首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
In the course of preparing this paper, which initially focused solely on identifying the impacts of input-output analysis on geography, a much broader perspective on the impacts of Walter Isard on geography ultimately emerged. In the tradition of input-output analysis, these impacts are grouped into direct, indirect, and induced effects, and summarized under the heading of influence. Walter Isard touched the lives of many through personal relationships, books and articles, and an energetic devotion to and enthusiasm for the creation of a regional science association. The Regional Science Association and its publications supported something of a greenhouse environment in which the seedlings of GIS and scientific geography could take root, until they were well enough established to enter mainstream geography. While clearly not limited to geography, the fruits of Walter Isards labors continue to populate the discipline through his contemporaries, their students, students students, and so on. The formative years of both regional science and scientific geography left an indelible mark on the nature of geographic inquiry.  相似文献   

2.
Time variations in the Earths gravity field at periods longer than 1 year, for degree-two spherical harmonics, C21, S21, and C20, are estimated from accurately measured Earth rotational variations. These are compared with predictions of atmospheric, oceanic, and hydrologic models, and with independent satellite laser ranging (SLR) results. There is remarkably good agreement between Earth rotation and model predictions of C21 and S21 over a 22-year period. After decadal signals are removed, Earth-rotation-derived interannual C20 variations are dominated by a strong oscillation of period about 5.6 years, probably due to uncertainties in wind and ocean current estimates. The model-predicted C20 agrees reasonably well with SLR observations during the 22-year period, with the exception of the recent anomaly since 1997/1998.  相似文献   

3.
On Helmert’s methods of condensation   总被引:2,自引:0,他引:2  
B. Heck 《Journal of Geodesy》2003,77(3-4):155-170
Helmerts first and second method of condensation are reviewed and generalized in two respects: First, the point at which the effects of topographical and condensation masses are calculated may be situated on or outside the topographical surface; second, the depth of the condensation layer below the geoid is arbitrary. While the first extension permits the application of the generalized model to the evaluation of airborne and satellite data, the second one gives an additional degree of freedom which can be used to provide a smooth gravity field after reducing the observation data. The respective formulae are derived for the generalized condensation model in both planar and spherical approximation. A comparison of the planar and the spherical model shows some structural differences, which are primarily visible in the out-of-integral terms. Considering the respective formulae for the combined topographic–condensation reduction on the background of the density structure of the Earths lithosphere, the consequences for the residual gravity field are investigated; it is shown that the residual field after applying Helmerts second model of reduction is very rough, making this procedure unfavourable for downward continuation. Further considerations refer to the question of which sets of formulae should be used in geoid and quasigeoid determination. It is concluded that for high-precision applications the generalized spherical model, involving a depth of the condensation layer of between 20 and 30 km, should be superior to Helmerts second model of condensation, although it requires the direct calculation of the indirect effect, which is larger than in the case of Helmerts second method of condensation.  相似文献   

4.
Since the advent of CHAMP, the first in a series of low-altitude satellites being almost continuously and precisely tracked by GPS, a new generation of long-wavelength gravitational geopotential models can be derived. The accuracy evaluation of these models depends to a large extent on the comparison with external data of comparable quality. Here, two CHAMP-derived models, EIGEN-1S and EIGEN-2, are tested with independent long-term-averaged single satellite crossover (SSC) sea heights from three altimetric satellites (ERS-1, ERS-2 and Geosat). The analyses show that long-term averages of crossover residuals still are powerful data to test CHAMP gravity field models. The new models are tested in the spatial domain with the aid of ERS-1/-2 and Geosat SSCs, and in the spectral domain with latitude-lumped coefficient (LLC) corrections derived from the SSCs. The LLC corrections allow a representation of the satellite-orbit-specific error spectra per order of the models spherical harmonic coefficients. These observed LLC corrections are compared to the LLC projections from the models variance–covariance matrix. The excessively large LLC errors at order 2 found in the case of EIGEN-2 with the ERS data are discussed. The degree-dependent scaling factors for the variance-covariance matrices of EIGEN-1S and –2, applied to obtain more realistic error estimates of the solved-for coefficients, are compatible with the results found here.  相似文献   

5.
    
