首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
在副热带高压边缘的西南气流中,由于切变线和低涡的发展产生了大暴雨,其直接原因是华东沿海暖脊的加强,使江南沿海形成较强偏东气流,并与低纬度地区西南气流辐合挤压引起切变线低涡强烈发展的结果.  相似文献   

2.
一、暴雨过程的天气系统1969年7月11日08时700毫巴图上在江淮之间有一条切变线,在切变线的西端四川盆地有一个西南低涡,11日20时西南低涡东移到宜昌,低涡南侧的西南气流增强,西南急流明显,大于20米/秒的风速中心轴线自芷江经汉口到上海,预示着低涡将东移,12日08时低涡中心移到蚌埠,相应地面图在江淮之间有气旋波产生,造成一次暴雨天气过程。从天气系统来看,这次暴雨是由于西南低涡沿切变线东移所造成。  相似文献   

3.
对青藏高原东部牧区1967~1996年30a中春季发生的成灾性降雪天气过程进行了较为详细的分析。发现有45%的成灾性降雪过程与该地区的低涡天气系统有关。在归纳总结高原春季降雪天气形成的3种环流模型的基础上,重点分析了通常情况下高原切变线对高原低涡发生发展所起的主要作用。即高原切变线西南段区域内为上升运动区且气流的气旋性涡旋处于发展阶段,切变线东北段区域内为下沉运动区且气流的反气旋性涡旋处于发展阶段,是低涡形成的前期条件;高原切变线附近的流场有利于将周围水汽聚拢,使低涡系统得到持续不断的水汽供给,其中负的水汽通量散度扰动中心位于切变线中段南侧,形成水汽汇,正的水汽通量散度扰动最大值部分位于切变线西南段南侧,是低涡水汽的主要来源。中还给出了高原部分测站降雪量、最低气温的预报方程,可供有关预报人员参考。  相似文献   

4.
王文  蔡晓军  隆霄 《干旱气象》2007,25(4):5-11
利用非静力中尺度模式MM5V3的模拟资料对"99.6"梅雨锋暴雨过程进行了对流动量输送(CMT)和视热源视水汽汇分析。CMT诊断分析表明,水平动量残差在切变低涡发展的不同阶段的作用是不同的,在中尺度低涡发生初期对流层低层动量残差X主要是加速西南气流的北上;在对流层中层动量残差在槽后加速冷空气南下,在槽前加速西南暖湿气流北上,非常有利于东亚大槽的发展。在低涡切变线强烈发展时,850hPa的X方向与发生阶段相反,此时西南气流受到了强烈的减速作用,同时500hPa东亚大槽的前部和后部出现了减速气流的动量残差,槽后冷空气和槽前的暖湿气流都已经受到减速作用,此后低涡切变线逐渐衰减。低涡切变线发展到最强的阶段,强X矢量几乎总是与强烈上升运动区相对应,能量转换E的水平分布表明,大尺度系统与中尺度系统之间的能量转换非常复杂,并不是简单的能量串级过程,但能量主要是从大尺度向次网格尺度转换。200hPa动能转换E的带状分布非常清楚,E的正负大值中心分布在高空急流的2侧,表明高空急流在能量转换的过程中起到非常重要的作用。视热源和视水汽汇的诊断分析显示,强凝结潜热的释放与低涡的发展相伴随,但视热源只与β中尺度系统有明显的对应关系,视水汽汇有和视热源非常相似的分布特征。  相似文献   

5.
利用欧洲中心ERA-interim再分析资料,通过计算Okubo-Weiss(OW)参数,对青藏高原上一次高原切变线诱发高原低涡生成的过程进行了诊断分析。结果表明:(1)OW负值带可以指示高原切变线的可能生成区;OW值趋于0时,切变线变得不稳定,强度逐渐减弱;OW正值区能够指示高原低涡的后续移动趋势以及发展情况,气流辐合区域与OW大正值区有很好的对应关系。(2)此次高原切变线气流活动以拉伸变形为主。切变线生成阶段,其附近气流作拉伸变形运动;切变线成熟阶段,气流拉伸变形运动达到最强;切变线减弱阶段,其气流拉伸变形运动减弱。(3)切变线的生成以及移动主要受总变形方程的局地变化项影响;低涡的生成位置以及后续移动路径与水平涡度方程的散度项有很好的对应关系。气流辐合在高原低涡形成的初期起主要作用,辐合强度的减弱会抑制高原低涡的东移及发展。   相似文献   

