首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国近30a臭氧气候场特征   总被引:3,自引:1,他引:2  
利用1979—2005年TOMS(total ozone mapping spectrometer)和2006—2007年OMI(ozone mo-nitoring instrument)的卫星观测资料,分析中国地区对流层臭氧含量(tropospheric ozone residue,TOR)、整层臭氧含量(total ozone,TO)的空间分布和季节变化特征,利用二项式加权平均法、Mann-Kendall突变检验法以及小波分析法分析南方典型地区广州臭氧序列的趋势、突变以及周期特征。结果表明,中国地区多年平均对流层臭氧柱含量为35.89DU,东中部地区高于西部,四川东部和重庆西部存在极高值区,青藏高原为极低值区;对流层臭氧夏季平均值最高,冬季最低,春季高于秋季。中国地区多年平均臭氧总量为298.61DU。臭氧总量随着纬度增大而增大,成带状分布,青藏高原为极低值区;臭氧总量春季平均值最大,秋季为最低。南方广州地区的对流层臭氧在1979—2007年之间存在明显的上升趋势,时间变率为0.38DU/(10a);TOR时间序列在1997年发生突变,存在显著的1a及2a的周期。臭氧总量在1979—2007年之间存在明显的下降趋势,变化率为-2.1DU/(10a);TO在1993年发生突变,存在显著的2a周期  相似文献   

2.
利用2002年9月至2012年12月北京地区臭氧探空资料分析了大气臭氧的垂直分布特征,重点分析了对流层顶附近区域臭氧的季节变化与变率。结果表明:北京地区对流层臭氧的垂直分布主要表现为随高度递增的特征;臭氧的平均浓度夏季最高,冬季最低,春季和秋季相当,各季节的臭氧浓度在不同高度范围内略有差别。在对流层上层至平流层下层(8—15 km),臭氧浓度的垂直分布与平均浓度受对流层顶高度的影响显著。基于对流层顶相对高度坐标的分析表明,对流层顶下方1—3 km高度的臭氧仍保持了对流层臭氧的垂直分布特征;而在对流层顶高度附近,各季节臭氧浓度均随高度显著增加;由于垂直增速有显著的季节差异,导致臭氧平均浓度在对流层顶上方1—3 km出现明显变化。臭氧浓度归一化标准差表明:在对流层低层,大气臭氧浓度的变率在冬季最强,秋季、春季和夏季臭氧浓度的变率依次减弱;在对流层顶附近,大气臭氧浓度的变率在春季最强,冬季、秋季和夏季臭氧浓度的变率依次减弱,其中冬季和春季的强臭氧变率可能与对流层顶附近活跃的大气波动及对流层顶高度的频繁扰动密切联系。  相似文献   

3.
曹冬杰  闫欢欢  齐瑾 《气象科技》2018,46(2):374-381
闪电放电过程发出很强的光辐射,促进了光化学反应的进行,加快了NO_x向上的垂直输送,造成对流层上部NO_x的增加。闪电生成氮氧化物(LNO_x)是对流层上部NO_x(NO和NO_2)的主要来源,影响了对流层和平流层大气成分的垂直分布。本文利用2005—2013年TRMM卫星LIS传感器闪电密度和Aura卫星OMI传感器对流层NO_2垂直柱总量遥感观测数据,分析了中国地区对流层NO_2柱总量时空分布特征及其与闪电活动的相关性。发现,青藏高原地区对流层NO_2柱总量与闪电密度变化特征一致,表现为夏季高,冬季低,该地区LNO_x估算值约为339mol/次。基于LNO_x估算值分析中国不同地区LNO_x/NO_x百分比分布特征,发现,青藏高原地区春季和夏季LNO_x/NO_x较高,约为20%~60%,秋季和冬季低于20%;与之相比,NO_x排放较为严重的四川盆地、长江三角洲和珠江三角洲等地区普遍低于20%,中国地区LNO_x/NO_x百分比平均值低于10%。由此得出结论,LNO_x是青藏高原地区NO_x的主要排放源,人口密集和工业程度较高的四川盆地、长江三角洲和珠江三角洲地区NO_x主要来自于其它排放源。研究结果揭示了中国地区对流层NO_x柱总量分布特征及其与闪电活动的关系,对于研究闪电过程对于氮氧化物生成量的影响有重要意义。  相似文献   

