首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GPS反演的大气可降水量变化特征及其与降水的关系研究   总被引:1,自引:4,他引:1  
利用GPS技术反演得到2009年盐城5站的大气可降水量(PWV)序列,分析了PWV随时间的变化特征及其与实际降水的关系.结果表明:PWV夏季占全年总量43.15%,春、秋季分别为19.21%和26.43%,冬季为11.21%;日变化过程中,最小值出现在07-08时,16-18时达到最大,夏季日变化幅近12 mm,春、秋季为7 mm左右,冬季不足5 mm;应用Morlet小波分析,得到全年PWV呈现15 d、30 d、60 d、准半年等多尺度周期变化,且时域分布不均;夏季降水大多发生在PWV峰值出现后1~2h内,春、秋季降水主要发生在峰值出现后的2~3h内,冬季则为峰值出现3h之后;当春到冬各季的PWV的2h增量分别达到5、6、5、4 mm时,出现降水的概率为60%~70%.  相似文献   

2.
基于地基GPS探测水汽的原理,利用2016年陆态网的站点数据,对北京十三陵、福建武夷山、内蒙古乌拉特后旗、黑龙江绥阳、新疆若羌和云南东川6个站点GPS反演大气可降水量(GPS/PWV)的时间变化以及在典型月(1、4、7、10月)的空间分布变化进行了分析。结果表明:GPS/PWV具有显著的季节分布规律,周期性较强,3—5月为GPS/PWV的快速上升阶段;6—8月达到最大,最大值约80 mm;9—11月为GPS/PWV快速下降阶段;12月—次年1月为全年的最低阶段,基本在30 mm以下。6个站点GPS/PWV的逐小时变化也具有一定的周期性,最大值出现在20时,最小值出现在06—08时。在典型月,水汽含量的空间分布主要集中在华中、华南、华东地区,其余地区变化幅度较小,并且随着纬度的增加而下降,随着经度的增加而上升。  相似文献   

3.
4.
利用中日JICA项目2010-2011年期间的地基GPS探测逐时大气可降水量(PWV)资料,分析了西藏西部改则站PWV的季节变化和日变化特征及其与夏季降水的关系。结果表明:(1)该站PWV存在明显的季节变化特征,其高(低)值出现在6-9(12-3)月,呈现出明显的单峰型变化特征,同时表现出春季持续上升和秋季快速下降的特点。(2)谐波分析表明,改则站各季PWV日变化均以日循环为主,只是夏季也表现出一定的半日循环特征。(3)改则站PWV存在明显的日变化特征,低值一般出现在当地时间的凌晨至次日上午,各季谷值普遍出现在当地时间10:00前后;高值通常出现在当地的午后至午夜,但各季最大值出现时间不固定;(4)改则站降水通常都发生在PWV高值期,降水发生前后PWV有明显的逐渐积累与迅速下降的变化特征,PWV达到峰值的时间提前于降水。PWV对累积降水频次的影响要比累积降水量更显著。  相似文献   

5.
利用柴达木盆地格尔木站2014年每日00:00和12:00 (世界时,下同) L波段探空数据计算得到的大气可降水量资料(P_(WV_RS))用来验证GPS数据反演的大气可降水量(P_(WV_GPS))精度。在此基础上,利用格尔木、德令哈两站P_(WV_GPS)资料,对该地区大气可降水量P_(WV)变化特征进行分析。结果表明:柴达木盆地P_(WV_RS)和P_(WV_GPS)逐日变化具有很好的一致性,P_(WV_GPS)略高于P_(WV_RS),两者相关系数在0. 9以上。夏秋季P_(WV_RS)和P_(WV_GPS)相关性明显好于冬春季,00:00的相关系数略高于12:00。00:00和12:00 P_(WV_GPS)均方根误分别为1. 8和2. 4 mm,平均相对误差分别为0. 2和0. 4,平均偏差分别为4. 2和4. 3 mm。柴达木盆地P_(WV_GPS)能够反映这一地区实际大气可降水量水平。柴达木盆地P_(WV_GPS)月变化呈单峰型分布,7月最大、12月最小。P_(WV_GPS)夏季最为丰富、秋季次之、冬季最小,呈南多北少的空间分布特征。柴达木盆地日均P_(WV_GPS)为0. 4~28. 0 mm,逐时P_(WV_GPS)为6. 9~7. 3 mm。  相似文献   

