首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic matter origins are inferred from carbon isotope ratios ('13C) in recent continental shelf sediments and major rivers from 465 locations from the north Bering-Chukchi-East Siberian-Beaufort Sea, Arctic Amerasia. Generally, there is a cross-shelf increase in '13C, which is due to progressive increased contribution seaward of marine-derived organic carbon to surface sediments. This conclusion is supported by the correlations between sediment '13C, OC/N, and '15N. The sources of total organic carbon (TOC) to the Amerasian margin sediments are primarily from marine water-column phytoplankton and terrigenous C3 plants constituted of tundra taiga and angiosperms. In contrast to more temperate regions, the source of TOC from terrigenous C4 and CAM plants to the study area is probably insignificant because these plants do not exist in the northern high latitudes. The input of carbon to the northern Alaskan shelf sediments from nearshore kelp community (Laminaria solidungula) is generally insignificant as indicated by the absence of high sediment '13C values (-16.5 to -13.6‰) which are typical of the macrophytes. Our study suggests that the isotopic composition of sediment TOC has potential application in reconstructing temporal changes in delivery and accumulation of organic matter resulting from glacial-interglacial changes in sea level and environments. Furthermore, recycling and advection of the extensive deposits of terrestrially derived organic matter from land, or the wide Amerasian margin, could be a mechanism for elevating total CO2 and pCO2 in the Arctic Basin halocline.  相似文献   

2.
Diffusion-controlled growth rates of polycrystalline enstatite reaction rims between forsterite and quartz were determined at 1,000 °C and 1 GPa in presence of traces of water. Iron-free, pure synthetic forsterite with normal oxygen and silicon isotopic compositions and quartz extremely enriched in 18O and 29Si were used as reactants. The relative mobility of 18O and 29Si in reactants and rims were determined by SIMS step scanning. The morphology of the rim shows that enstatite grows by a direct replacement of forsterite. Rim growth is modelled within a mass-conserving reference frame that implies advancement of reaction fronts from the initial forsterite-quartz interface in both directions. The isotopic compositions at the two reaction interfaces are controlled by the partial reactions Mg2SiO4=0.5 Mg2Si2O6+MgO at the forsterite-enstatite, and MgO+SiO2=0.5 Mg2Si2O6 at the enstatite-quartz interface, implying that grain boundary diffusion of MgO is rate-controlling. Isotopic profiles show no silicon exchange across the propagating reaction interfaces. This propagation, controlled by MgO diffusion, is faster than the homogenisation of Si by self-diffusion behind the advancing fronts. From this, and using % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaDa % aaleaacaWGtbGaamyAaiaacYcacaWGfbGaamOBaaqaaiaadAfacaWG % VbGaamiBaaaaaaa!3DD2! DSi,EnVolD_{Si,En}^{Vol} at dry conditions from the literature, results a % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmirayaafa % Waa0baaSqaaiaadofacaWGPbGaaiilaiaadweacaWGUbaabaaaaOGa % eqiTdqgaaa!3CCD! DSi,En dD'_{Si,En}^{} \delta value of 3᎒-24 m3 s-1 at 1,000 °C. The isotopic profiles for oxygen are more complex. They are interpreted as an interplay between the propagation of the interfaces, the homogenisation of the isotope concentrations by grain boundary self-diffusion of O within the rim, and the isotope exchange across the enstatite-quartz interface, which was open to 18O influx from quartz. Because of overlapping diffusion processes, boundary conditions are unstable and D´Ox,En' cannot be quantified. Using measured rim growth rates, the grain boundary diffusivity D´MgO' of MgO in iron-free enstatite is 8᎒-22 m3 s-1 at 1,000 °C and 1 GPa. Experiments with San Carlos olivine (fo92) as reactant reveal lower rates by a factor of about 4. Our results show that isotope tracers in rim growth experiments allow identification of the actual interface reactions, recognition of the rate-controlling component and further calculation of D´' values for specific components.  相似文献   