4.
利用TOMS大气臭氧总量格点资料分析了东北地区近6a(1996年8月-2002年7月)臭氧的分布特征、季节变化、变化趋势及其对气温变化的影响,并与1979—1992年的变化情况作了对比分析。结果表明:东北地区处于北半球大气臭氧高值中心的边缘,臭氧总量呈随纬度增加的分布形式,近6a区域年均值为361Du;冬春季总量较大、夏秋季较小,其中8月最小,3月最大;1979—1992年臭氧存在明显的下降趋势(冬季最为显著),下降趋势高纬大于低纬,近6a整个区域没有系统性下降趋势;1979—1992年对流层中下部显著变暖、对流层上层和平流层低层显著变冷,且变暖率与变冷率均随纬度增高而加大,而近6a气温变幅很小,这与臭氧变化趋势基本对应,表明臭氧的辐射加热是影响平流层低层、对流层高层温度场的重要因素,同时它对对流层低层气温的影响值得进一步关注。  相似文献   

5.
利用TOMS大气臭氧总量格点资料分析了东北地区近6a(1996年8月—2002年7月)臭氧的分布特征、季节变化、变化趋势及其对气温变化的影响,并与1979—1992年的变化情况作了对比分析。结果表明:东北地区处于北半球大气臭氧高值中心的边缘,臭氧总量呈随纬度增加的分布形式,近6a区域年均值为361Du;冬春季总量较大、夏秋季较小,其中8月最小,3月最大;1979—1992年臭氧存在明显的下降趋势(冬季最为显著),下降趋势高纬大于低纬,近6a整个区域没有系统性下降趋势;1979—1992年对流层中下部显著变暖、对流层上层和平流层低层显著变冷,且变暖率与变冷率均随纬度增高而加大,而近6a气温变幅很小,这与臭氧变化趋势基本对应,表明臭氧的辐射加热是影响平流层低层、对流层高层温度场的重要因素,同时它对对流层低层气温的影响值得进一步关注。  相似文献   

6.
该文利用美国1978~1993年TOMS臭氧资料以及NCEP提供的全球再分析资料,研究北半球大气臭氧变化特征及其对大气温度和环流的影响.研究表明1987年前后北半球40°N以北的中高纬地区春季大气臭氧柱总量的趋势变化存在明显的突变,大部分地区突然减少,与其相对应的对流层(平流层)平均温度突然升高(降低),300 hPa(30 hPa)层位势高度也突然增高(下降).但是在北大西洋北部和哈德逊湾地区大气臭氧柱总量却突然增加,与其相对应的对流层(平流层)平均温度突然降低(升高),300 hPa(30 hPa)位势高度突然下降(增高),平均温度突然升高(降低 )1~2°C.研究还表明,大气温度和环流的趋势变化主要是由于大气臭氧的趋势变化所引起.另一方面,在同一地区1979~1992年春季大气臭氧柱总量强弱异常年的大气温度场和环流场的差异也存在相同的分布特征,这一事实进一步说明大气臭氧柱总量的多少是决定大气温度场和环流场差异的重要原因.  相似文献   

7.
近51年我国对流层顶高度的变化特征   总被引:3,自引:0,他引:3  
刘慧  韦志刚  魏红  李振朝  王超 《高原气象》2012,31(2):351-358
利用NCEP/NCAR的对流层顶气压多年月平均和逐月平均再分析资料,运用EOF和REOF方法对近51年中国对流层顶高度的空间分布和时间演变特征进行了详细分析。结果表明,中国地区热带对流层顶(第二对流层顶)和极地对流层顶(第一对流层顶)的边界线,2月最南,8月最北,较高的热带对流层顶从2月开始,逐渐北进,8月到达最北界(44°N附近),然后开始南退,2月其北界处于最南端,在29°~30°N附近;我国29°~44°N之间的中纬度地区,对流层顶高度的年变化幅度较大;对流层顶高度场有三种主要的模态:第一种为全区一致的偏高(偏低)型;第二种为南高(低)北低(高)的南北相反分布型;第三种为南北地区-中部地区相反分布型。对对流层顶高度场进行REOF分解可将中国地区分为6个气候分区,即华南区、新疆区、东北区、华北区、长江流域区和青藏高原区,各区对流层顶高度最大值一般都出现在夏季,最小值出现在冬季,只有华南区的最大值出现在春季,最小值出现在夏季。中国地区对流层顶高度的年际变化和长期趋势具有十分明显的区域性。  相似文献   

