首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
During July and August of 1996, the summer component of the New England shelfbreak front PRIMER experiment was fielded in the Mid-Atlantic Bight, at a site due south of Martha's Vineyard, MA. This study produced acoustic transmission data from a network of moored sources and receivers in conjunction with very-high-resolution oceanography measurements. This paper analyzes receptions at the northeast array receiver from two 400 Hz acoustic tomography sources, with the transmission paths going from the continental slope onto the continental shelf. These data, along with forward acoustic-propagation modeling based on moored oceanographic data, SeaSoar hydrography measurements, and bottom measurements, reveal many new and interesting aspects of acoustic propagation in a complicated slope-shelf environment. For example, one sees that both the shelfbreak front and tidally generated soliton internal wave packets produce stronger mode coupling than previously expected, leading to an interesting time-and-range-variable population of the acoustic normal modes. Additionally, the arrival time wander and the signal spread of acoustic pulses show variability that can be attributed to the presence of a frontal meander and variability in the soliton field. These and other effects are discussed in this paper, with an emphasis on creating a strong connection between the environmental measurements and the acoustic field characteristics.  相似文献   

2.
Historical hydrographic data are used to determine the spatial and seasonal patterns of uncertainty in thermohaline and sound-speed fields in a well-sampled region, the continental shelf and slope in the Middle Atlantic Bight (MAB). Several different historical databases are combined to produce two-dimensional (2-D) plan view and cross-shelf fields of temperature, salinity, and sound speed in two separate regions, the New England shelf and the shelf off Delaware and Maryland. In addition, spatial maps of the sound-speed fields reveal that the maximum variance of the sound speed occurs at the edge of the continental shelf, in the vicinity of the shelfbreak front. The standard deviation of the sound speed was largest during the spring and summer, with magnitudes as large as 14 m/s in a narrow band coinciding with the mean position of the shelfbreak front. During spring the peak in variance was located near the surface outcrop of the front, but during summer the maximum variance was centered at a depth of 30 m, immediately beneath the seasonal thermocline. Comparisons with both synoptic measurements from the Shelfbreak PRIMER experiment as well as moored time series from the Nantucket Shoals Flux Experiment confirm that the shelfbreak front is a "hotspot" of uncertainty (maximum variance), and that the vertical structure of the peak variance is dependent on the presence or absence of the seasonal thermocline  相似文献   

3.
The authors describe the effort to provide three-dimensional global thermohaline and sound speed fields for use in the effects of sound in the marine environment (ESME) workbench suite of programs. The primary fields used are from the modular ocean data assimilation system (MODAS), developed by Fox et al. The system provides global thermohaline and sound speed fields on a daily basis using environmental inputs from the U.S. Navy as well as remote sensing of sea surface temperature and sea surface height. To examine the MODAS fields, the authors also used data from the Southern California Bight collected by the California Cooperative Fisheries Investigations as well as high-resolution hydrographic data collected over the continental shelf south of New England as part of the shelfbreak PRIMER experiment. MODAS performs well for features such as large-scale boundary currents and eddies but is more limited in resolving features such as shelfbreak and coastal fronts, which have small spatial and temporal correlation scales. Because of the considerable computational needs of other ESME modules and its use as a planning tool, the authors present a pragmatic approach for future applications.  相似文献   

4.
Using a two-dimensional semi-geostrophic model. the stability of fronts near shelf break (shelfbreak font, western boundary current front) and its mechanism are studied. We find that the stability of the front is related to the frontal structure. In general, the increase of the lower layer depth lowers the unstable growth rate (a1). (1) The shelfbreak front is baroclinically unstable and ai increases with the increase of the bottom slope, different from the conclusion of Flagg and Beardsley (1978). (2) A western boundary current front with uniform vorticity in the upper layer is barotropically unstable, due to the strong horizontal shear of the mean current. The unstable growth rate of this front for a realistic topography is only one seventh of that of the flat bottom case. (3) For a western boundary current front with hyperbolic tangent structure, we find its wave propagation speed to be about 0. 5 m/s, in agreement with the observed values. The front is baroclinically unstable. (4)The unstable growth  相似文献   