3.
To examine the biogeochemistry of amino acids (AAs) in the sediment of Lake Taihu, surface sediments (0–3 cm) and deeper sediments (18–21 cm) were collected at 21 sites from different ecotype zones of the lake. AAs were extracted from the sediments, and the total hydrolyzable amino acids (THAA) were determined by high-performance liquid chromatography instrument. The THAA contents in Taihu sediment were much lower than that in marine sediments, ranging from 6.84 to 38.24 μmol g−1 in surface sediments and from 2.91 to 18.75 μmol g−1 in deeper sediments in Taihu, respectively. AAs were a major fraction of the organic matter (OM) and organic nitrogen in Taihu sediments. The AAs on average contributed 8.2% of organic carbon (OC) and 25.0% of total nitrogen (TN) from surface sediments, and 5.9% of OC and 20.5% of TN in deeper sediments, respectively. AA composition provided very useful information about the degradation of OM. Glycine (Gly) and lysine (Lys) were the predominant forms of AAs in the sediments, irrespective of lake regions, followed by alanine, glutamic acid, serine (Ser), and aspartic acid (Asp). The high concentrations of Gly, Lys, and Ser suggested that these forms of AAs were relatively refractory during OM degradation in sediments. The relationship between the Asp/Gly ratio and Ser + Thr [mol%] indicated that OM in surface sediment was relatively fresher than that in deeper sediments. The AAs-based degradation index (DI) gave a similar conclusion. The composition and DI of AAs in surface sediments are markedly different across different zones in Taihu. The percentages of AAs to organic carbon (AA-C%) and total nitrogen (AA-N%) were higher in phytoplankton-dominated zones than those in macrophyte-dominated zones. These results suggest that DI could provide useful information about the degradation of OM in shallow lakes such as Taihu.  相似文献   

4.
The present study was conducted on the Manasbal Lake (34°14′N: 74°40′E) to assess the geochemical characteristics of the lake bottom sediments, its environmental implications and its response in the local catchment area. This study tracks the spatial distribution of grain size, geochemical analysis, C/N ratio, calcium carbonate (CaCO3) and organic matter (OM) of the lake bottom sediments. It is observed that the clay fraction (49.79%) is predominant in the lake bottom sediments, followed by silt (35.88%) and sand (14.33%) and its spatial distribution is controlled by water depth. Geochemistry and normalized diagrams for the major oxides and trace elements reveal enrichment of CaO, K2O, P2O5, S, Cl, Ni, Zn and Sr. Chemical index of alteration (CIA) reflects low to moderate weathering intensity and near compositional similarity with the bedrock exposed in the catchment area around the lake. Environmental indices (EF, Igeo) suggest that the sediments are enriched in Cu, Ni, Zn, Cr, Co, Pb followed by Mn content. Pollution load index (PLI) reveal that all the sampling sites reflect low to moderately polluted category except for few stations that are towards the southern and southeastern side of the lake. OM (16.85%), CaCO3 (14.04%) and C/N ratio (15.5) of the lake bottom sediments is attributed to high organic activity within the lake, shell fragments, contributions from the lake flora and fauna adhering to the clayey silty sediments. The C/N ratio of 15.5 suggests a mixed source of organic matter both terrestrially and in situ formation within the lake. Sulphur and chlorine are high amongst the trace elements suggesting anthropogenic detritus input into the lake and this is due to the chemical fertilizers from the agricultural runoff and organic load into the lake. Thus, the present study suggests that in order to preserve the pristine lake ecology and the environment; continued monitoring and restoration efforts need to be undertaken.  相似文献   

5.
The biogeochemistry of organic matter (OM) in a macrotidal estuary, the Yalujiang River, was studied during two cruises: the flood season in August 1994 and the dry season in April 1996. Surface sediments were collected in the riverine zone (RZ), the turbidity maximum zone (TMZ), and the marine zone (MZ). The molecular distribution of the n-alkanes and fatty acid series and bulk sediment characteristics, such as C:N and δ13C, were used to assess differences in OM source and transport from the river upstream to the marine end member. Higher C:N values typical for terrestrial sources were observed at the upper reach for both seasons. The δ13C of OM in surface sediments varied from −27.3‰ to −21.6‰ in the flood season and from −26.8‰ to −31‰ in the dry season. The concentrations of n-alkanes varied between 0.3–21.4 μg g−1 and the variation of fatty acids was 4.8–32.9 μg g−1. The data showed mixing of terrestrial and autochthonous OM in the middle and lower reaches. The distribution of lipids (n-alkanes and Carbon Preference Index) encountered in this study confirmed the importance of terrestrial OM in the sediment samples from degraded soil material. The distribution of fatty acids suggested important phytoplankton, zooplankton, and microbial signals (short-chain and unsaturated acids; ≤C20). Branched fatty acids, such as the iso- and anteiso-C15 and C17 compounds, relfect bacterial contributions. All samples were characterized by a high proportion of mixture inputs in both seasons. A slight decreasing trend was observed with increasing salinity except for the highest percentage of mixed fatty acids in the TMZ of the flood season. Terrestrial fatty acids were approximately 20% in the flood season and 27–46% in the dry season. Differences in hydrological conditions and primary production between the TMZ, RZ, and MZ resulted in different OM distributions, which are reflected in the sources and degree of diagenesis of the sedimentary OM. Seasonal variation may be strongly influenced by hydrological characteristics rather than primary productivity and anthropogenic activities in the Yalujiang region.  相似文献   