8.
利用1948—2010年NCEP/NCAR逐月位势高度再分析资料、美国国家海洋局提供的1948—2010年逐月海温再分析资料,分别定义了1 000—500 hPa和500—200 hPa厚度,利用EOF、SVD等方法研究了北半球对流层厚度时空演变特征及其与大气环流和海面温度的关系。结果表明,冬季平均厚度EOF第一模态均具有北太平洋及附近高纬度亚洲大陆地区与北美大陆高纬地区反位相变化的特点,而夏季第一模态则是北半球范围内较一致的位相分布;冬、夏季平均厚度EOF第二模态均突出体现了欧亚大陆及附近地区与北半球其他地区反位相变化的特点;冬、夏季厚度场的变化形势与大气环流及海面温度具有密切联系。  相似文献   

9.
1979-2008年华北地区对流层顶高度变化特征   总被引:1,自引:0,他引:1  
利用1979—2008年华北地区12个测站逐日对流层顶探空资料,运用统计学方法对该地区不同类别对流层顶发生及其高度的季节特征进行探讨,并采用线性趋势、小波分析和EOF分解等方法对其高度变化等气候特征进行分析,揭示了该地区对流层顶的季节特征及其高度变化的基本事实和规律。结果表明:华北地区第一对流层顶冬季出现多,夏季少,近30a来呈减少趋势,第二对流层顶夏季出现多,冬季少,近30a来呈增加趋势;全年均出现复合对流层顶,且在季节转换时期出现频率较高;第一对流层顶高度年变程呈双峰型,夏季高,冬季低,第二对流层顶高度年变程呈单谷型,冬季高,夏季低,春、秋季介于两者之间;两类对流层顶高度变化均存在5-6a的周期,第二对流层顶相比具有更多时间尺度周期变化。近30a间华北地区第一、第二对流层顶年平均高度变化均呈升高趋势,且与其上下层间平均温度有关。  相似文献   

10.
冬季欧亚大陆盛行天气型与北极增暖异常的可能联系   总被引:1,自引:0,他引:1  
李思  武炳义 《气象》2019,45(3):345-361
利用ERA-interim的再分析资料和英国大气数据中心的海冰密集度资料,通过复矢量经验正交分析方法(CVEOF),本文研究了自1979-2016年37个冬季(12月1日至次年2月28日)共3330 d对流层中层500 hPa欧亚盛行天气型主要时空变化特征及其与近年来北极对流层中、低层增暖异常和北极海冰减少的可能联系。结果表明,CVEOF1解释了总异常动能的15. 82%,其两个子模态空间型分别表现为三极子型(0°和180°位相)和偶极子型(90°和270°位相)。其中,180°和270°位相的天气型发生时,冬季北极对流层中、低层偏暖,盛行暖北极-冷欧亚的大气环流形势。前期秋季从巴伦支海海域以东到波弗特海海域的海冰密集度(SIC)异常偏少可能是其影响因素之一。近年来这两个位相(180°和270°位相)的发生频次逐渐增多,与冬季频发的极端低温事件有紧密联系。在2005/2006年和2011/2012年冬季的冷事件中,180°和270°位相的发生频次明显偏多。因此,秋季从巴伦支海海域以东到波弗特海海域的SIC偏少,冬季北极对流层中、低层异常偏暖,有利于180°和270°位相天气型盛行,可能是导致冬季极端天气事件频发的主要原因之一。  相似文献   

11.
青海省对流层顶若干统计特征   总被引:4,自引:0,他引:4  
主要利用青海省7个探空站1970~2001年高空观测资料,运用统计学方法,对各站各类对流层顶的时空分布、季节变化和趋势等进行了分析,揭示了对流层顶的分布特征及其高度、温度变化的基本事实和规律。结果表明:由于不同类型对流层顶在各站的位置随着季节有明显的南北进退,因此,出现频率各异;两类对流层顶的高度不仅有明显的差异,而且还具有明显的季节性变化,极地类对流层顶高度在春季最高,夏季最低,而热带类对流层顶高度在夏季最高,秋季最低;最高对流层顶与低温相对应,最低对流层顶与高温相对应;热带类对流层顶年平均高度变化呈上升趋势,年平均温度变化呈下降趋势。这与近几年来,平流层内臭氧减少,温度降低,对流层高度抬升有关。  相似文献   

12.
利用卫星资料计算得到的对流层臭氧柱总量数据分析了近20年来全球对流层臭氧柱总量的全球分布特征,并对我国对流层臭氧的季节变化做了研究。利用对流层污染测量仪(MOPITT)的CO和全球臭氧监测仪(GOME)和大气制图扫描成像吸收光谱仪(SCIAMACHY)的NO2数据分析了关于对流层臭氧的分布特征及其原因。得出中高纬度地区对流层臭氧浓度存在规律的年内变化,对流层臭氧高浓度值的分布及变化与人类活动有密切关切。  相似文献   

