首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L−1 kaolinite and 0.03 g L−1 fulvic acid in 0.01 M NaNO3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu2+ and Pb2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu2+ ion activity (10−12 to 10−5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.  相似文献   

2.
Experimental data on copper sorption by organic and mineral sorbing agents have shown that sorption can take place from very dilute solutions. The degree of sorption depends on the total amount of dissolved copper in solution, the velocity of the circulating solution, on the duration of contact between the sorbent and fresh solutions, and on the degree of diffusion of the solution within the sorbent. Organic matter, namely pine loam, peat, lignite, and humic acid, absorbs copper from very dilute solutions (from 2x10-4 to 2x10-5 grams per liter copper concentrations, 2.5 to 4.5 percent); other sorbents, namely; sand, kaolin, feldspar, and quartz, absorb one-tenth as much as the organic sorbents. Desorption is very slight in organic material; it is almost complete in mineral sorbents. It is believed that sorption plays a very significant part in the formation of sedimentary copper deposits, particularly in the copper sandstones of the Urals.  相似文献   

3.
Nitrogenous organic compounds in sorbed surface layers and in calcified organic matter associated with calcium carbonate sediment particles consist of 40–50% amino acids, 2% amino sugars and 25% ammonia. In grain size classes > 20 μm these compounds are mainly contained in the calcified protein of carbonate secreting organisms but with smaller grain sizes—and consequently increased specific surface area—they are contained in sorbed layers at the mineral surface. The composition of the sorbed layer is characterized by a predominance of neutral amino acids, a relative enrichment of basic and weakly polar amino acids, and a deficiency of acidic amino acids in comparison with the proteinaceous matter of calcifying organisms. The respective abundances for sorbed and calcified matter are: 505 and 380 Res./ of neutral amino acids, 262 and 450 Res./1000 of acidic amino acids, 92 and 51 Res./l000 of basic amino acids, and 141 and 129 Res./1000 of weakly polar amino acids.The composition of the sorbed layer appears to be the result of sorption of proteinaceous matter from solution since it reflects the free and peptide-bound amino acid composition of seawater. The characteristic amino acid assemblage could also be the result of preferential decomposition of protein and subsequent enrichment of neutral and basic amino acids; however, sorption from solution appears more likely since the total amount of amino acids sorbed to calcium carbonate (0.58 mg m ?2) corresponds closely to the amount of protein known to cover one m2 of aqueous substrate in monolayer arrangement. Sorption from solution is further supported by the low arginine/ornithine ratios in both the sorbed layer and the natural dissolved organic matter. This process might lead to a characteristic amino acid spectrum in fine grained calcareous sediments that reflects the composition of the dissolved organic matter in seawater rather than that of the carbonate secreting proteinaceous matter.  相似文献   

4.
The effect of dissolved organic matter (DOM) on Am(III), Pu(IV), Np(V), and U(VI) sorption was investigated with natural water (pH ∼8) and zeolitized tuff samples collected from the Rainier Mesa tunnel system, Nevada Test Site, where the USA detonated underground nuclear tests prior to 1992. Perched vadose zone water at Rainier Mesa has high levels of DOM as a result of microbial degradation of mining debris (diesel, wood, etc.). The Am and Pu sorption Kds were up to two orders of magnitude lower in water with high DOM (15-19 mg C/L) compared to the same water with DOM removed (<0.4 mg C/L) or in naturally low DOM (0.2 mg C/L) groundwater. In contrast, Kds of Np and U were less affected by DOM at these solution conditions. Uranium sorption decreased as a result of high dissolved inorganic C (DIC) resulting from microbial degradation of DOM. Thermodynamic model predictions, based on actinide-humic acid stability constants available in the literature, are in general agreement with measured Kd data, correctly predicting the effects of DIC and DOM on actinide retardation. This agreement is encouraging to future modeling efforts and suggests that effects of DOM and DIC can be incorporated into reactive transport modeling predictions. The Am and Pu transport rates in Rainier Mesa tunnel waters will be substantially faster as a result of the elevated DOM levels. Low diffusion rates of actinide-DOM macromolecular complexes may focus Pu and Am transport into fractures and minimize retardation via matrix diffusion. The resulting transport behavior will affect actinide distribution patterns and associated risk estimates.  相似文献   