6.
The Mallery Lake area contains pristine examples of ancient precious metal-bearing low-sulfidation epithermal deposits. The deposits are hosted by rhyolitic flows of the Early Proterozoic Pitz Formation, but are themselves apparently of Middle Proterozoic age. Gold mineralization occurs in stockwork quartz veins that cut the rhyolites, and highest gold grades (up to 24 g/t over 30 cm) occur in the Chalcedonic Stockwork Zone. Quartz veining occurs in two main types: barren A veins, characterized by fine- to coarse-grained comb quartz, with fluorite, calcite, and/or adularia; and mineralized B veins, characterized by banded chalcedonic silica and fine-grained quartz, locally intergrown with fine-grained gold or electrum. A third type of quartz vein (C), which crosscuts B veins at one locality, is characterized by microcrystalline quartz intergrown with fine-grained hematite and rare electrum. Fluid inclusions in the veins occur in two distinct assemblages. Assemblage 1 inclusions represent a moderate temperature (Th=150 to 220 °C), low salinity (~1 eq. wt% NaCl, with trace CO2), locally boiling fluid; this fluid type is found in both A and B veins and is thought to have been responsible for Au-Ag transport and deposition. Assemblage 2 inclusions represent a lower temperature (Th=90 to 150 °C), high salinity calcic brine (23 to 31 wt% CaCl2-NaCl), which occurs as primary inclusions only in the barren A veins. Assemblage 1 and 2 inclusions occur in alternating quartz growth bands in the A-type veins, where they appear to represent alternating fluxes of dilute fluid and local saline groundwater. No workable primary fluid inclusions were observed in the C veins. The A-vein quartz yields '18O values from 8.3 to 14.5‰ (average=10.9ǃ.7‰ [1C], n=30), whereas '18O values for B-vein quartz range from 11.2 to 14.0‰ (average=13.0ǂ.9‰, n=12). Calculated '18OH2O values for the dilute mineralizing fluid from B veins range from -2.6 to 0.2‰ (average=-0.8ǂ.9‰, n=12) and are consistent with a dominantly meteoric origin. No values could be calculated for the brine, however, because all A-vein quartz samples contain mixed fluid inclusion populations. However, the fact that A-vein quartz samples extend to lower '18O values than the B veins suggests that the brine had a lighter isotopic signature relative to the dilute fluid. Hydrogen isotopic ratios of fluid inclusion waters extracted from eleven quartz samples of both vein types range from 'DFI=-56 to -134‰, but show no particular correlation with vein type. In most respects, the mineralogical and fluid characteristics of the Mallery Lake system are comparable to those of Phanerozoic low-sulfidation deposits, and although the presence of high salinity brines is unusual in such deposits, it is not unknown (e.g., Creede, Colorado). In addition, one of the few other examples of well-preserved, Precambrian, low-sulfidation epithermal deposits, from the Central Pilbara tectonic zone, Australia, contains a similarly bimodal fluid assemblage. The significance of these saline brines is not clear, but from this study we infer that they were not directly involved with Au-Ag transport or deposition.  相似文献   

7.
Suspended sediments (SS) from the Atchafalaya River (AR) and the Mississippi River and surficial sediment samples from seven shallow cross-shelf transects west of the AR in the northern Gulf of Mexico were examined using elemental (%OC, C/N), isotopic (δ13C, Δ14C), and terrigenous biomarker analyses. The organic matter (OM) delivered by the AR is isotopically enriched (∼−24.5‰) and relatively degraded, suggesting that soil-derived OM with a C4 signature is the predominant OM source for these SS. The shelf sediments display OC values that generally decrease seaward within each transect and westward, parallel to the coastline. A strong terrigenous C/N (29) signal is observed in sediments deposited close to the mouth of the river, but values along the remainder of the shelf fall within a narrow range (8-13), with no apparent offshore trends. Depleted stable carbon isotope (δ13C) values typical of C3 plant debris (−27‰) are found near the river mouth and become more enriched (−22 to −21‰) offshore. The spatial distribution of lignin in shelf sediments mirrors that of OC, with high lignin yields found inshore relative to that found offshore (water depth > 10 m).The isotopic and biomarker data indicate that at least two types of terrigenous OM are deposited within the study area. Relatively undegraded, C3 plant debris is deposited close to the mouth of the AR, whereas more degraded, isotopically enriched, soil-derived OM appears to be deposited along the remainder of the shelf. An important input from marine carbon is found at the stations offshore from the 10-m isobath. Quantification of the terrigenous component of sedimentary OM is complicated by the heterogeneous composition of the terrigenous end-member. A three-end-member mixing model is therefore required to more accurately evaluate the sources of OM deposited in the study area. The results of the mixing calculation indicate that terrigenous OM (soil-derived OM and vascular plant debris) accounts for ∼79% of the OM deposited as inshore sediments and 66% of OM deposited as offshore sediments. Importantly, the abundance of terrigenous OM is 40% higher in inshore sediments and nearly 85% higher in offshore sediments than indicated by a two-end-member mixing model. Such a result highlights the need to reevaluate the inputs and cycling of soil-derived OM in the coastal ocean.  相似文献   