13.
支星  徐海明 《高原气象》2013,32(1):97-109
利用中国105个测站的探空资料以及NCEP/NCAR、ERA和JRA三种再分析资料,采用线性趋势和EOF分析等多种统计分析方法,对再分析资料的季节平均高空温度在中国区域的可信度进行了分析.结果表明,在数值上,春、夏、秋季的分布形势较为相似,大多表现出NCEP资料在对流层上层与探空资料更为接近,ERA和JRA资料在对流层中下层与探空资料更为接近,而冬季与其他季节差别较大;在描述长期变化趋势方面,不同季节不同资料的情况不一致,特别是夏季我国南部地区的对流层中层存在较大范围的降温趋势;在不同区域上,相比于探空资料,三种再分析资料在我国北方的描述能力比南方好,东部比西部好;在时空变化特征方面,三种再分析资料第一模态的分布在不同季节差异较大,而第二模态的分布在各季节则较为一致,大多表现出整层温度南北反位相变化的特征.  相似文献   

14.
利用卫星资料分析我国北方东西部臭氧分布差异   总被引:2,自引:0,他引:2       下载免费PDF全文
利用SAGE Ⅱ和HALOE臭氧垂直分布资料和TOMS臭氧总量资料, 研究我国北方(45°~55°N和35°~45°N范围), 东部(105°~135°E) 和西部(75°~105°E) 大气臭氧总量和垂直分布特征和差异。结果表明:我国北方东部冬季、春季和秋季臭氧总量明显大于西部, 主要表现在平流层臭氧极大值附近及其以下高度臭氧含量东部比西部明显偏大, 这种差异在冬、春季尤为明显; 随着纬度的降低, 冬季和秋季臭氧总量东、西部差异减小, 但春季臭氧总量东、西部差异没有明显改变; 夏季, 在45°~55°N范围, 东、西部臭氧分布没有明显差异, 但在35°~45°N范围, 臭氧分布东、西部差异较明显, 臭氧总量东、西部差异达到20.6 DU, 16 km以下臭氧柱总量东、西部差异达到12.8 DU。该文还对导致我国东、西部臭氧分布差异的原因进行了分析。  相似文献   

15.
根据2001~2003年期间获得的大气臭氧探空资料,揭示了北京地区上空对流层顶高度的某些变化特征及其对上对流层(UT)和下平流层(LS)区域内大气臭氧含量变化的影响.结果显示:北京地区上空对流层顶高度的平均值约11.1 km,其变化范围为7.7~14.4 km,臭氧层顶始终处在对流层顶下方约0.9 km高度处.对流层顶高度变化与臭氧总量变化之间的关系相对较弱.通常情况下,LS中的臭氧积分量明显高于UT中的相应值,并且二者呈相反的季节变化特征.北京地区上空仲夏和初秋季节第一对流层顶出现的频数明显减少,在第一对流层顶消失的情况下,LS中的臭氧积分量明显减少,而UT中的臭氧积分量明显增加,臭氧量减少最多发生在200~100 hPa层次中,而臭氧量增幅最大的层次是400~250 hPa.  相似文献   

16.
利用美国国家环境预报中心/大气研究中心(NCEP/NCAR)再分析资料分析了近30年(1979—2011年)热带(0~360 °E,20 °S~20 °N)对流层顶高度变化,结果显示其高度有明显的线性上升趋势,近30年气压下降了3.5 hPa。其中对流、臭氧和对流层温度的贡献分别为13.3%、27.26%和57.31%。在去除线性趋势后,热带对流层顶气压表现出了显著的年际变率,主要周期峰值为18.2、28.6和40个月。其中臭氧和热带对流层温度都对18.2个月的周期有贡献,而臭氧和热带对流层温度18.2个月的周期很可能是由北半球的季风环流引起的;28.6个月的周期主要源于臭氧总量的准两年周期变化,而后者是由热带平流层低层纬向风场的准两年振荡引起的;热带对流层顶气压40个月的周期似乎源于ENSO循环引起的对流层温度变化。   相似文献   