6.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1〈0同时MPV2≥0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。  相似文献   

7.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1<0同时MPV2≧0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。   相似文献   

8.
"99·6"梅雨锋暴雨低涡切变线的数值模拟和分析   总被引:20,自引:1,他引:19  
隆霄  程麟生 《大气科学》2004,28(3):342-356
在天气分析的基础上,利用非静力中尺度模式MM5和四维资料同化逼进方法及双向三重嵌套网格技术,对1999年6月23~25日(简称"99·6")发生在长江中下游地区的梅雨锋暴雨过程进行了数值模拟.结果表明:模拟结果与观测结果的比较指出,高分辨数值模式MM5可以成功地模拟梅雨锋中尺度低涡切变线的发生和发展;模拟结果显示,在α中尺度低涡切变线发展过程中,低层强的西南急流和东北气流增强了低层的辐合;而高空的西风急流和东风急流则增强了高空的辐散;正是由于这种从高空到低空环流的配置,才促进了α中尺度低涡不断发展;模拟低涡切变线不同部位的垂直环流和物理量场表明,"99·6"梅雨锋低涡切变线的结构非常复杂:在梅雨锋的发展期,暖锋附近的垂直上升运动最强,低涡中心次之,冷锋附近最弱.模拟结果也表明,由于下垫面特征的不同,中国和日本的梅雨锋暖锋附近环流结构有较大的区别;模拟结果显示,在α中尺度低涡发展过程中,不断有扰动在低涡前部发展,激发并分裂出一系列的β中尺度系统,β中尺度系统运动剧烈,但由于其低层辐合强于中空辐散,所以当它远离母体时会很快衰减.  相似文献   

9.
利用加密自动站降水资料、FY-2E卫星云顶相当黑体温度TBB资料和NCEP再分析资料,对2010年7月16-18日四川盆地持续性暴雨天气过程中的西南低涡及伴随发展的中尺度对流系统(MCS)进行了分析。结果表明,500 hPa高空槽、700 hPa中尺度切变线和暖湿气流为MCS的发生提供了良好的环境条件;地面降水时空分布具有明显的中尺度特征,MCS是造成暴雨的重要原因;暴雨中心集中在TBB冷云区或边缘梯度密集带。在西南低涡发展过程中,MCS有利于激发上升气流,中低层的上升气流和正涡度配合利于热量和水汽垂直输送,高层的辐散进一步促使MCS的发展。水平涡度平流和涡度垂直输送项的配置影响上升气流和涡旋系统的发展,MCS对西南低涡的移动有一定的引导作用。有无MCS伴随发展时,对流活动对热量和水汽的输送能力迥异。  相似文献   

10.
一次西南低涡东移引发长江中下游暴雨的诊断研究   总被引:1,自引:0,他引:1  
刘晓波  储海 《气象》2015,41(7):825-832
利用常规观测资料和NECP再分析资料,对2013年6月6—7日西南低涡东移加强发展造成长江中下游大暴雨过程进行了诊断分析,重点探讨了西南低涡东移和发展维持的物理机制以及最强降水的变化特征。结果表明,沿着700 hPa高空切变线东移的西南低涡是造成此次长江中下游地区暴雨的直接影响系统,西南低涡沿着700 hPa切变线东移发展,深厚阶段正涡度柱伸展到400 hPa高度,自下而上呈近垂直结构。西南低涡附近低层辐合与高层辐散的大尺度环境条件、西南低涡与西南低空急流耦合发展动力结构、低空暖平流和高空槽前正涡度平流输送等条件是导致西南低涡东移到长江中下游后加强发展的主要因子。与西南低涡相伴随的强降雨区主要位于低涡南部3个纬距以内,该处的西南季风和副高西南侧东南气流两支水汽输送的汇合为暴雨发生提供了充沛的水汽和对流不稳定能量,而对流层中低层携带的冷空气侵入低层低涡的后部,不仅加强了低涡的斜压性,也促进了上冷下暖不稳定层结的产生和发展,为强降水的发生提供了不稳定对流触发条件。  相似文献   