Baardas reliability measures for outliers, as well as sensitivity and separability measures for deformations, are functions of the lower bound of the non-centrality parameter (LBNP). This parameter, which is taken from Baardas well-known nomograms, is actually a non-centrality parameter of the cumulative distribution function (CDF) of the non-central 2-distribution yielding a complementary probability of the desired power of the test, i.e. probability of Type II error. It is investigated how the LBNP can be computed for desired probabilities (power of the test and significance level) and known degrees of freedom. Two recursive algorithms, namely bisection and the Newton algorithm, were applied to compute the LBNP after the definition of a stable and accurate algorithm for the computation of the corresponding CDF. Despite the fact that the recursive algorithms ensure some desired accuracy, it is presented numerically that the Newton algorithm has a faster convergence to the solution than the bisection algorithm.  相似文献   

6.
The Center for Orbit Determination in Europe (CODE) has been involved in the processing of combined GPS/GLONASS data during the International GLONASS Experiment (IGEX). The resulting precise orbits were analyzed using the program SORBDT. Introducing one satellites positions as pseudo-observations, the program is capable of fitting orbital arcs through these positions using an orbit improvement procedure based on the numerical integration of the satellites orbit and its partial derivative with respect to the orbit parameters. For this study, the program was enhanced to estimate selected parameters of the Earths gravity field. The orbital periods of the GPS satellites are —in contrast to those of the GLONASS satellites – 2:1 commensurable (P Sid:P GPS) with the rotation period of the Earth. Therefore, resonance effects of the satellite motion with terms of the geopotential occur and they influence the estimation of these parameters. A sensitivity study of the GPS and GLONASS orbits with respect to the geopotential coefficients reveals that the correlations between different geopotential coefficients and the correlations of geopotential coefficients with other orbit parameters, in particular with solar radiation pressure parameters, are the crucial issues in this context. The estimation of the resonant geopotential terms is, in the case of GPS, hindered by correlations with the simultaneously estimated radiation pressure parameters. In the GLONASS case, arc lengths of several days allow the decorrelation of the two parameter types. The formal errors of the estimates based on the GLONASS orbits are a factor of 5 to 10 smaller for all resonant terms. AcknowledgmentsThe authors would like to thank all the organizations involved in the IGS and the IGEX campaign, in particular those operating an IGS or IGEX observation site and providing the indispensable data for precise orbit determination.  相似文献   

7.
Isard’s contributions to spatial interaction modeling   总被引:2,自引:0,他引:2  
This short review, surveys Isards role in promoting what has become known as spatial interaction modeling. Some contextual information on the milieu from which his work emerged is given, together with a selected number of works that are judged to have been influenced (directly and indirectly) by his work. It is suggested that this burgeoning field owes a lot to the foundations laid in the gravity model chapter of Methods. The review is supplemented by a rather extensive bibliography of additional works that are indicative of the breadth of the impact of this field.  相似文献   

8.
Theory of integer equivariant estimation with application to GNSS   总被引:4,自引:4,他引:0  
Carrier phase ambiguity resolution is the key to high-precision global navigation satellite system (GNSS) positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. The so-called fixed baseline estimator is known to be superior to its float counterpart in the sense that its probability of being close to the unknown but true baseline is larger than that of the float baseline, provided that the ambiguity success rate is sufficiently close to its maximum value of one. Although this is a strong result, the necessary condition on the success rate does not make it hold for all measurement scenarios. It is discussed whether or not it is possible to take advantage of the integer nature of the ambiguities so as to come up with a baseline estimator that is always superior to both its float and its fixed counterparts. It is shown that this is indeed possible, be it that the result comes at the price of having to use a weaker performance criterion. The main result of this work is a Gauss–Markov-like theorem which introduces a new minimum variance unbiased estimator that is always superior to the well-known best linear unbiased (BLU) estimator of the Gauss–Markov theorem. This result is made possible by introducing a new class of estimators. This class of integer equivariant estimators obeys the integer remove–restore principle and is shown to be larger than the class of integer estimators as well as larger than the class of linear unbiased estimators. The minimum variance unbiased estimator within this larger class is referred to as the best integer equivariant (BIE) estimator. The theory presented applies to any model of observation equations having both integer and real-valued parameters, as well as for any probability density function the data might have. AcknowledgementsThis contribution was finalized during the authors stay, as a Tan Chin Tuan Professor, at the Nanyang Technological Universitys GPS Centre (GPSC) in Singapore. The hospitality of the GPSCs director Prof Law Choi Look and his colleagues is greatly appreciated.  相似文献   

