首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper introduces a new program to find high-redshift radio galaxies in the Southern hemisphere through ultrasteep spectrum (USS) selection. We define a sample of 234 USS radio sources with spectral indices α843408≤−1.0 ( S ν∝να) and flux densities S 408≥ 200 mJy in a region of 0.35 sr, chosen by cross-correlating the revised 408 MHz Molonglo Reference Catalogue, the 843 MHz Sydney University Molonglo Sky Survey and the 1400 MHz NRAO VLA Sky Survey in the overlap region −40° < δ < −30°. We present Australia Telescope Compact Array (ATCA) high-resolution 1384 and 2368 MHz radio data for each source, which we use to analyse the morphological, spectral index and polarization properties of our sample. We find that 85 per cent of the sources have observed-frame spectral energy distributions that are straight over the frequency range 408–2368 MHz, and that, on average, sources with smaller angular sizes have slightly steeper spectral indices and lower fractional linear polarization. Fractional polarization is anticorrelated with flux density at both 1400 and 2368 MHz. We also use the ATCA data to determine observed-frame Faraday rotation measures for half of the sample.  相似文献   

2.
The moderately fast Nova Oph 2007 reached maximum brightness on 2007 March 28 at   V = 8.52, B − V =+1.12, V − R C=+0.76, V − I C=+1.59  and   R C− I C=+0.83  , after fast initial rise and a pre-maximum halt lasting a week. Decline times were   t V 2= 26.5, t B 2= 30, t V 3= 48.5  and   t B 3= 56.5  d. The distance to the nova is   d = 3.7 ± 0.2 kpc  , the height above the Galactic plane is   z = 215 pc  , the reddening is   E ( B − V ) = 0.90  and the absolute magnitude at maximum is   M max V =−7.2  and   M max B =−7.0  . The spectrum four days before maximum resembled a F6 supergiant, in an agreement with broad-band colours. It later developed into that of a standard 'Fe  ii '-class nova. Nine days past maximum, the expansion velocity estimated from the width of Hα emission component was  ∼730 km s−1  , and the displacement from it of the principal and diffuse-enhanced absorption systems was ∼650 and  1380 km s−1  , respectively. Dust probably formed and disappeared during the period from 82 to 100 d past maximum, causing (at peak dust concentration) an extinction of  Δ B = 1.8  mag and an extra  Δ E ( B − V ) = 0.44  reddening.  相似文献   

3.
We present millimetre photometry and submillimetre imaging of the central core and two hotspots in the radio lobes of the galaxy Cygnus A. For both hotspots and the central core, the synchrotron spectrum continues smoothly from the radio to a frequency of 677 GHz. The spectral index of the hotspots is constant over our frequency range, with a spectral index of α ≈ −1.0 ( S ν ∝ να), which is steeper than at lower frequencies and represents the emission from an aged population of electrons. The core is significantly flatter, with α = −0.6 ± 0.1, suggestive of an injected spectrum with no ageing, but some evidence for steepening exists at our highest observing frequency. Although IRAS data suggest the presence of dust in Cygnus A, our 450-μm data show no evidence of cold dust, therefore the dust component must have a temperature lying between 85 and 37 K, corresponding to dust masses of 1.4 × 106 and 1.0 × 108 M respectively.  相似文献   

4.
We discuss the possibility of performing a substantial spectroscopic galaxy redshift survey selected via the 21-cm emission from neutral hydrogen using the Five-hundred metre Aperture Spherical Telescope (FAST) to be built in China. We consider issues related to the estimation of the source counts and optimizations of the survey, and discuss the constraints on cosmological models that such a survey could provide. We find that a survey taking around two years could detect ∼107 galaxies with an average redshift of ∼0.15 making the survey complementary to those already carried out at optical wavelengths. These conservative estimates have used the   z = 0  H  i mass function and have ignored the possibility of evolution. The results could be used to constrain  Γ=Ωm h   to 5 per cent and the spectral index, n s, to 7 per cent independent of cosmic microwave background data. If we also use simulated power spectra from the Planck satellite, we can constrain w to be within 5 per cent of −1.  相似文献   