5.
《Applied Geochemistry》2000,15(2):133-139
The sorption of Yb3+, UO2+2, Zn2+, I and SeO2−3 onto Al2O3, Fe2O3 and SiO2 were determined by a batch technique in the presence and absence of fulvic acids. The effects of fulvic acid on sorption were compared. The existing general consensus, that humic substances tend to enhance metal cation sorption at low pH, reduce metal cation sorption at high pH and reduce inorganic anion sorption between pH values 3 to 10, was generally shown to be true. However, in this work many exceptions to the general consensus were found. The study indicated that the effect of humic substances on sorption of inorganic cations or anions depends not only on pH, but also on the nature of the oxide, the nature of humic substance, fractionation of the humic substance by sorption, the relative strength of complexes of both soluble and sorbed humic substances, the extent of surface coverage by humic substance, the initial concentration of humic substance and the inorganic electrolyte composition.  相似文献   

6.
《Organic Geochemistry》1999,30(8):901-909
Deuterium nuclear magnetic resonance spectroscopy (2H-NMR) spin–lattice relaxation (T1) experiments were used to measure noncovalent interactions between deuterated monoaromatic compounds (phenol-d5, pyridine-d5, benzene-d6) and fulvic acids isolated from the Suwannee River and Big Soda Lake. Noncovalent interactions, in aqueous solution, were examined as a function of monoaromatic hydrocarbon functional groups, fulvic acid concentration and identity, and solution pH. Phenol did not exhibit noncovalent interactions with either fulvic acid at any pH. Pyridine, in a pH range from 3 to 8, interacted with Suwannee River fulvic acid, forming a bond involving the lone pair of electrons on nitrogen. Conversely, no interactions were observed between pyridine and Big Soda Lake fulvic acid; the difference in noncovalent interactions is attributed to the structural and chemical differences of the two fulvic acids. The translational and rotational molecular motion of benzene increased in the presence of both fulvic acids, indicating that in aqueous solution, fulvic acids solubilize benzene rather than forming discrete bonds as with pyridine. The results of this study demonstrate that monoaromatic functional groups, solution pH, and identity and concentration of fulvic acid can influence the type and degree of noncovalent interactions with dissolved organic matter.  相似文献   

7.
《Applied Geochemistry》2004,19(10):1581-1599
The association of dissolved 90Sr, 239,240Pu and 241Am with natural colloids was investigated in surface waters in the Chernobyl nuclear accident area. A 4-step ultrafiltration (UF) study (<1 kilodaltons (Da), 1–10 kDa, 10–100 kDa, 100 kDa<) showed that 49–83% of 239,240Pu and 76% of 241Am are distributed in colloids of the two size fractions larger than 10 kDa (nominal molecular weight limit of the filter, NMWL), while 90Sr was found exclusively (85–88%) in the lowest molecular size fraction below 1 kDa (NMWL) for the Sahan River water at the highly contaminated area close to the Chernobyl Nuclear Power Plant (ChNPP). Consistent results were obtained by 2-step fractionation (larger than and smaller than 10 kDa (NMWL)) for river and lake waters including other locations within about 30 km away from ChNPP. It is likely that Pu and Am isotopes were preferentially associated with dissolved organic matter of high molecular size, as suggested by the fact that (i) only a few inorganic elements (Mg, Ca, Sr, Si, Mn, Al) were found in the colloidal size ranges, and (ii) the positive correlation between dissolved organic C (DOC) concentrations and UV absorbance at 280 nm, a broad absorption peak characteristic of humic substances (HS) was found. A model calculation on the complexation of Pu and Am with HS as an organic ligand suggests that the complexed form could be dominant at a low DOC concentration of 1 mgC L−1, that is commonly encountered as a lower limit in fresh surface water. The present results suggest the general importance of natural organic colloids in dictating the chemical form of actinides in the surface aquatic environment.  相似文献   