9.
Isards vision of integrated modeling that was laid out in the 1960s book Methods of Regional Science provided a road map for the development of more sophisticated analysis of spatial economic systems. Some forty years later, we look back at this vision and trace developments in a sample of three areas – demographic-econometric integrated modeling, spatial interaction modeling, and environmental-economic modeling. Attention will be focused on methodological advances and their motivation by new developments in theory as well as innovations in the applications of these models to address new policy challenges. Underlying the discussion will be an evaluation of the way in which spatial issues have been addressed, ranging from concerns with regionalization to issues of spillovers and spatial correlation.  相似文献   

10.
Today the combination of Stokes formula and an Earth gravity model (EGM) for geoid determination is a standard procedure. However, the method of modifying Stokes formula varies from author to author, and numerous methods of modification exist. Most methods modify Stokes kernel, but the most widely applied method, the remove compute restore technique, removes the EGM from the gravity anomaly to attain a residual gravity anomaly under Stokes integral, and at least one known method modifies both Stokes kernel and the gravity anomaly. A general model for modifying Stokes formula is presented; it includes most of the well-known techniques of modification as special cases. By assuming that the error spectra of the gravity anomalies and the EGM are known, the optimum model of modification is derived based on the least-squares principle. This solution minimizes the expected mean square error (MSE) of all possible solutions of the general geoid model. A practical formula for estimating the MSE is also presented. The power of the optimum method is demonstrated in two special cases. AcknowledgementsThis paper was partly written whilst the author was a visiting scientist at The University of New South Wales, Sydney, Australia. He is indebted to Professor W. Kearsley and his colleagues, and their hospitality is acknowledged.  相似文献   

11.
The determination of a representative refractive index for the wave path is the main limitation of the attainable accuracy in electronic distance measurement. To overcome this limitation the length ratio method was initially proposed and later developed into the local scale parameter (LSP) method. In this paper, the mathematical model of the LSP method is derived for electro-optical distance measurement from first principles based on the physics of the atmospheric boundary layer. The model does not rely on standard atmospheres. It is shown that atmospheric temperatures and pressures must be observed at instrument stations but not at reflector stations. Appropriate LSP field procedures and the results of some field experiments are summarized. The method consistently produces accuracies of better than ±1 ppm. Use of the method is recommended for high precision (trilateration) networks, which need to be measured repeatedly and where absolute scale is not relevant.  相似文献   

12.
13.
The topographic effects by Stokes formula are typically considered for a spherical approximation of sea level. For more precise determination of the geoid, sea level is better approximated by an ellipsoid, which justifies the consideration of the ellipsoidal corrections of topographic effects for improved geoid solutions. The aim of this study is to estimate the ellipsoidal effects of the combined topographic correction (direct plus indirect topographic effects) and the downward continuation effect. It is concluded that the ellipsoidal correction to the combined topographic effect on the geoid height is far less than 1 mm. On the contrary, the ellipsoidal correction to the effect of downward continuation of gravity anomaly to sea level may be significant at the 1-cm level in mountainous regions. Nevertheless, if Stokes formula is modified and the integration of gravity anomalies is limited to a cap of a few degrees radius around the computation point, nor this effect is likely to be significant.AcknowledgementsThe author is grateful for constructive remarks by J Ågren and the three reviewers.  相似文献   