5.
We have detected the Sunyaev–Zel'dovich (SZ) increment at 850 μm in two galaxy clusters (Cl 0016+16 and MS 1054.4−0321) using the Submillimetre Common User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. Fits to the isothermal β model yield a central Compton y parameter of  (2.2 ± 0.7) × 10−4  and a central 850-μm flux of  Δ I 0= 2.2 ± 0.7 mJy beam−1  in Cl 0016. This can be combined with decrement measurements to infer   y = (2.38 ±0.360.34) × 10−4  and   v pec= 400±19001400 km s−1  . In MS 1054 we find a peak 850-μm flux of  Δ I 0= 2.0 ± 1.0 mJy beam−1  and   y = (2.0 ± 1.0) × 10−4  . To be successful such measurements require large chop throws and non-standard data analysis techniques. In particular, the 450-μm data are used to remove atmospheric variations in the 850-μm data. An explicit annular model is fit to the SCUBA difference data in order to extract the radial profile, and separately fit to the model differences to minimize the effect of correlations induced by our scanning strategy. We have demonstrated that with sufficient care, SCUBA can be used to measure the SZ increment in massive, compact galaxy clusters.  相似文献   

6.
We present the results of a deep 610-MHz survey of the 1 H XMM–Newton / Chandra survey area with the Giant Metre-wave Radio Telescope. The resulting maps have a resolution of ∼7 arcsec and an rms noise limit of 60 μJy. To a 5σ detection limit of 300 μJy, we detect 223 sources within a survey area of 64 arcmin in diameter. We compute the 610-MHz source counts and compare them to those measured at other radio wavelengths. The well-known flattening of the Euclidean-normalized 1.4-GHz source counts below ∼2 mJy, usually explained by a population of starburst galaxies undergoing luminosity evolution, is seen at 610 MHz. The 610-MHz source counts can be modelled by the same populations that explain the 1.4-GHz source counts, assuming a spectral index of −0.7 for the starburst galaxies and the steep spectrum active galactic nucleus (AGN) population. We find a similar dependence of luminosity evolution on redshift for the starburst galaxies at 610 MHz as is found at 1.4 GHz (i.e.  ' Q '= 2.45+0.3−0.4  ).  相似文献   

7.
We present new continuum VLA observations of the nearby Sy 1.5 galaxy NGC 5033, made at 4.9 and 8.4 GHz on 2003 April 8. Combined with VLA archival observations at 1.4- and 4.9-GHz made on 1993 August 7, 1999 August 29 and 1999 October 31, we sample the galaxy radio emission at scales ranging from the nuclear regions (≲100 pc) to the outer regions of the disc (∼40 kpc). The high-resolution VLA images show a core–jet structure for the Sy 1.5 nucleus. While the core has a moderately steep non-thermal radio spectrum ( S ν∝να; α4.91.5≈−0.4), the inner kpc region shows a steeper spectrum (α8.41.5≈−0.9). This latter spectrum is typical of galaxies where energy losses are high, indicating that the escape rate of cosmic ray electrons in NGC 5033 is low. The nucleus contributes little to the total 1.4-GHz radio power of NGC 5033 and, based on the radio to far-infrared (FIR) relation, it appears that the radio and FIR emission from NGC 5033 are dominated by a starburst that during the last 10 Myr produced stars at a rate of 2.8 M yr−1 yielding a supernova (type Ib/c and II) rate of 0.045 yr−1. This supernova rate corresponds to about 1 SN event every 22 yr. Finally, from our deep 8.4-GHz VLA-D image, we suggest the existence of a radio spur in NGC 5033, which could have been due to a hot superbubble formed as a consequence of sequential supernova explosions occurring during the lifetime of a giant molecular cloud.  相似文献   