5.
Acoustic propagation in shallow water is examined. Multipath propagation and extensive boundary interactions, which along with a host of other phenomena produce a highly variable and often unpredictable acoustic field, are discussed. The responsible mechanisms, and hence the acoustic effects, cover a wide range of temporal and spatial scales and are classified as either deterministic or random, although the two types often act in concert. Because of extensive interactions with the sound field, the bottom can severely degrade waterborne propagation, although the sea bottom (and subbottom) can provide a seismic path that not only is relatively stable, but exists even under environmental conditions that preclude an effective waterborne path. Propagation in the bottom is particularly significant at very low frequencies. These various aspects of shallow-water acoustics are illustrated using the results of experiments conducted in diverse geographic areas  相似文献   

6.
The paradox of upwelling is the relationship between strong wind forcing, nutrient enrichment, and shelf productivity. Here we investigate how across-shelf structure in velocity and hydrography plays a role in the retention (inshore) and export (offshore) of particles such as nutrients, plankton and larvae. We examine the spatial structure of the coastal currents during wind-driven upwelling and relaxation on the northern Californian Shelf. The field work was conducted as part of the Wind Events and Shelf Transport (WEST) project, a 5-year NSF/CoOP-funded study of the role of wind-driven transport in shelf productivity off Bodega Bay (northern California) from 2000 to 2003. We combine shipboard velocity profiles (ADCP) and water properties from hydrographic surveys during the upwelling season to examine the mean across-shelf structure of the hydrography and velocity fields during three contrasting upwelling seasons, and throughout the upwelling-relaxation cycle. We also present results from two winter seasons that serve as contrast to the upwelling seasons.During all three upwelling seasons clear spatial structure is evident in velocity and hydrography across the shelf, exemplified by current reversals inshore and the presence of a persistent upwelling jet at the shelf break. This jet feature changes in structure and distance from the coast under different wind forcing regimes. The jet also changes from the north of our region, where it is a single narrow jet, adjacent to the coast, and to the south of our region, where it broadens and at times two jets become evident. We present observations of the California Under Current, which was observed at the outer edge of our domain during all three upwelling seasons. The observed across-shelf structure could aid both in the retention of plankton inshore during periods of upwelling followed by relaxation and in the export of plankton offshore in the upwelling jet.  相似文献   

7.
A computational case study of coupled-mode 400-Hz acoustic propagation over the distance 27 km on the continental shelf is presented. The mode coupling reported here is caused by lateral gradients of sound-speed within packets of nonlinear internal waves, often referred to as solitary wave packets. In a waveguide having unequal attenuation of modes, directional exchange of energy between low- and high-loss modes, via mode coupling, can become time dependent by the movement of waves and can cause temporally variable loss of acoustic energy into the bottom. Here, that bottom interaction effect is shown to be sensitive to stratification conditions, which determine waveguide properties and, in turn, determine modal attenuation coefficients. In particular, time-dependent energy loss due to the presence of moving internal wave packets is compared for waveguides with and without a frontal feature similar to that found at the shelfbreak south of New England. The mean and variability of acoustic energy level 27 km distant from a source are shown to be altered in a first order way by the presence of the frontal feature. The effects of the front are also shown to be functions of source depth.  相似文献   

8.
The short time scale (minutes) and azimuthal dependence of sound wave propagation in shallow water regions due to internal waves is examined. Results from the shallow water acoustics in random media (SWARM-95) experiment are presented that reflect these dependencies. Time-dependent internal waves are modeled using the dnoidal solution to the nonlinear internal wave equations, so that the effects of both temporal and spatial variability can be assessed. A full wave parabolic equation model is used to simulate broadband acoustic propagation. It is shown that the short term temporal variability and the azimuthal dependence of the sound field are strongly correlated to the internal wave field  相似文献   