8.
《Applied Geochemistry》2002,17(6):837-853
This study presents the characterization of Pu-bearing precipitates and the results from uptake studies of Np and Pu on inorganic colloidal particulates in J-13 water from the Yucca Mountain site. Plutonium solubilities determined experimentally at pH values of 6, 7, and 8.5 are about two orders of magnitude higher than those calculated using the existing thermodynamic database indicating the influence of colloidal Pu(IV) species. Solid phase characterization using X-ray diffraction revealed primarily Pu(IV) in all precipitates formed at pH 6, 7, and 8.5. The solubility controlling Pu-bearing solids precipitated at ambient temperature consisted of amorphous Pu(OH)4(s) with several Pu–O distances between 2.3 and 2.7 Å that are characteristic for Pu(IV) colloids. High temperature (90 °C) increased solid phase crystallinity and produced Pu(IV) solids that contained Pu oxidation state impurities. X-ray absorption spectroscopic studies revealed diminished Pu–O and Pu–Pu distances that were slightly different from those in crystalline PuO2(s). A Pu–O bond of 1.86 Å was identified that is consistent with the plutonyl(V) distance of 1.81 Å in PuO2+(aq). Hematite, montmorillonite, and silica colloids were used for uptake experiments with 239Pu(V) and 237Np(V). The capacity of hematite to sorb Pu significantly exceeded that of montmorillonite and silica. A low desorption rate was indicative of highly stable Pu-hematite colloids, which may facilitate Pu transport to the accessible environment. Neptunium uptake on all mineral phases was far less than Pu(V) uptake suggesting that a potential Pu(V)–Pu(IV) reductive sorption process was involved. The temperature effect on Pu solubility and pseudocolloid formation is also discussed.  相似文献   

9.
Sorptive stabilization of organic matter by amorphous Al hydroxide   总被引:3,自引:0,他引:3  
Amorphous Al hydroxides (am-Al(OH)3) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L−1) with OM extracted from organic horizons under a Norway spruce and a European beech forest. The stabilization of OM by sorption was analyzed by comparing the CO2 mineralized during the incubation of sorbed and non-sorbed OM. The mineralization of OM was evaluated based in terms of (i) the availability of the am-Al(OH)3, thus surface OM loadings, (ii) spectral properties of OM, and (iii) the presence of phosphate as a competitor for OM. This was done by varying the solid-to-solution ratio (SSR = 0.02-1.2 g L−1) during sorption. At low SSRs, hence limited am-Al(OH)3 availability, only small portions of dissolved OM were sorbed; for OM from Oa horizons, the mineralization of the sorbed fraction exceeded that of the original dissolved OM. The likely reason is competition with phosphate for sorption sites favouring the formation of weak mineral-organic bindings and the surface accumulation of N-rich, less aromatic and less complex OM. This small fraction controlled the mineralization of sorbed OM even at higher SSRs. At higher SSRs, i.e., with am-Al(OH)3 more available, competition of phosphate decreased and aromatic compounds were sorbed selectively, which resulted in pronounced resistance of sorbed OM against decay. The combined OC mineralization of sorbed and non-sorbed OM was 12-65% less than that of the original DOM. Sorbed OM contributed only little to the overall OC mineralization. Stabilization of OC increased in direct proportion to am-Al(OH)3 availability, despite constant aromatic C (∼30%). The strong stabilization at higher mineral availability is primarily governed by strong Al-OM bonds formed under less competitive conditions. Due to these strong bonds and the resulting strong stabilization, the surface loading, a proxy for the mineral’s occupation by OM, was not a factor in the mineralization of sorbed OM over a wide range of C sorption (0.2-1.1 mg C m−2). This study demonstrates that sorption to am-Al(OH)3 results in stabilization of OM. The mineral availability as well as the inorganic solution chemistry control sorptive interactions, thereby the properties of sorbed OM, and the stability of OM against microbial decay.  相似文献   

10.
Considerable fractions of the Hg content of lake and river systems in Scandinavia are discharged from the soil of the catchments. An important soil type in Scandinavia is the iron–humus podzol. The sorption characteristics of this soil type for inorganic Hg(II) and monomethyl mercury were investigated by batch experiments. The solubility of Hg2+ and CH3Hg+ in the soil horizons containing organic matter increases with increasing pH of the soil solution by favoring the formation of solute organic matter–mercury complexes. While the solubility of Hg2+ is strongly dependent on complexation to dissolved organic matter, the solubility of CH3Hg+ is more dependent on ion exchange. The concentration of solute inorganic Hg(II) increased with increasing temperature probably because of an increase in the concentration of dissolved organic carbon. There was no effect of temperature on the concentration of solute CH3Hg+. At pH values where inorganic mercury–hydroxo complexes are formed, inorganic Hg(II) is efficiently sorbed to the metal oxides of the mineral soil. The soil–water distributions of inorganic Hg(II) in the different soil horizons were described by Freundlich isotherms or linear isotherms for common and contaminated mercury contents in the soils.  相似文献   