6.
利用1979—2016年欧洲中期天气预报中心(ECMWF) ERA-Interim (1°×1°)再分析资料中的经、纬向水汽通量和大气可降水量(precipitation water vapor,PWV)数据,采用相关性分析、趋势分析法、累积距平、IDW等方法,分析三江源地区PWV与水汽通量的时空分布特征、降水转化率(precipitati-on conversion efficiency,PCE)变化规律。结果表明:过去的38 a,经、纬向多年平均水汽通量分别为50. 2、196. 7 kg·m-1·s^(-1),纬向水汽通量气候倾向率比经向大。南边界为纬向主要水汽输入边界,东边界为经向主要水汽输出边界,纬向水汽输送大于经向输送。多年平均PWV为1998. 3 mm,近38 aPWV呈现微弱增加趋势,1979—1997年,PWV呈下降趋势,1998年后PWV呈增加趋势,同期降水也在增加,说明该时段三江源地区气候转湿。PWV与水汽通量的年际变化趋势和转折年相一致。三江源区多年平均PCE为24. 57%,1989年PCE最高,达32. 76%,各季节平均PCE空间分布与年平均PCE分布一致,均表现出南部、东南部高,西部、东北部低的变化特征,各季节PCE大小差异明显,春季多年平均PCE为15. 92%,夏季25. 67%,秋季21. 01%,冬季仅7. 03%。  相似文献   

7.
华北三站地基GPS反演的大气可降水量及其特征   总被引:8,自引:7,他引:1  
利用2005年4月-2006年10月石家庄、秦皇岛和张家口三个地基GPS站的观测资料和地面气象资料,根据GPS反演可降水量的原理以及可降水量与地面水汽压的线性对应关系,对不同站点、不同时次的大气可降水量进行了解算和补算,并对河北省GPS可降水量的时空分布特征进行了分析.结果表明:可降水量在时间上先升后降,7、8月达到最大值;在空间上由北向南递增;可降水量的日变化特征不十分显著,仅表现为小幅度波动.  相似文献   

8.
云南地基GPS观测大气可降水量变化特征   总被引:3,自引:1,他引:3  
利用2007年云南地基GPS站点观测资料,分析GPS反演的大气可降水量(PWV)变化特征,并用探空、实际降水量资料和GPS反演结果进行比较。结果表明:GPS/PWV能反映云南降水的季节变化特征,海拔较低的测站普遍比同期海拔较高的测站测得的GPS/PWV值高;GPS/PWV值与探空得到的大气水汽总量随时间演变趋势基本一致,其相关系数均达0.89;GPS/PWV变化周期和实际降水发生的周期基本相同,降水大多为GPS/PWV值连续增加达到峰值(或从峰值开始下降)后开始;GPS/PWV上升幅度较大或位于高位可作为连续性强降水过程出现的预报指标,但使用GPS/PWV峰值作预报指标时,还应考虑季节因素。  相似文献   

9.
根据拉萨站近40 a(1969—2008年)探空观测资料以及同期的地面降水资料,分析了拉萨近40 a夏季大气可降水量和地面降水的演变特征及其关系.结果表明:该站夏季大气可降水量和降水存在显著的正相关关系,两者存在相同的年际和年代际变化,均具有准3 a年际振荡和准11 a左右的年代际振荡;近40 a来两者均呈现出上升趋势,其中降水的增加趋势明显,其增幅大于可降水量的增幅.进一步通过对拉萨夏季降水转化率分析得知,拉萨夏季平均降水转化率约为26.06%,但存在明显的年际差异,夏季降水转化率最大值约为最小值的3倍;夏季降水转化率正(负)异常年,拉萨地区低层的辐合和高层的辐散均明显增强(减弱),拉萨地区垂直速度将增加(减弱),从而有(不)利于降水形成.  相似文献   

10.
利用中日JICA项目2010—2011年期间的地基GPS探测逐时大气可降水量(PWV)资料,分析了西藏西部改则站PWV的季节变化和日变化特征及其与夏季降水的关系。结果表明:(1)该站PWV存在明显的季节变化特征,其高(低)值出现在6—9(12—3)月,呈现出明显的单峰型变化特征,同时表现出春季持续上升和秋季快速下降的特点。(2)谐波分析表明,改则站各季PWV日变化均以日循环为主,只是夏季也表现出一定的半日循环特征。(3)改则站PWV存在明显的日变化特征,低值一般出现在当地时间的凌晨至次日上午,各季谷值普遍出现在当地时间10∶00前后;高值通常出现在当地的午后至午夜,但各季最大值出现时间不固定;(4)改则站降水通常都发生在PWV高值期,降水发生前后PWV有明显的逐渐积累与迅速下降的变化特征,PWV达到峰值的时间提前于降水。PWV对累积降水频次的影响要比累积降水量更显著。  相似文献   