8.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   

9.
We present a stable procedure for defining and measuring the two point angular autocorrelation function,   w (θ) =[θ/θ0( V )]−Γ  , of faint  (25 < V < 29)  , barely resolved and unresolved sources in the Hubble Space Telescope Great Observatories Origins Deep Survey and Ultra Deep Field data sets. We construct catalogues that include close pairs and faint detections. We show, for the first time, that, on subarcsec scales, the correlation function exceeds unity. This correlation function is well fit by a power law with index  Γ≈ 2.5  and a  θ0= 10−0.1( V −25.8) arcsec  . This is very different from the values of  Γ≈ 0.7  and  θ0( r ) = 10−0.4( r −21.5) arcsec  associated with the gravitational clustering of brighter galaxies. This observed clustering probably reflects the presence of giant star-forming regions within galactic-scale potential wells. Its measurement enables a new approach to measuring the redshift distribution of the faintest sources in the sky.  相似文献   

10.
In this paper, we present a new method to estimate, for each turbulent layer labelled i , the horizontal wind speed   v ( h i )  , the standard deviation of the horizontal wind speed fluctuations  σ v ( hi )  and the integrated value of   C 2 n   over the thickness  Δ hi   of the turbulent layer   C 2 n ( hi )Δ hi   , where   hi   is the altitude of the turbulent layer. These parameters are extracted from single star scintillation spatiotemporal cross-correlation functions of atmospheric speckles obtained within the generalized mode. This method is based on the simulated annealing algorithm to find the optimal solution required to solve the problem. Astrophysics parameters for adaptive optics are also calculated using   C 2 n ( hi )  and   v ( hi )  values. The results of other techniques support this new method.  相似文献   

11.
We obtained 238 spectra of the close-orbiting extrasolar giant planet HD 189733b with resolution   R ∼ 15 000  during one night of observations with the Near-Infrared High-Resolution Spectrograph (NIRSPEC), at the Keck II Telescope. We have searched for planetary absorption signatures in the  2.0–2.4 μm  region where H2O and CO are expected to be the dominant atmospheric opacities. We employ a phase-dependent orbital model and tomographic techniques to search for the planetary absorption signatures in the combined stellar and planetary spectra. Because potential absorption signatures are hidden in the noise of each single exposure, we use a model list of lines to apply a spectral deconvolution. The resulting mean profile possesses a signal-to-noise ratio (S/N) that is 20 times greater than that found in individual lines. Our spectral time series thus yields spectral signatures with a mean S/N = 2720. We are unable to detect a planetary signature at a contrast ratio of  log10( F p/ F *) =−3.40  , with 63.8 per cent confidence. Our findings are not consistent with model predictions which nevertheless give a good fit to mid-infrared observations of HD 189733b. The 1σ result is a factor of 1.7 times less than the predicted 2.185-μm planet/star flux ratio of  log10( F p/ F *) ∼−3.16  .  相似文献   

12.
We present the spectra, positions, and finding charts for 31 bright ( R <19.3) colour-selected quasars covering the redshift range z =3.85–4.78, with four having redshifts z >4.5. The majority are in the southern sky ( δ <−25°). The quasar candidates were selected for their red ( B J− R ≳2.5) colours from UK or POSSII Schmidt Plates scanned at the Automated Plate Measuring (APM) facility in Cambridge. Low-resolution (≳ 10 Å) spectra were obtained to identify the quasars, primarily at the Las Campanas Observatory. The highest redshift quasar in our survey is at z ≈4.8 ( R =18.7) and its spectrum shows a damped Ly α absorption system at z =4.46. This is currently the highest redshift damped Ly α absorber detected. Five of these quasars exhibit intrinsic broad absorption line features. Combined with the previously published results from the first part of the APM United Kingdom Schmidt Telescope (UKST) survey we have now surveyed a total of ∼8000 deg2 of sky i.e. 40 per cent of the high galactic latitude (| b |>30°) sky, resulting in 59 optically selected quasars in the redshift range 3.85 to 4.78; 49 of which have z ≥4.00.  相似文献   