11.
Laboratory extraction experiments and field observations were employed to determine the relative mobility of 239,240pu and 241Am from lake sediments under aerobic and anaerobic conditions. Laboratory investigations show that under aerobic conditions 241Am is more readily extracted from Lake Michigan sediments than is 239,240Pu. Under anaerobic conditions, the extractability of plutonium and americium does not increase significantly relative to aerobic conditions. Field studies indicate that neither element is recycled from the sediment to the overlying water column during anaerobic conditions attendant with thermal stratification. The adsorption of these elements onto sediments does not appear to be correlated with extractable iron, manganese, and organic compounds such as humic and fulvic acids.  相似文献   

12.
Researchers of the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences created a luminescence photometer of a new generation for the determination of trace amounts of uranium and transuranium elements (TUE). The limits of detection for actinides vary from 0.3 pg for uranium and neptunium to 2.0 pg for plutonium. For 237Np, the relative limit of detection is 0.008 Bq/L. The photometer was tested in the radioecological monitoring of a number of polluted zones in Russia. The dynamics of actinide migration in all of the studied zones enhanced in the series 239Pu < 241Am < 237Np. In this series, concentrations of radionuclides in water-soluble and exchange forms that are most mobile and determine the migration mobility of chemical elements increased in all of the studied soil types. In the group of fulvic acids, concentrations of radionuclides decreased in the series 237Np > 241Am > 239Pu irrespectively of the soil. In the group of humic acids, concentrations of radionuclides increased in the series 237Np < 239Pu < 241Am. The sorption coefficients of radionuclides by bottom sediments of the Markha River (Kraton-3 underground nuclear explosion site) and Lake Kyzyltash (East Urals Radioactive Trace) were calculated. Bioaccumulation factors of radionuclides by different plants in the impact area of the Kraton underground nuclear explosion were determined depending on the plant type.  相似文献   

13.
The rate of Cd2+ sorption by a calcareous aquifer sand was characterized by two reaction steps, with the first step reaching completion in 24 hours. The second step proceeded at a slow and nearly constant rate for at least seven days. The first step includes a fast adsorption reaction which is followed by diffusive transport into either a disordered surface film of hydrated calcium carbonate or into pore spaces. After 24 hours the rate of Cd2+ sorption was constant and controlled by the rate of surface coprecipitation, as a solid solution of CdCO3 in CaCO3 formed in recrystallizing material. Desorption of Cd2+ from the sand was slow. Clean grains of primary minerals, e.g. quartz and aluminosilicates. sorbed much less Cd2+ than grains which had surface patches of secondary minerals, e.g. carbonates, iron and manganese oxides. Calcite grains sorbed the greatest amount of Cd2+ on a weight-normalized basis despite the greater abundance of quartz. A method is illustrated for determining empirical binding constants for trace metals at in situ pH values without introducing the experimental problem of supersaturation. The binding constants are useful for solute transport models which include a computation of aqueous speciation.  相似文献   

14.
《Applied Geochemistry》2005,20(6):1209-1217
Mobilization of actinides by interaction with humic colloids in aquifers is essentially determined by the geochemical conditions. In this study, the pH dependence of the influence of humic acid on metal adsorption on a variety of geological solids (kaolinite, phyllite, diabase, granite, sand) was investigated for Tb(III) as an analogue of trivalent actinides, using 160Tb as a radiotracer. Humic material was radiolabelled with 131I to allow experiments at low DOC concentrations, as encountered in subsurface systems in the far-field of a nuclear waste repository. For all solids, a changeover from mobilization to demobilization is observed on acidification. Except for phyllite, the reversal occurs at slightly acidic pH values, and is thus relevant in respect of risk assessments. A composite distribution model was employed to reproduce the changeover on the basis of the underlying constituent processes. For this purpose, humate complexation of Tb(III) and adsorption of humic acid as a function of pH were investigated as well. Although the ternary systems cannot be constructed quantitatively by combining the binary subsystems, the relevant interdependences are adequately described by the composite approach. For a more general discussion in view of the diversity of natural organic colloids, adsorption isotherms of various humic and fulvic acids on sand were compared.  相似文献   