14.
A new theory for high-resolution regional geoid computation without applying Stokess formula is presented. Operationally, it uses various types of gravity functionals, namely data of type gravity potential (gravimetric leveling), vertical derivatives of the gravity potential (modulus of gravity intensity from gravimetric surveys), horizontal derivatives of the gravity potential (vertical deflections from astrogeodetic observations) or higher-order derivatives such as gravity gradients. Its algorithmic version can be described as follows: (1) Remove the effect of a very high degree/order potential reference field at the point of measurement (POM), in particular GPS positioned, either on the Earths surface or in its external space. (2) Remove the centrifugal potential and its higher-order derivatives at the POM. (3) Remove the gravitational field of topographic masses (terrain effect) in a zone of influence of radius r. A proper choice of such a radius of influence is 2r=4×104 km/n, where n is the highest degree of the harmonic expansion. (cf. Nyquist frequency). This third remove step aims at generating a harmonic gravitational field outside a reference ellipsoid, which is an equipotential surface of a reference potential field. (4) The residual gravitational functionals are downward continued to the reference ellipsoid by means of the inverse solution of the ellipsoidal Dirichlet boundary-value problem based upon the ellipsoidal Abel–Poisson kernel. As a discretized integral equation of the first kind, downward continuation is Phillips–Tikhonov regularized by an optimal choice of the regularization factor. (5) Restore the effect of a very high degree/order potential reference field at the corresponding point to the POM on the reference ellipsoid. (6) Restore the centrifugal potential and its higher-order derivatives at the ellipsoidal corresponding point to the POM. (7) Restore the gravitational field of topographic masses ( terrain effect) at the ellipsoidal corresponding point to the POM. (8) Convert the gravitational potential on the reference ellipsoid to geoidal undulations by means of the ellipsoidal Bruns formula. A large-scale application of the new concept of geoid computation is made for the Iran geoid. According to the numerical investigations based on the applied methodology, a new geoid solution for Iran with an accuracy of a few centimeters is achieved.Acknowledgments. The project of high-resolution geoid computation of Iran has been support by National Cartographic Center (NCC) of Iran. The University of Tehran, via grant number 621/3/602, supported the computation of a global geoid solution for Iran. Their support is gratefully acknowledged. A. Ardalan would like to thank Mr. Y. Hatam, and Mr. K. Ghazavi from NCC and Mr. M. Sharifi, Mr. A. Safari, and Mr. M. Motagh from the University of Tehran for their support in data gathering and computations. The authors would like to thank the comments and corrections made by the four reviewers and the editor of the paper, Professor Will Featherstone. Their comments helped us to correct the mistakes and improve the paper.  相似文献   

15.
In a modern application of Stokes formula for geoid determination, regional terrestrial gravity is combined with long-wavelength gravity information supplied by an Earth gravity model. Usually, several corrections must be added to gravity to be consistent with Stokes formula. In contrast, here all such corrections are applied directly to the approximate geoid height determined from the surface gravity anomalies. In this way, a more efficient workload is obtained. As an example, in applications of the direct and first and second indirect topographic effects significant long-wavelength contributions must be considered, all of which are time consuming to compute. By adding all three effects to produce a combined geoid effect, these long-wavelength features largely cancel. The computational scheme, including two least squares modifications of Stokes formula, is outlined, and the specific advantages of this technique, compared to traditional gravity reduction prior to Stokes integration, are summarised in the conclusions and final remarks. AcknowledgementsThis paper was written whilst the author was a visiting scientist at Curtin University of Technology, Perth, Australia. The hospitality and fruitful discussions with Professor W. Featherstone and his colleagues are gratefully acknowledged.  相似文献   

16.
Long-term continuous gravity observations, recorded at five superconducting gravimeter (SG) stations in the Global Geodynamic Project (GGP) network, as well as data on orientation variations in the Earths rotation axis (i.e. polar motion), have been used to investigate the characteristics of gravity variations on the Earths surface caused by polar motion. All the SG gravity data sets were pre-processed using identical techniques to remove the luni-solar gravity tides, the long-term trends of the instrumental drift, and the effects of atmospheric pressure. The analysis indicates that the spectral peaks, related to the Chandler and annual wobbles, were identified in both the power and product spectral density estimates. The magnitude of gravity variations, as well as the gravimetric amplitude factor associated with the Chandler wobble, changed significantly at different SG stations and during different observation periods. However, when all the SG observations at these five sites were combined, the gravimetric parameters of the Chandler wobble were retrieved accurately: 1.1613 ± 0.0737 for the amplitude factor and –1°.30 ± 1°.33 for the phase difference. The value of the estimated amplitude factor is in agreement with that predicted theoretically for the zonal tides of an elastic Earth model.  相似文献   