9.
Dynamic ocean processes produce small thermal variations that induce spatial and temporal variability in the ocean's index of refraction and in the spatial scale along an acoustic propagation path. This paper reports measurements and analysis of thermal microstructure effects on ping-to-ping amplitude and phase variability of shallow-water direct-path acoustic propagation in the 20-200 kHz frequency range. These measurements were conducted during a joint experiment conducted by the Naval Research Laboratory and the North Atlantic Treaty Organization Supreme Allied Commander Atlantic (SACLANT) Undersea Research Centre, La Spezia, Italy, in 8 m of water off American Beach, located between Pisa and Livorno, Italy. Experimental observations are compared with predictions for isotropic and anisotropic turbulence, as well as for sea-surface swell. Measured phase and log-amplitude variances coincide with predictions and are relatively insensitive to weak water-column stability. The sea-surface swell dominates phase variances for this data and turbulence dominates log-amplitude variances. These results provide a reasonable lower limit on high-frequency ping-to-ping amplitude and on phase variability produced by benign shallow-water thermal fluctuations.  相似文献   

10.
Eddy activity in the lee of the Hawaiian Islands   总被引:2,自引:0,他引:2  
Persistent northeasterly trade winds have a substantial impact on the oceanic circulation around the Hawaiian Islands. A regional ocean model is applied to understand the effect of different temporal and spatial resolutions of surface momentum forcing on the formation of strong mesoscale vortices and on the simulation of realistic levels of eddy kinetic energy. The higher spatial and temporal resolutions of wind forcing is shown to substantially affect the vorticity and deformation field in the immediate lee of the Hawaiian Islands and produce patterns of eddy kinetic energy similar to observations. This suggests that the surface eddy field in the region is mostly dominated by the local surface momentum forcing. Mesoscale cyclones and anticyclones formed in the lee of the Island of Hawaii are shown to have different propagation patterns. Mesoscale cyclones are more confined to the lee and are hence subject to interactions with the strong wind forcing and deformation field as well as smaller vortices formed in the wake of the other islands. Mesoscale anticyclones show not only a tendency to propagate further westward, but also to persist as coherent features as they propagate, even at relatively lower values of relative vorticity. The large strain rates that affect the propagation of the cyclones cause them to break down into filaments of positive vorticity. Rossby numbers of O(1) within vortices and filaments indicate that nonlinear interactions between the wind stress and the vertical component of the relative vorticity field is potentially important in producing large vertical velocities. Modeled cyclonic eddies show a good resemblance to observations both in terms of vertical structure and propagation patterns.  相似文献   

11.
Measurements of the three-dimensional (3-D) structure of a sound-speed field in the ocean with the spatial and temporal resolution required for prediction of acoustic fields are extremely demanding in terms of experimental assets, and they are rarely available in practice. In this study, a simple analytic technique is developed within the ray approximation to quantify the uncertainty in acoustic travel time and propagation direction that results from an incomplete knowledge or purely statistical characterization of sound-speed variability in the horizontal plane. Variation of frequency of an acoustic wave emitted by a narrowband source due to a temporal variation of environmental parameters is considered for deterministic and random media. In a random medium with locally statistically homogeneous, time-dependent 3-D fluctuations of the sound speed, calculation of the signal frequency and bearing angle variances as well as the travel-time bias due to horizontal refraction is approximately reduced to integration of respective statistical parameters of the environmental fluctuations along a ray in a background, range-dependent, deterministic medium. The technique is applied to acoustic transmissions in a coastal ocean, where tidally generated nonlinear internal waves are the prevailing source of sound-speed fluctuations, and in a deep ocean, where the fluctuations are primarily due to spatially diffuse internal waves with the Garrett–Munk spectrum. The significance of 3-D and four-dimensional (4-D) acoustic effects in deep and shallow water is discussed.  相似文献   

12.
The ocean acoustic tomographic (OAT) approach to sound speed field estimation is generalized to include a variety of sources of information of interest such as an oceanographic model of the sound speed field, direct local sound speed measurements, and a full field acoustic propagation model as well as measurements. The inverse problem is presented as a four-dimensional field estimation problem using a variational approach commonly used in oceanographic data assimilation. The current OAT approach is shown to be a special case of the general framework. The matched-field tomography (MFT) approach is also discussed within this context. A simple implementation of this novel approach is then investigated in the absence of a suitable oceanographic model, and acoustic propagation is accounted for using a standard parabolic equation model. The inverse equations derived are validated numerically through a simple inversion example, and some issues on environmental mismatch and computations are discussed. The developments then provide a basic framework for ongoing data-model melding in acoustically focused oceanographic sampling (AFOS) network  相似文献   

