,并提出对机场气象站防雷设施的整改措施。  相似文献   

13.
利用2014—2020年西安—咸阳机场高速公路(简称西咸高速公路)和西安—汉中高速公路(简称西汉高速公路)交通气象站和临近国家自动气象站的逐小时降水资料,分析了西咸、西汉高速公路降水的时空分布特征。结果表明:西咸、西汉高速公路年降水量和降水日数由北向南逐渐递增。夜雨量大于昼雨量,夜雨出现的时间长、强度大。5—10月降水量占全年的69%~91%,其中6、9月偏高较多。5—10月小雨降水日数最多,暴雨日数最少,暴雨月平均降水量和降水强度的最大值均出现在7、8月。西咸、西汉高速公路为夜间至清晨和午后降水峰值型。西汉高速短时强降水发生频次较多,而西咸高速公路的极端强降水发生频次明显多于西汉高速,各公路点1 h最大降水量均发生在7、8月。21:00—01:00高速公路的降水量和强度偏大,且西汉高速公路多为山路,滑坡、泥石流等灾害发生的风险增大,尤其发生在夜间,危害更大。  相似文献   

14.
基于宁宿徐高速公路三个交通气象站2015—2018年冬季逐10 min实时观测资料,使用随机森林回归模型预报这三个站的未来1h冬季路面温度,分析了该模型在冬季路面温度预报中的可行性和适用性.研究结果表明:随机森林回归法可以被用来预报高速公路冬季路面温度,不同类型的交通气象站点的特征输入方案和参数调试标准存在差异;与简单...  相似文献   

15.
团雾是一种严重威胁公路交通安全的恶劣天气,因其具有较强的局地性、突发性特点,也是目前公路交通气象预报服务的难点之一。针对2017年11月15日发生在安徽阜阳滁新高速颍上段的团雾交通事故,利用颍上交通气象站、焦岗湖交通气象站与颍上气象站的逐10 min气温、相对湿度、风速、能见度监测数据,结合欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts)的分析场资料,分析了安徽颍上团雾交通事故发生地的局地环境特征和当日的天气特征及成因,探讨了高速公路团雾预报服务的不足和未来工作展望,为进一步做好团雾天气交通气象服务提供借鉴和参考。主要结论如下:此次团雾发生在辐射雾的天气形势背景下,夜间辐射降温幅度达5℃以上,为团雾发生提供了低温条件;团雾发生地地势低洼且临近水系,水汽输送通道流畅,水汽充足,黎明后底层空气湿度维持在85%以上,是团雾发生的诱因之一;日出后风力保持静风状态,空气流动性差,造成近地面层水汽聚集,是团雾发生的重要原因。  相似文献   

16.
以G60沪昆高速浙江段为气象灾害风险普查对象,通过统计分析方法,挑选出灾害隐患点,在此基础上,利用问卷调查法、专家评估法、对比分析法和主成分分析等方法,对隐患点的气象灾害风险情况进行了调查分析。结果显示,G60沪昆高速浙江段隐患点主要灾害性天气为大雾和道路结冰,其次短时强降水也会引发一定的交通事故;隐患点的灾害性天气主要发生在秋冬季节,1—2月和9月尤为明显;低能见度致灾阈值为500 m,短时强降水阈值为7 mm/h,降雪阈值为小雪或雨夹雪,各气象要素达到以上强度时,将对高速公路交通产生影响;通过与交通部门的交流座谈,对方希望能获取更多的大雾、强降水等灾害性天气定时定点定量的预报,同时对气象部门提供的产品形式也提出了一些要求和建议,在服务方式上,可以增加更多的新媒体形式。  相似文献   

17.
2008年1-2月江西低温雨雪冰冻灾害分析评估   总被引:3,自引:0,他引:3  
受北方较强冷空气和西南暖湿气流共同影响,2008年1月12日-2月2日,江西出现了一次有气象记录以来最严重的持续低温、雨雪、冰冻灾害性天气。对这次灾害性天气的基本气候特征及其影响进行分析评估,有利于为今后抗御类似灾害和其他气象灾害提供参考。为此,从天气气候特点、成灾原因及影响等方面进行分析评估后发现,此次灾害影响范围大,受灾人数多,损失重,1月22—27日大范围冻雨,以及1月28—29日和1月31日~2月2日两场大雪,使危害迅速加剧;灾害影响涉及社会各行各业,其中受灾最为严重的有交通、电力、通信、农业、林业等部门;影响因子以低温、冰冻(道路结冰、电线积冰)、雪压等为主,另外还有雨雪、冰雪融化等;冻雨强度大,低温、雨雪和冰冻天气范围广、持续时间长等,是此次罕见灾害的直接原因;此外,承灾体设计标准太低、应急准备不够充分等是导致灾害损失严重的重要因素。  相似文献   

18.
<正>交通气象服务向精细化和风险预警转变,跟踪服务公众出行。研发改进高速公路交通精细化气象要素预报指导产品对试点省份、试点高速公路运行一天两次的精细化路段预报。开发并应用全国公路气象灾害监测预警服务系统基于地面交通气象站的观测资料,利用3D-GIS构建国家级交通气象监测预警信息实时显示平台,应用于导航、物流在内的多个领域。  相似文献   

19.
为更好地开展公路交通道路结冰预报预警服务工作,利用甘肃省道路结冰高发区路段(甘肃武威以东)的交通气象站逐小时观测资料,分析道路结冰空间分布特征,探讨道路结冰与气象要素的相关性,采用Logistic回归法和神经网络算法构建道路结冰预警模型。结果表明:甘肃省道路结冰主要集中在冬季(12月至次年2月),其中00:00—10:00和22:00—23:00(北京时)出现道路结冰的频率较高。Logistic回归模型和神经网络模型对未发生结冰事件的预测准确率较高,分别为91.9%和96.2%;针对发生结冰事件,Logistic回归模型的预测准确率较低,为31.6%,而神经网络模型的预测准确率可达44.6%,说明2种模型对道路结冰预警有一定指示意义,神经网络模型预测效果优于Logistic回归模型。  相似文献   

20.
利用2013年8月至2017年12月陕西高速公路交通气象站的路面温度、气温、相对湿度、风速等资料和全球大气再分析资料云量数据,分析四季不同天空状况下路面温度的分布特征,研究路面温度与气象因子的关系,建立多元回归方程。结果表明:四季路面温度有明显的日变化规律,雪后,00:00—08:00为路面结冰较易发生时段;气温是影响路面温度变化的最重要因子之一;对比路面温度实测值与预报值,回归模型对冬季路面最低温度的拟合效果较优,相关系数在0.94以上,标准差小于1,误差在±2℃的频率为98%。此外,模型对路面0℃低温预报水平较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号