11.
利用临颍站1970-1999年和2005年人工及自动站观测资料,分析了临颍大气可降水量及降水转化率的时间分布,结果表明:大气可降水量夏季最大,秋季次之;夏秋两季降水转化率为6%~7%。因此,夏秋两季人工增雨潜力较大。  相似文献   

12.
于晓晶  唐永兰  于志翔  赵玲  姚俊强 《气象》2019,45(12):1691-1699
基于新疆天山山区2012—2015年夏季的GPS/PWV资料、探空资料和逐日降水资料,运用多种统计方法,分析天山山区夏季大气可降水量(PWV)的时空变化特征,并初步探讨其原因。从夏季平均值分布来看,天山山区各站PWV分布存在明显差异,与海拔高度呈显著负相关关系;且低海拔站点PWV比高海拔站点表现出更大的发散性和可变性,有雨日PWV的极值、中位数等整体高于无雨日。天山山区夏季PWV表现出显著的月变化和日变化。大部分站点7月PWV最大,6月次之,8月最少;一日之中在10时左右出现日最大值,个别站点表现出不同的变化特征,且有雨日和无雨日也存在一定差异。天山山区各站夏季降水量与其PWV关联性不明显,降水量和水分循环指数均与海拔高度呈显著正相关关系。这可能是因为夏季山区高海拔站点更易产生局地对流性降水,从而增加水分循环次数所致。  相似文献   

13.
临颍大气可降水量与降水转化率特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用临颍站1970-1999年和2005年人工及自动站观测资料,分析了临颍大气可降水量及降水转化率的时间分布,结果表明:大气可降水量夏季最大,秋季次之;夏秋两季降水转化率为6%~7%。因此,夏秋两季人工增雨潜力较大。  相似文献   

14.
地基GPS反演大气可降水量方法的改进   总被引:2,自引:0,他引:2  
利用地基GPS反演大气可降水量(PW,precipitable water)的方法中,GPS PW的准确度依赖于天顶静力延迟(ZHD,zenith hydrostatic delay)的计算模型和转换系数П。分析Saastamoinen模型、Hopfield模型、Black模型计算的ZHD误差发现,其计算的ZHD与探空ZHD相比具有模型偏差,这些模型偏差换算成对GPS PW的影响约为4~10 mm。通过回归建模,对Saastamoinen模型、Hopfield模型和Black模型中的系数进行修正后,可明显减小这些模型偏差,且不影响这些模型的精度。转换系数П是大气加权平均温度(Tm,atmospheric weighted mean temperature)的函数,Tm与地面温度(Ts)高度相关,根据这一特性,利用9个探空站数据通过回归建模得到的Tm本地化模型可很好地拟合Tm,其模型均方差为2.8 K,对应的相对误差为1.0%。对地基GPS反演PW的方法进行改进后,求得的GPS PW的系统偏差明显减小,其中,采用改进的Hopfield模型和Tm本地化模型求得的GPS PW,与探空廓线计算的PW相比,其偏差为-1.6 mm,而与微波辐射计廓线计算的PW相比,其偏差为-1.2 mm。  相似文献   

15.
GPS遥感的大气可降水量与局地降水关系的初步分析   总被引:24,自引:1,他引:24       下载免费PDF全文
该文利用2002年“973”项目安徽GPS外场试验和2000年北京GPS/VAPOR试验积累的资料对GPS遥感的大气可降水量与局地降水之间关系进行了定量分析。结果表明:在降水前后, GPS遥感的大气可降水量有很大的变化; 在2002年入梅前后, 其变化甚至大于30mm; 在海拔高的山区台站, 2hGPS遥感的大气可降水量增量和本站是否发生降水关系密切; 多数情况下, 降水出现在GPS遥感的大气可降水量迅速增加的3~4h内; 每小时降水量峰值和GPS遥感的大气可降水量增量的大小有关。  相似文献   

16.
通过对比中日合作JICA项目2010~2014年大理地基GPS反演的大气可降水量资料与同期降水数据,选取积状云、层状云和层积混合云产生的降水三类样本,分析了大气可降水量(Precipitable Water Vapor,PWV)在三类典型降水过程中的变化特征。结果表明:PWV在层状云降水前有持续大幅度增长,降水趋于结束阶段,出现持续下降。PWV在积状云降雨时有快速大幅跃升,强降水时段与PWV峰值出现时间基本一致。PWV在层积混合降水中,兼具层状云和积状云时的特征,且持续处于高位运行。PWV在上述三类性质降水中表现出的异常特征可为降水的短时临近预报预警提供参考。  相似文献   