13.
An overview of underwater acoustic channel modeling and threshold signal processing is presented, which emphasizes the inhomogeneous, random, and non-Ganssian nature of the generalized channel, combined with appropriate weak-signal detection and estimation. Principal attention is given to the formal structuring of the scattered and ambient acoustic noise fields, as well as that of the desired signal, including both fading and Doppler "smear" phenomena. The role of general receiving arrays is noted, as well as their impact on spatial and temporal signal processing and beam forming, as indicated by various performance measures in detection and estimation. The emphasis here is on limiting optimum threshold systems, with some attention to suboptimum cases. Specific first-order probability density functions (pdf's) for the non-Ganssian components of typical underwater acoustic noise environments are included along with their field covariances. Several examples incorporating these pdf's are given, to illustrate the applications and general methods involved. The fundamental role of the detector structure in determining the associated optimum estimators is noted: the estimators arc specific linear or nonlinear functionals of the original optimum detector algorithm, depending on the criterion (i.e., minimization of the chosen error or cost function) selected. Results for both coherent and incoherent modes of reception are presented, reflecting the fact that frequently signal epoch is not known initially at the receiver. To supplement the general discussion, a selected list of references is included, to provide direct access to specific detailed problems, techniques, and results, for which the present paper is only a guide.  相似文献   

14.
《Oceanologica Acta》1998,21(1):59-68
Sound-speed computations from CTD casts in the Arabian Gulf during 1992, reveal spatial and temporal variations in acoustic properties. Hydrographic conditions affecting sound speed propagation were seasonally investigated. A monotonic decrease in sound speed profiles with depth was commonly observed at almost all the stations in the Gulf. However, an exception occurred at Hormuz strait during winter. The water exchange pattern between the Gulf of Oman and the Arabian Gulf seems to influence the sound-speed structure, especially in the southern part of the latter. Winter profiles along the Gulf axis showed almost vertically homogenous sound speed. Maximum speeds are observed in summer, with a strong gradient associated with the development of the summer thermocline layer. Horizontal distributions in both winter and summer show a decreasing trend in sound speed from the Strait of Hormuz to the head of the Gulf. The resultant profiles provide a more comprehensive and reliable data set than any that have been reported in the literature. Shallowness and multiple refraction and reflection in the Arabian Gulf may cause sound speed energy to be trapped. No sound channel was detected inside the Gulf. A correlation analysis shows that sound speed is closely correlated with temperature throughout the Gulf, except in winter in the southern half where salinity effects, as a result of inversion and water exchange at the entrance, are found to be dominant.  相似文献   

15.
A numerical study which takes into account wave dispersion effects has been carried out in the Indian Ocean to reproduce the initial stage of wave propagation of the tsunami event that occurred on December 26, 2004. Three different numerical models have been used: the nonlinear shallow water (nondispersive), the nonlinear Boussinesq, and the full Navier-Stokes aided by the volume of fluid method to track the free surface. Numerical model results are compared against each other. General features of the wave propagation agreed very well in all numerical studies. However some important differences are observed in the wave patterns, i.e., the development in time of the wave front is shown to be strongly connected to the dispersion effects. Discussions and conclusions are made about the spatial and temporal distribution of the free surface reaffirming that the dispersion mechanism is important for tsunami hazard mitigation.  相似文献   

16.
River plumes have important effects on marine ecosystems. Variation in the extent and dispersal of river plumes is often associated with river discharge, wind characteristics and ocean circulation. The objectives of this study were to identify the Tokachi River plume by satellite, determine its relationship with river discharge and clarify its temporal and spatial dynamics. SeaWiFS multispectral satellite data (normalized water-leaving radiance: nLw) with 1.1 km spatial resolution were used to determine the spatial and temporal variability of the plume during 1998–2002. Supervised maximum likelihood classification using six channels of nLw at 412, 443, 490, 510, 555 and 670 nm with each band's spectral signature statistic was used to define classes of surface water and to estimate the plume area. Supervised maximum likelihood classification separated three to four classes of coastal water based on optical characteristics as a result of wind stress events. The satellite-observed plume area was correlated with the amount of river discharge from April to October. The plume distribution patterns were influenced by wind direction and magnitude, the occurrences of a near-shore eddy field and surface currents. Empirical orthogonal function (EOF) was used to express the spatial and temporal variability of the plume using anomalies of nLw(555) monthly averaged images. The first mode (44% of variance) showed the turbid plume distribution resulting from re-suspension by strong wind mixing along the coast during winter. This mode also showed the plume was distributed along-shelf direction in spring to early autumn. The second mode (17% of variance) showed spring pattern across-shelf direction. EOF analysis also explained the interannual variability of the plume signature, which might have been affected by the flow of the Oyashio Current and the occurrence of a near-shore eddy field.  相似文献   