15.
The kinetics of radionuclide desorption from bentonite colloids and subsequent sorption onto fracture filling material can influence colloid-facilitated radionuclide migration in ground water. To shed light on the significance of these issues batch-type experiments using a cocktail of strong and weak sorbing radionuclides as well as FEBEX bentonite colloids in the presence of fracture filling material from Grimsel (Switzerland) under Grimsel ground water conditions have been conducted. Results show that tri- and tetravalent radionuclides, 232Th(IV), 242Pu(IV) and 243Am(III) are clearly colloid associated in contrast to 233U(VI), 237Np(V) and 99Tc(VII). Concentrations of colloid-borne 232Th(IV), 242Pu(IV) and 243Am(III) decrease after ∼100 h showing desorption from bentonite colloids while 233U(VI) and 99Tc(VII) concentrations remain constant over the entire experimental time of 7500 h thus showing no interaction either to colloids or to the fracture filling material. 232Th(IV) and 242Pu(IV) data yield a slower dissociation from colloids compared to 243Am(III) indicating stronger RN–colloid interaction. In the case of 237Np(V), a decrease in concentration after ∼300 h is observed which can be explained either by slow reduction to Np(IV) and subsequent sorption to mineral surfaces in accordance with the evolution of pe/pH and/or by a slow sorption onto the fracture filling material. No influence of the different fracture filling material size fractions (0.25–0.5 mm, 0.5–1 mm and 1–2 mm) can be observed implying reaction independence of the mineral surface area and mineralogical composition. The driving force of the observed metal ion desorption from colloids is binding to fracture filling material surfaces being in excess of the available colloid surface area (76:1, 55:1 and 44:1 for the 0.25–0.5 mm, 0.5–1 mm and 1–2 mm size fraction of the FFM, respectively).  相似文献   

16.
The effect of organic matter on the sorption of dissolved organic matter (DOM) on lake sediments is critical to understanding the fate and transport of contaminants at the sediment–water interface in lake ecosystems. Results indicate that DOM sorption on sediment is largely due to ligand exchange between the DOM and hydroxyl groups, and the amount of DOC sorbed is a linear function of added DOC. With increasing organic matter content the sediment has lower binding strength, higher releasing ability for DOM, and the higher amount of DOM sorbed by sediment naturally. There was no clear difference before and after the sediment was treated with H2O2, but the constant b implied that after the sediments were treated DOC release was promoted. Organic matter in the sediment tends to impede the sorption of DOC and results in a remarkable decrease in DOC sorption rates.  相似文献   

17.
Pharmaceuticals have gained significant attention in recent years due to the environmental risks posed by their versatile application and occurrence in the natural aquatic environment. The transportation and distribution of pharmaceuticals in the environmental media mainly depends on their sorption behavior in soils, sediment?Cwater systems and waste water treatment plants, which varies widely across pharmaceuticals. Sorption of ibuprofen, a non-steroidal anti-inflammatory drug, onto various soil minerals, viz., kaolinite, montmorillonite, goethite, and activated carbon, as a function of pH (3?C11), ionic strength (NaCl concentration: 0.001?C0.5?M), and the humic acid concentration (0?C1,000?mg/L) was investigated through batch experiments. Experimental results showed that the sorption of ibuprofen onto all sorbents was highest at pH 3, with highest sorption capacity for activated carbon (28.5?mg/g). Among the minerals, montmorillonite sorbed more ibuprofen than kaolinite and goethite, with sorption capacity increasing in the order goethite (2.2?mg/g)?<?kaolinite (3.1?mg/g)?<?montmorillonite (6.1?mg/g). The sorption capacity of the selected minerals increased with increase in ionic strength of the solution in acidic pH condition indicating that the effect of pH was predominant compared to that of ionic strength. An increase in humic acid concentration from low to high values made the sorption phenomena very complex in the soil minerals. Based on the experimental observations, montmorillonite, among the selected soil minerals, could serve as a good candidate to remove high concentrations of ibuprofen from aqueous solution.  相似文献   