13.
We present measurements of the clustering properties of galaxies in the field of redshift range 0.5 ≲ z ≲ 1.5 Ultra Steep Spectrum radio sources selected from the Sydney University Molonglo Sky Survey and the National Radio Astronomy Observatories Very Large Array Sky Survey. Galaxies in these USS fields were identified in deep near-infrared observations, complete down to   K s= 20  , using the IRIS2 instrument at the Anglo-Australian Telescope. We used the redshift distribution of   K s < 20  galaxies taken from Cimatti et al. (2002) to constrain the correlation length r 0. We find a strong correlation signal of galaxies with   K s < 20  around our USS sample. A comoving correlation length   r 0= 14.0 ± 2.8  h −1 Mpc  and γ= 1.98 ± 0.15 are derived in a flat cosmological model universe.
We compare our findings with those obtained in a cosmological N -body simulation populated with galform semi-analytic galaxies. We find that clusters of galaxies with masses in the range   M = 1013.4–14.2  h −1 M  have a cluster–galaxy cross-correlation amplitude comparable to those found between the USS hosts and galaxies. These results suggest that distant radio galaxies are excellent tracers of galaxy overdensities and pinpoint the progenitors of present day rich clusters of galaxies.  相似文献   

14.
We present a catalogue of 17 filamentary X-ray features located within a  68 × 34  arcmin2  view centred on the Galactic Centre region from images taken by Chandra . These features are described by their morphological and spectral properties. Many of the X-ray features have non-thermal spectra that are well fitted by an absorbed power law. Of the 17 features, we find six that have not been previously detected, four of which are outside the immediate  20 × 20  arcmin2  area centred on the Galactic Centre. Seven of the 17 identified filaments have morphological and spectral properties expected for pulsar wind nebulae (PWNe) with X-ray luminosities of  5 × 1032  to 1034 erg s−1 in the 2.0–10.0 keV band and photon indices in the range of  Γ= 1.1  to 1.9. In one feature, we suggest the strong neutral Fe Kα emission line to be a possible indicator for past activity of Sgr A*. For G359.942−0.03, a particular filament of interest, we propose the model of a ram pressure confined stellar wind bubble from a massive star to account for the morphology, spectral shape and 6.7 keV He-like Fe emission detected. We also present a piecewise spectral analysis on two features of interest, G0.13−0.11 and G359.89−0.08, to further examine their physical interpretations. This analysis favours the PWN scenario for these features.  相似文献   

15.
16.
We present Very Large Telescope (VLT) low-resolution spectroscopy of the neutron star X-ray transient XTE J2123−058 during its quiescent state. Our data reveal the presence of a K7V companion which contributes 77 per cent to the total flux at λ 6300 and orbits the neutron star at     . Contrary to other soft X-ray transients (SXTs), the H α emission is almost exactly in antiphase with the velocity curve of the optical companion. Using the light-centre technique we obtain     and hence     This, combined with a previous determination of the inclination angle     yields     and     . M 2 agrees well with the observed spectral type. Doppler tomography of the H α emission shows a non-symmetric accretion disc distribution mimicking that seen in SW Sex stars. Although we find a large systemic velocity of −     this value is consistent with the galactic rotation velocity at the position of J2123−058, and hence a halo origin. The formation scenario of J2123−058 is still unresolved.  相似文献   

17.
We have observed the   z =0.78  cluster MS 1137.5+6625 with the Ryle Telescope (RT) at 15 GHz. After subtraction of contaminating radio sources in the field, we find a Sunyaev–Zel'dovich flux decrement of  -421±60 μJy  on the ≈0.65 k λ baseline of the RT, spatially coincident with the optical and X-ray positions for the cluster core.
For a spherical King-profile cluster model, the best fit to our flux measurement has a core radius   θ C=20 arcsec  , consistent with previous X-ray observations, and a central temperature decrement  Δ T =650±92 μK  .
Using this model, we calculate that the cluster has a gas mass inside a     radius of  2.9×1013 M  for an  Ω M =1  universe and  1.6×1013 M  for  Ω M =0.3  ,  ΩΛ=0.7  . We compare this model with existing measurements of the total mass of the cluster, based on gravitational lensing, and estimate a gas fraction for MS 1137.5+6625 of ≈8 per cent.  相似文献   