17.
A numerical study which takes into account wave dispersion effects has been carried out in the Indian Ocean to reproduce the initial stage of wave propagation of the tsunami event that occurred on December 26, 2004. Three different numerical models have been used: the nonlinear shallow water (nondispersive), the nonlinear Boussinesq, and the full Navier-Stokes aided by the volume of fluid method to track the free surface. Numerical model results are compared against each other. General features of the wave propagation agreed very well in all numerical studies. However some important differences are observed in the wave patterns, i.e., the development in time of the wave front is shown to be strongly connected to the dispersion effects. Discussions and conclusions are made about the spatial and temporal distribution of the free surface reaffirming that the dispersion mechanism is important for tsunami hazard mitigation.  相似文献   

18.
基于海洋锋空间位置、水平分布结构和垂直扩展特征等时空特征参数,结合海洋锋空间结构几何模型,建立了区域海洋锋温盐三维结构快速重构特征模型,对黄海西部沿岸锋和东海黑潮中段锋锋区温度场进行了仿真计算,并与实测数据进行了比较分析,实验结果表明:仿真结果与实测数据符合较好,实验结果验证了特征模型的有效性和可推广性。海洋锋区声速具有明显的水平梯度变化,对声纳的水下探测和反探测产生显著影响,因此,需要建立实时估计获取锋区水下温、盐结构的方法。海洋锋特征模型能够快速有效地重构海洋锋区温度场,为实时获取海洋锋水下结构特征提供了方法。  相似文献   

19.
Acoustic monitoring and aerial visual surveys of marine mammal activity were conducted simultaneously at the Navy's Pacific Missile Range Facility near Kauai, HI, during times of both high- and low-whale density from February 2002 to March 2003. Specifically, recordings from the range's 24 broadband hydrophones were made during 11 of 16 "in-season" and during six of ten "off-season" aerial surveys. Basic acoustic detections consisted primarily of humpback whale calls and sperm-whale clicks, and those two species were also reported in the visual surveys. The relative number of acoustic detections roughly corresponded with the visual survey results throughout the year. The same acoustic data were also provided to a passive-acoustic-localization algorithm based on acoustic propagation models which generated estimates of sperm-whale movement through the range. The acoustic localizations are in close proximity in space and time to the visual observations of sperm whales. Verification of the model-based localization algorithm's accuracy was demonstrated in a controlled-source experiment at the Navy's Atlantic Undersea Test and Evaluation Center (AUTEC) range in the Bahamas where the recordings of sperm-whale clicks were broadcast and successfully tracked. The localization accuracy of the model-based technique and traditional hyperbolic techniques is compared. These results raise the possibility of using existing Navy assets to detect and track marine mammals, particularly during times when visual sighting conditions are not favorable, in efforts to minimize their exposure to underwater sound.  相似文献   

20.
A linear FM sonar system was developed to support the objective of remote acoustic classification of seafloor sediments. It is a calibrated, wideband, digital, frequency modulated sonar that provides quantitative, high-resolution, low-noise sub-bottom data. Since the linear sonar system can precisely transmit a specified waveform, the calibrated digitally recorded reflection data can be processed to estimate the acoustic impulse response of the seabed and sediment attenuation. An acoustic pulse with special frequency domain weighting characteristics is designed to provide low temporal sidelobe levels and a nearly constant resolution with depth even after passing through a sediment with high losses such as sand. After correlation processing, the wideband acoustic pulse yields an effective beam pattern with high spatial resolution and insignificant sidelobe levels. Data sets generated with the FM profiler indicate that the required temporal and spatial characteristics of the sonar are realized in practice  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号