11.
利用常规观测资料以及自动站、加密雨量站、卫星云图等资料,对湖北省荆门市2007年7月12—13日连续暴雨或大暴雨天气过程进行诊断分析。结果表明:这次暴雨或大暴雨过程是在有利的大尺度环流背景下受中尺度低涡和切变线影响由3个对流云团产生的,中尺度对流云团演变与强降水落区及持续时间有很好的对应关系;西南涡东南侧西南暖湿气流和北侧东风气流共同提供了有利的水汽输送条件;对流层中低层强辐合和上升运动提供了较好的动力条件;"万宜"台风外围东风气流对西南涡的作用及其对西南涡的阻挡,是西南涡得以发展加强且长时间影响荆门并导致连续强降水的重要原因。  相似文献   

12.
一次川东大暴雨过程的中尺度分析   总被引:11,自引:2,他引:11       下载免费PDF全文
利用观测资料和MM5中尺度非静力模式产生的客观分析资料, 分析了2004年9月3~5日出现在川东地区大暴雨过程的大尺度环流特征和主要的中尺度天气系统及其结构。分析表明:中纬度低压槽的东移与西伸加强的副热带高压在青藏高原北部地区形成了有利于高原切变线和西南低涡生成发展的环流条件;西南低涡东侧的暖式切变线是对流活动最活跃的区域, 强降水主要出现在暖式切变线上;西南低涡是一个主要出现在对流层中低层的涡旋系统, 与大暴雨区相对应的整层强上升运动是低涡切变线南北两侧的正反向垂直环流共同作用的结果。  相似文献   

13.
影响江淮地区的西南涡中尺度结构特征   总被引:8,自引:4,他引:8  
韦统健  薛建军 《高原气象》1996,15(4):456-463
利用合成方法对3次西南涡过程的流场,温湿场和涡度场等进行了分析。结果指出:沿切变线存在风场的中尺度扰动,低涡的尺度为250-300km,中低层有两支不同性质的气流流入低涡区,降水主要发生在低涡移动方向右侧的两象限。温湿场和铅直流场在低涡区呈现明显的不对称分布,低涡是一个显著的斜压系统。  相似文献   

14.
该文利用常规气象观测资料及NCEP 1°×1°再分析资料,对2018年4月12日08时—13日08时蒙古气旋与西南涡协同作用下,陕西省出现大范围降水,陕南局地暴雨的形成机理进行诊断分析。结果表明:(1)乌拉尔山高脊与贝加尔湖高脊之间的蒙古低槽东移发展为蒙古冷涡,地面冷锋移入低压,形成蒙古气旋。青藏高原东侧生成的西南涡与蒙古冷涡接近同位相,西南涡前侧高温高湿的偏南气流向北输送到陕西北部,蒙古冷涡底部干冷空气南下到陕西南部。蒙古冷涡与西南涡的协同作用下,蒙古冷涡南部与西南涡北部形成2条切变线及地面冷锋过境是陕西省降水的主要影响系统。(2)锋生阶段暖区一侧θse受西南涡偏南暖湿气流的输送得到增大,锋区两侧能量差变大,由于两涡输送冷暖气流的持续作用,锋区移动缓慢,上升运动加强,降水范围广、持续时间长。(3)蒙古冷涡是不对称的冷性低涡,西南涡是暖性低涡,2个不同冷暖特性低值系统同位相具有协同作用的机制,蒙古冷涡底部冷空气南下侵入西南涡,增大了西南涡的气旋性涡度。西南涡增强后,向北持续输送暖湿气流到陕北地区,蒙古冷涡底部冷空气南下影响西南涡北侧切变线稳定少动是陕南暴雨的成因。  相似文献   