17.
利用1979—2018年太阳后向散射紫外辐射计SBUV(/2)星下点臭氧遥感资料,结合ERA-Interim和MERRA-2大气温度再分析资料,考察青藏高原区域内拉萨和共和两地春季臭氧和大气温度变化趋势的差异性。结果表明拉萨和共和两个地区的臭氧和大气温度逆转趋势均发生于1999年。对比2008年以来青藏高原整体臭氧总量变化速率(4.5 DU/(10 a)),拉萨臭氧总量变化更快,为5.9 DU/(10 a),共和相对较慢,仅为3.7 DU/(10 a);同时,1999年以来拉萨和共和春季下平流层(100~30 hPa)大气温度分别以0.5~1.4℃/(10 a)和0.01~0.9℃/(10 a)速率增加,上对流层(250~175 hPa)大气温度分别以0.2~1.5℃/(10 a)和0.2~1.2℃/(10 a)速率降低。与2008年以来高原整体大气温度变化相比较,均慢于高原下平流层(125~70 hPa) 1~2℃/(10 a)的增温速率,快于高原上对流层(225~175 hPa)0.4~1.1℃/(10 a)的降温速率。两地臭氧与大气温度的相关系数和回归系数计算结果表明,拉萨和共和两个地区1999年以来春季臭氧恢复速率的不同是导致两地同期下平流层-上对流层温度逆转速率差异的重要因子之一。  相似文献   

18.
利用1979年1月—2014年6月ERA-Interim和NCEP再分析月平均资料,计算并分析全球对流层顶高度、温度等物理量的时空变化特征。结果表明:(1)对流层顶高度和温度的空间分布有很强的纬度依赖性,中高纬度地区对流层顶高度和温度变化随纬度变化分布较明显;(2)近36 a来,全球对流层顶高度整体升高(气压下降约1~2 h Pa·(10 a)~(-1)),而对流层顶温度降低(温度下降约0.1℃·(10 a)~(-1));(3)不同季节对流层顶的高度和温度场都有一定的空间结构变化,两者之间存在季节变化的协调性,且北半球较南半球的变化更复杂;(4)通过ERA-Interim资料和NCEP资料的对比,发现基于NCEP资料得到的对流层顶高度比ERA-Interim资料约高1 km,而2种资料的对流层顶温度在赤道、副热带地区比较接近,都稳定在192~200 K之间,但南、北半球中高纬度温度分布明显不同;(5)除北半球中高纬度北美洲和欧洲局部地区外,对流层顶高度的升高与对流层顶温度的下降存在明显的正相关,尤其是热带地区和南半球高纬地区,相关系数超过0.8。  相似文献   

19.
利用ERA-Interim和MERRA-2再分析资料,考察1980—2017年青藏高原大气温度变化趋势和规律,年、季、月不同时间尺度分析结果均揭示2008年以来青藏高原春季大气温度变化呈现逆转趋势:高原上空平流层下部150~50 hPa呈现明显的增温趋势(1.0~2.7℃/10a),对流层上部300~175 hPa呈现明显的降温趋势(-3.1~-1.0℃/10a),这与此前的大气温度变化趋势完全相反。利用TOMS和OMI卫星臭氧遥感资料,考察同期青藏高原臭氧总量变化特征,表明2008年以来青藏高原臭氧总量也表现出逆转的增加趋势,与大气温度逆转趋势吻合,从冬末至春季各月均有显著增加趋势,尤以5月臭氧总量增加速率最大,达13.7 DU/10a。青藏高原春季大气温度变化趋势与同期臭氧总量变化特征紧密相关,2008年后臭氧总量的快速恢复可能是引起大气温度逆转趋势的一个重要影响因素。  相似文献   

20.
基于总臭氧测绘光谱计TOMS和太阳向后紫外线散射仪SBUV结合得到的30年(1979-2008年)全球月平均臭氧总量资料,首先分析了近30年青藏高原(下称高原)上空臭氧总量的下降趋势,然后讨论了高原动力抬升作用对臭氧总量的影响,最后探讨了高原臭氧总量亏损与高原对流层顶高度的联系。结果表明,高原臭氧总量及其下降趋势均存在着明显的季节差异,与同纬度非高原区相比,高原地区各月的臭氧总量均偏低,特别是在3-9月臭氧亏损严重;近30年高原地区臭氧总量在各季节均呈现出下降趋势,除了秋季外,其下降幅度均超过同纬度其他地区;春、夏季高原动力抬升有利于对流层低浓度的臭氧含量向平流层输送,从而导致高原臭氧总量的减少。近30年春、夏季高原臭氧总量亏损与夏季高原第二对流层顶高度的抬升存在着密切关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号