18.
《Applied Geochemistry》2005,20(1):193-205
Sorption and precipitation of Co(II) in simplified model systems related to the Hanford site high-level nuclear waste tank leakage were investigated through solution studies, geochemical modeling, and X-ray absorption fine structure (XAFS) spectroscopy. Studies of Co(II) sorption to pristine Hanford sediments (ERDF and Sub), which consist predominantly of quartz, plagioclase, and alkali feldspar, show an adsorption edge centered at pH  8.0 for both sediments studied, with sorption >99% above pH  9.0. Aqueous SiO2 resulting from dissolution of the sediments increased in concentration with increasing pH, though the systems remained undersaturated with respect to quartz. XAFS studies of Co(II) sorption to both sediment samples reveal the oxidation of Co(II) to Co(III), likely by dissolved O2, although this oxidation was incomplete in the Sub sediment samples. The authors propose that Fe(II) species, either in aqueous solution or at mineral surfaces, partially inhibited Co(II) oxidation in the Sub sediment samples, as these sediments contain significantly higher quantities of Fe(II)-bearing minerals which likely partially dissolved under the high-pH solution conditions. In alkaline solutions, Al precipitated as bayerite, gibbsite, or a mixture of the two at pH > 7; an amorphous gel formed at pH values less than 7. Aqueous Co concentrations were well below the solubility of known Co-bearing phases at low pH, suggesting that Co was removed from solution through an adsorption mechanism. At higher pH values, Co concentrations closely matched the solubility of a Co-bearing hydrotalcite-like solid. XAFS spectra of Co(II) sorbed to Al-hydroxide precipitates are similar to previously reported spectra for such hydrotalcite-like phases. The precipitation processes observed in this study can significantly reduce the environmental hazard posed by 60Co in the environment.  相似文献   

19.
The effect of Mg-, Ca-, and Sr–Uranyl-Carbonato complexes with respect to sorption on quartz was studied by means of batch experiments with U(VI) concentration of 0.126 × 10−6 M in the presence and absence of Mg, Ca, and Sr (each 1 mM) at pH from 6.5 to 9. In the absence of alkaline earth elements, 90% of the U(VI) sorbed on the quartz surface at all pH. In the presence of Mg, Ca, and Sr, the sorption of U(VI) on quartz decreased to 50, 10, and 30%, respectively. Sorption kinetics of U(VI) on quartz is faster in the absence of alkaline earth elements and reached equilibrium after 12 h, whereas in the presence of Mg, Ca and Sr, the kinetics of U(VI) sorption on quartz is pH dependent and attained equilibrium after 24 h. Aqueous speciation calculations for alkaline earth uranyl carbonates were carried out by using PHREEQC with the Nuclear Energy Agency thermodynamic database (NEA_2007) by adding constants for MUO2(CO3)32− and M2UO2(CO3)30 (M = Ca, Mg, Sr). This study reveals that alkaline earth elements can have a significant effect on the aqueous speciation of U(VI) under neutral to alkaline pH conditions and subsequently sorption behavior and mobility of U(VI) in aqueous environments.  相似文献   

20.
The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extraction solutions containing weak (i.e., CH3COO) or strong (i.e., ) ligands. The experimental results indicate that, in the absence of strong REE complexing ligands in solution, the amount of REEs released from the sand is small and the fractionation pattern of the released REEs appears to be controlled by the surface stability constants for REE sorption with Fe(III) oxides/oxyhydroxides. In the presence of strong solution complexing ligands, however, the amount and the fractionation pattern of the released REEs reflect the strength and variation of the stability constants of the dominant aqueous REE species across the REE series. The varying amount of REEs extracted by the different organic matter employed in the experiments indicates that organic matter from different sources has different complexing capacity for REEs. However, the fractionation pattern of REEs extracted by the various organic matter used in our experiments is remarkable consistent, being independent of the source and the concentration of organic matter used, as well as solution pH. Because natural aquifer sand and unpurified organic matter were used in our experiments, our experimental conditions are more broadly similar to natural systems than many previous laboratory experiments of REE-humic complexation that employed purified humic substances. Our results suggest that the REE loading effect on REE-humic complexation is negligible in natural waters as more abundant metal cations (e.g., Fe, Al) out-compete REEs for strong binding sites on organic matter. More specifically, our results indicate that REE complexation with organic matter in natural waters is dominated by REE binding to weak sites on dissolved organic matter, which subsequently leads to a middle REE (MREE: Sm-Ho)-enriched fractionation pattern. The experiments also indicate that carbonate ions may effectively compete with fulvic acid in binding with dissolved REEs, but cannot out compete humic acids for REEs. Therefore, in natural waters where low molecular weight (LMW) dissolved organic carbon (DOC) is the predominant form of DOC (e.g., lower Mississippi River water), REEs occur as “truly” dissolved species by complexing with carbonate ions as well as FA, resulting in heavy REE (HREE: Er-Lu)-enriched shale-normalized fractionation patterns. Whereas, in natural terrestrial waters where REE speciation is dominated by organic complexes with high molecular weight DOC (e.g., “colloidal” HA), only MREE-enriched fractionation patterns will be observed because the more abundant, weak sites preferentially complex MREEs relative to HREEs and light REEs (LREEs: La-Nd).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号