15.
利用常规观测资料、 ERA-5再分析数据、 FY-4A卫星资料,对2021年9月3-4日一次西北涡与西南涡共同作用引发的秦巴区域大暴雨过程进行了研究,探讨了两涡作用导致大暴雨的中尺度环境场特征,并对西南涡的形成过程进行诊断分析。结果表明:秦巴区域的大暴雨是在西北涡与西南涡共同作用下由中尺度对流复合体(Mesoscal Convective Complex, MCC)引起的,强降水位于MCC云顶亮温冷中心及后部偏冷空气一侧的亮温梯度大值区。西南涡生成前,西北涡后部的偏北气流与西南气流形成了中尺度切变线,在秦巴区域触发对流不稳定而激发出中尺度对流云团而产生降水;西南涡生成后与西北涡共同作用,使秦巴区域水汽的输送加强,对流层低层形成强烈辐合,正涡度和垂直上升运动加强,使MCC强烈发展并具有较长生命史,同时伴随β和γ中尺度的对流云团发展,加强了该区域的强降水,从而造成大暴雨。该过程中西南涡是由500 hPa低涡产生的正涡度和高位涡向下传递强迫,使西北涡后部偏北风与西南气流气旋性运动加强从而形成涡旋环流,西南涡与500 hPa低涡的垂直耦合使其发展为强大的涡旋系统,从而加强水汽的辐合上升运动以加...  相似文献   

16.
2000年7月西南涡暴雨过程的分析和数值模拟   总被引:38,自引:31,他引:7  
对2000年7月1~8日西南涡暴雨过程进行了大尺度分析,并利用中尺度暴雨模式MRM1对这次过程进行了数值模拟,结果表明,这次西南涡暴雨过程分为两个阶段,分别对应着两次冷空气南下。暖切变线的南北摆动是发生大暴雨的一个重要原因,而西南急流核的向北传播导致雨区向北传播。模式成功地模拟出了中-α尺度的低涡、切变线,沿暖切变线的强烈倾斜上升气流、中尺度正涡度以及水汽通量散度辐合柱状结构,这些对暴雨的发生提供了动力和水汽条件;而沿低空急流轴的狭长暖湿舌,其北部的干冷区构成的南北向能量锋区,以及较强的中低空不稳定层结是这次暴雨持续发生的重要条件。  相似文献   

17.
利用常规气象观测资料、自动站观测资料和探空资料等,对所选取的2004—2013年共78例降水过程进行分析,将中部区域春秋季降水过程分为3个类型:低槽/切变线冷锋型、低涡(西南涡/西北涡)气旋型、低槽/切变线冷高压型。统计结果表明,中部区域春秋季降水出现概率最多的类型依次为切变线冷锋型、低槽冷锋型和西南涡类型,各天气类型的雨区移动方向均以自西向东为主,低层700 h Pa和850 h Pa多存在西南或偏南急流,水汽主要来自于孟加拉湾。分析中部区域3种主要降水类型特征及其增雨潜力区位置发现:1)低槽冷锋类型降水一般出现在500 h Pa和700 h Pa低槽前部、地面冷锋后部,多为连续性降水;其增雨潜力区主要位于500 h Pa低槽前部、700h Pa槽前和西南急流出口区的左侧,以及地面冷锋后部或锋线附近区域。2)切变线冷锋类型降水多出现在地面冷锋后部、低层切变线两侧附近;其增雨潜力区主要位于700 h Pa和850 h Pa两切变线之间且较靠近700 h Pa切变线一侧、急流出口左侧的带状区域。3)西南涡波动类型降水一般出现在低涡中心及700 h Pa暖式切变线两侧附近,降水持续时间较长;其增雨潜力区主要位于700 h Pa和850 h Pa低涡中心附近及暖式切变线北侧区域。  相似文献   