17.
Global gravity field models have been determined based on kinematic orbits covering an observation period of one year beginning from March 2002. Three different models have been derived up to a maximum degree of n=90 of a spherical harmonic expansion of the gravitational potential. One version, ITG-CHAMP01E, has been regularized beginning from degree n=40 upwards, based on the potential coefficients of the gravity field model EGM96. A second model, ITG-CHAMP01K, has been determined based on Kaulas rule of thumb, also beginning from degree n=40. A third version, ITG-CHAMP01S, has been determined without any regularization. The physical model of the gravity field recovery technique is based on Newtons equation of motion, formulated as a boundary value problem in the form of a Fredholm-type integral equation. The observation equations are formulated in the space domain by dividing the one-year orbit into short sections of approximately 30-minute arcs. For every short arc, a variance factor has been determined by an iterative computation procedure. The three gravity field models have been validated based on various criteria, and demonstrate the quality of not only the gravity field recovery technique but also the kinematically determined orbits.  相似文献   

18.
The three-dimensional (3-D) resection problem is usually solved by first obtaining the distances connecting the unknown point P{X,Y,Z} to the known points Pi{Xi,Yi,Zi}i=1,2,3 through the solution of the three nonlinear Grunert equations and then using the obtained distances to determine the position {X,Y,Z} and the 3-D orientation parameters {,, }. Starting from the work of the German J. A. Grunert (1841), the Grunert equations have been solved in several substitutional steps and the desire as evidenced by several publications has been to reduce these number of steps. Similarly, the 3-D ranging step for position determination which follows the distance determination step involves the solution of three nonlinear ranging (`Bogenschnitt') equations solved in several substitution steps. It is illustrated how the algebraic technique of Groebner basis solves explicitly the nonlinear Grunert distance equations and the nonlinear 3-D ranging (`Bogenschnitt') equations in a single step once the equations have been converted into algebraic (polynomial) form. In particular, the algebraic tool of the Groebner basis provides symbolic solutions to the problem of 3-D resection. The various forward and backward substitution steps inherent in the classical closed-form solutions of the problem are avoided. Similar to the Gauss elimination technique in linear systems of equations, the Groebner basis eliminates several variables in a multivariate system of nonlinear equations in such a manner that the end product normally consists of a univariate polynomial whose roots can be determined by existing programs e.g. by using the roots command in Matlab.Acknowledgments.The first author wishes to acknowledge the support of JSPS (Japan Society of Promotion of Science) for the financial support that enabled the completion of the write-up of the paper at Kyoto University, Japan. The author is further grateful for the warm welcome and the good working atmosphere provided by his hosts Professors S. Takemoto and Y. Fukuda of the Department of Geophysics, Graduate School of Science, Kyoto University, Japan.  相似文献   

19.
W. Sun 《Journal of Geodesy》2003,77(7-8):381-387
An asymptotic theory is presented for calculating co-seismic potential and geoid changes, as an approximation of the dislocation theory for a spherical Earth. This theory is given by a closed-form mathematical expression, so that it is mathematically simple and can be applied easily. Moreover, since the asymptotic theory includes sphericity and vertical structure effects, it is physically more reasonable than the flat-Earth theory. A comparison between results calculated by three dislocation theories (the flat-Earth theory, the theory for a spherical Earth and its asymptotic solution) shows that the true co-seismic geoid changes are approximated better by the asymptotic results than by those of a flat Earth. Numerical results indicate that the sphericity effect is obvious large, especially for a tensile source on a vertical fault plane. AcknowledgementsThe author is grateful to Dr S. Okubo for his helpful suggestions and discussions. Comments by anonymous reviewers are also greatly acknowledged. This research was financially supported by JSPS research grants (C13640420) and Basic design and feasibility studies for the future missions for monitoring Earths environment.  相似文献   

20.
A new method for the calibration of a superconducting gravity meter is described, in which a 273 Kg annular mass is placed around the meter and is moved up and down. The geometry of the apparatus is easy to model and the accuracy in the computation of the gravity variation induced by the mass, 6.7µgal, is limited only by the accuracy in the knowledge of value of the gravitational constant. Measurements done in 91 and 92 for the calibration of the instrument GWR-T015 are described. The calibration factor has been determined with a precision of about 0.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号