17.
段晓梅  曹云昌 《气象》2018,44(12):1575-1582
北斗地基增强系统是我国北斗卫星导航系统重要的地面基础设施,它可以获取高精度、高时间分辨率的水汽产品,满足数值预报、空间天气监测和预警业务的需求。本文利用2017年北斗地基增强系统中北斗单模、GPS单模和GPS+BD双模的数据资料,对同址的北斗气象站、GPS气象站和探空站反演大气可降水量进行对比分析,结果表明:(1)现行北斗地基增强系统所提供的数据,可以有效地用来反演大气柱总水汽含量,所得结果合理,平均偏差都小于1 mm,在变化上与GPS系统和探空系统基本一致,对数值预报有一定的指示作用;(2)与GPS系统相比,GPS单模/PWV和GPS+BD双模/PWV的均方差小于2 mm,相关系数均在0. 97以上,表明两者在反演PWV的精度上与GPS系统相当,而北斗单模/PWV的均方差为3~6 mm,相对方差达到了15%~20%,其精度与GPS系统还有一定的差距;(3)与探空相比,北斗单模在个别时次变化趋势上存在不一致的情况,其均方差为2. 14~6. 12 mm,相对方差为15. 32%~20. 84%,其误差可能是由于探测系统误差等因素造成的,而GPS+BD双模和GPS单模会更加稳定。  相似文献   

18.
李光伟  黄彦彬  敖杰  邢峰华  毛志远 《气象》2018,44(8):1082-1093
为深入了解FY-2卫星大气可降水量(PW)的反演质量,文章选取2012和2015年地基GPS水汽观测数据,与FY-2的PW反演产品进行了对比分析。结果表明:(1)北京、武汉和海口三站GPS/PW(PW_(GPS))与FY-2/PW(PW_(FY-2))在夏季存在显著正相关,三站的相关系数都达到0.67以上,夏季PW的均方根误差值、月平均偏差绝对值均小于冬季。北京与武汉站PW平均偏差和均方根误差在四季均具有明显日变化特征;(2)当PW_(GPS)20 mm时,北京、武汉、海口和拉萨站FY-2/PW与GPS/PW比较一致,PW偏差均值的绝对值和均方根误差较小,当PW_(GPS)20 mm时,PW偏差均值绝对值和均方根误差随PW_(GPS)值减小而迅速变大。FY-2的PW产品在夏季可以为大部分区域提供高时空分辨率、高精度的大气可降水量,在大气湿度非常低、冬季和夜间条件,反演结果精度有待提高。  相似文献   

19.
根据全球定位系统遥感水汽的原理,利用2004年6月哈尔滨GPS跟踪站的观测资料和气象资料,对哈尔滨地区的大气综合水汽含量进行了反演,得到了误差(与控探空资料计算的水汽含量相比)为2.7 mm的反演结果。同时对影响水汽反演的误差进行了分析,给出了各项误差对水汽结果的影响程度,并对反演结果与探空资料结果和实际降水进行了比较,得出了其间变化一致性的结论。  相似文献   

20.
辽宁地区大气可降水量与降水关系的研究   总被引:1,自引:0,他引:1  
秦鑫  赵姝慧  马嘉理  孙丽  刘旸  房彬 《气象》2020,46(1):80-88
当大气可降水量(precipitable water vapor,PWV)达到某一阈值时将出现降水,则该值称为PWV降水阈值(threshold of PWV,PWVt),由此认为PWV_t可以作为PWV与降水关系研究的纽带。为了能够较为准确地计算出PWV_t,引入整层大气饱和可降水量(precipitable water vapor saturation,PWVsat)概念,并推导出多元大气条件下PWVsat计算公式,根据公式可知PWV_(sat)是地面温度(t_s)的函数,其表示整层大气在饱和状态下容纳的最大水汽量。大气必须达到一定层次的饱和才能成云致雨,因此推断t_s也可能影响着PWV_t。为了验证该推断的准确性,利用2015年5月至2016年10月辽宁地区36个观测站的PWV与t_s进行研究,将筛选出1122个降水样本的PWV_t与t_s进行拟合,发现PWV_t拟合公式与PWV_(sat)推导公式较为一致,说明PWV_t和PWV_(sat)两者密切相关,同时给出36个站的拟合参数,从而建立PWV与降水的对应关系。统计检验表明,该方法在降水预报中的准确率、漏报率和空报率分别为93.69%、2.32%和3.99%,说明PWV_t在降水预报方面具有一定的应用价值。最后在一次降水个例中应用,结果显示PWV_t可以较好地预报降水,并发现PWV与PWV_t的差值与降水量具有一定的对应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号