18.
We have observed the Sunyaev–Zel'dovich (SZ) effect in a sample of five moderate-redshift clusters with the Ryle Telescope, and used them in conjunction with X-ray imaging and spectral data from ROSAT and ASCA to measure the Hubble constant. This sample was chosen with a strict X-ray flux limit using both the Bright Cluster Sample and the Northern ROSAT All-Sky Survey (RASS) cluster catalogues to be well above the surface brightness limit of the RASS, and hence to be unbiased with respect to the orientation of the cluster. This controls a major potential systematic effect in the SZ/X-ray method of measuring H 0. Taking the weighted geometric mean of the results and including the main sources of error, namely the noise in the SZ measurement, the uncertainty in the X-ray temperatures and the unknown ellipticity and substructure of the clusters, we find   H 0= 59+10−9 (random)+8−7(systematic) km s−1 Mpc−1  assuming a standard cold dark matter model with  ΩM= 1.0, ΩΛ= 0.0  or   H 0= 66+11−10 +9−8 km  s−1 Mpc−1  if  ΩM= 0.3, ΩΛ= 0.7  .  相似文献   

19.
We present a new determination of the local volume-averaged star formation rate from the 1.4-GHz luminosity function of star forming galaxies. Our sample, taken from the   B ≤12  Revised Shapley–Ames catalogue (231 normal spiral galaxies over an effective area of 7.1 sr) has ≃100 per cent complete radio detections and is insensitive to dust obscuration and cirrus contamination. After removal of known active galaxies, the best-fitting Schechter function has a faint-end slope of  −1.27±0.07  in agreement with the local H α luminosity function, characteristic luminosity   L ∗=(2.6±0.7)×1022 W Hz−1  and density   φ ∗=(4.8±1.1)×10−4 Mpc−3.  The inferred local radio luminosity density of  (1.73±0.37±0.03)×1019 W Hz−1 Mpc−3  (Poisson noise, large-scale structure fluctuations) implies a volume-averaged star formation rate ∼2 times larger than the Gallego et al. H α estimate, i.e.   ρ 1.4 GHz=(2.10±0.45±0.04)×10−2 M yr−1 Mpc−3  for a Salpeter initial mass function from  0.1–125 M  and Hubble constant of 50 km s−1 Mpc−1. We demonstrate that the Balmer decrement is a highly unreliable extinction estimator, and argue that optical–ultraviolet (UV) star formation rates (SFRs) are easily underestimated, particularly at high redshift.  相似文献   

20.
We present Chandra and XMM–Newton observations of 12 bright  [ f (2–10 keV) > 10−13 erg cm−2 s−1]  sources from the ASCA search for the High Energy Extragalactic Population (SHEEP) survey. Most of these have been either not observed or not detected previously with the ROSAT mission, and therefore they constitute a sample biased towards hard sources. The Chandra observations are important in locating the optical counterpart of the X-ray sources with accuracy. Optical spectroscopic observations show that our sample is associated with both narrow-line (NL) (six objects) and broad-line (BL) active galactic nuclei (AGN) (five objects), with one source remaining unidentified. Our sources cover the redshift range 0.04–1.29, spanning luminosities from 1042 to  1045 erg s−1  (2–10 keV). The NL sources have preferentially lower redshift (and luminosity) compared to the BL ones. This can be most easily explained in a model where the NL AGN are intrinsically less luminous than the BL ones in line with the results of Steffen et al. The X-ray spectral fittings show a roughly equal number of obscured  ( N H > 1022 cm−2)  and unobscured  ( N H < 1022 cm−2)  sources. There is a clear tendency for obscured sources to be associated with NL AGN and unobscured sources with BL ones. However, there is a marked exception with the highest obscuring column observed at a BL AGN at a redshift of z = 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号