18.
利用常规观测资料、NCEP再分析资料、卫星以及雷达资料对2015年8月16—18日影响川渝地区的一次持续性大暴雨过程进行了分析。结果表明:在亚洲中高纬和低纬相对稳定的环流背景下,两次高原涡东移、两次冷空气南下侵入四川盆地共同促进了西南低涡生成发展,造成此次大暴雨过程。西南低涡"初生形成"阶段,地面热低压东北侧有冷锋侵入,中心偏北形成暖锋,低涡近于正压;"稳定持续发展"阶段,冷锋南段移至地面热低压南侧,北段与暖锋结合形成准静止锋,低涡斜压性明显且呈近圆形,持续性暴雨主要出现在西南低涡的暖切变线附近和冷槽东侧;"东移变形减弱"阶段,冷空气第二次侵入,冷锋持续增强,西南低涡东移变形减弱。低层辐合、高层辐散、充沛的水汽输送以及不稳定能量的累积为西南低涡的加深、发展和强降水的维持提供了重要条件。西南低涡暖切变线和南侧冷槽附近发展起来的对流云团是暴雨产生的直接原因,强降水主要发生在云团上风方TBB梯度相对较大的区域。此次强降水过程的局地环流有低空急流和低空辐合线或切变线配合,雷达体积速度处理(velocity volume processing,VVP)法反演的风矢图可更直观地判断风向风速、天气系统所处的发展阶段以及判识辐合线或切变线,低空辐合线或切变线的演变以及低空急流的强度和移向对强降水天气产生的动力条件、维持时间和回波外推预报具有重要的指导意义。  相似文献   

19.
高原低涡移出高原后持续活动的典型个例分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP/NCAR再分析资料,选取500 hPa分别为西风槽、切变线和切变流场影响背景下、移出高原后维持48 h以上的3次典型高原低涡个例,分析了低涡维持期间500 hPa环境场、主要影响系统、涡度与温度平流、200 hPa形势场及垂直动力结构,并利用涡度方程对总涡源和各强迫项进行了诊断分析,结果表明:(1)西风槽影响时高原低涡移动路径受槽前西南气流引导,切变线影响时低涡沿切变线自西向东移动,切变流场影响时低涡移动主要受西太平洋副热带高压(下称西太副高)进退的影响,当西太副高出现明显西伸时,可导致低涡折向西退,3次个例均持续有正涡度平流和冷平流向涡区输送;(2)西风槽和切变线影响时南亚高压为东西带状分布,切变流场影响时南亚高压为北拱形;(3)高原低涡东移发展达到最强时,3次个例在200hPa均有低槽或低压叠加,从而形成深厚的正涡度柱;(4)500 hPa存在正涡度变率中心,低涡沿正涡度变率中心方向移动,高空槽和切变流场影响时正涡度变率主要来自水平输送项,切变线影响时主要来自辐合辐散项。  相似文献   

20.
一次高原低涡与高原切变线演变过程与机理分析   总被引:6,自引:1,他引:5  
李山山  李国平 《大气科学》2017,41(4):713-726
对一次东移高原低涡减弱、高原切变线生成并在有利的环流背景下东南移,进而引发川渝强降水的高原切变线生成机制以及演变过程进行了初步分析。首先引入描写热带气旋的Okubo-Weiss(OW)参数(VOW)来定量表达低涡、切变气流中旋转和变形的相对大小,确定高原切变线的潜在生成区域和发展状况。得出在高原切变线生成阶段,500 hPa等压面上VOW值由正转负,VOW负值带可以很好地指示高原切变线的潜在生成区域。VOW负值强度与高原切变线强度有很好的相关性。高原切变线上以VOW负值中心为主,但也会存在正值中心,说明在切变线上也会有气旋性涡度。此个例高原切变线以伸缩变形为主,高原切变线沿变形场的拉伸轴分布。然后通过涡度方程和总变形方程进一步分析了高原低涡减弱、高原切变线生成的动力机制。高原低涡的减弱、消失主要受散度项的影响,时间演变分析表明系统由强气旋性涡度的高原低涡演变为强辐合性的高原切变线。总变形方程中的扭转项对高原切变线的生成贡献最大,其次为水平气压梯度项,散度项最小;当高原切变线上以拉伸变形为主时,不利于其上高原低涡的发展,切变线可能是影响低涡发展的背景流场。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号