8.
Volume diffusion rates for five rare earth elements (La, Ce, Nd, Dy, and Yb) have been measured in single crystals of natural diopside at pressures of 0.1 MPa to 2.5 GPa and temperatures of 1,050 to1,450 °C. Polished, pre-annealed crystals were coated with a thin film of rare earth element oxides, then held at constant temperature and pressure for times ranging from 20 to 882 h. Diffusion profiles in quenched samples were measured by SIMS (secondary ion mass spectrometry) depth profiling. At 1 atm pressure, with the oxygen fugacity controlled near the quartz-fayalite-magnetite buffer, the following Arrhenius relations were obtained for diffusion normal to (001) (diffusion coefficient D in m2/s): log10DYb=(-4.64ǂ.42)-(411ᆠ kJ/mol/2.303RT); log10DDy=(-3.31ǃ.44)-(461ᆽ kJ/mol/2.303RT); log10DNd=(-2.95DŽ.64)-(496ᇡ kJ/mol/2.303RT); log10DCe=(-4.10ǃ.08)-(463ᆳ kJ/mol/2.303RT); log10DLu=(-4.22DŽ.66)-(466ᇢ kJ/mol/2.303RT). Diffusion rates decrease significantly with increasing ionic radius, with La a factor of ~35 slower than Yb. The relationship between diffusivity and ionic radius is consistent with a model in which elastic strain plays a critical role in governing the motion of an ion through the crystal lattice. Activation volumes for Yb and Ce diffusion, at constant temperature and oxygen fugacity, are 9.0DŽ.0 cm3/mol and 8.9Dž.2 cm3/mol, respectively, corresponding to an order of magnitude decrease in diffusivity as pressure is increased from 0 to 3 GPa at 1,200 °C. Diffusion of Nd is such that grain-scale isotopic equilibrium in the mantle can be achieved in ~1 My under conditions near the peridotite solidus (~1,450 °C at 2.5 GPa). The equilibration time is much longer under P, T conditions of the lithospheric mantle or at the eclogite solidus (~1 Gy at 1.5 GPa and 1,150 °C). Because of the relatively strong decrease in diffusivity with pressure (two orders of magnitude between 2.5 and 15 GPa along an adiabatic temperature gradient), Nd transport in clinopyroxene will be effectively frozen at pressures approaching the transition zone, on time scales less than 100 My. Rare earth element diffusion rates are slow enough that significant disequilibrium uptake of REE by growing clinopyroxene phenocrysts may be preserved under natural conditions of basalt crystallization. The relative abundances and spatial distributions of REE in such crystals may provide a sensitive record of the cooling and crystallization history of the host lava.  相似文献   

9.
The Dafulou and Huile vein and stratabound cassiterite-sulfide deposits and sheeted ore veins at the Kangma cassiterite-sulfide deposit are located in the eastern part of the Dachang tin field. These deposits are hosted in a sedimentary sequence containing significant concentrations of organic matter in the form of Lower Devonian calcareous black shales and hornfels. These rocks together with the younger intrusion of Longxianggai granite (91DŽ Ma) actively participated in the formation of Sn-polymetallic deposits. The following three major stages have been distinguished in stratiform and vein-type orebodies at Dafulou, Huile and Kangma: stage I (cassiterite, pyrrhotite, arsenopyrite, tourmaline, carbonate), stage II - main sulfide stage (quartz, cassiterite, arsenopyrite, pyrrhotite, sphalerite, stannite, pyrite, carbonates) and stage III (native Bi, galena, electrum, sulfosalts). Stage IV (post-ore), recognized at Huile is represented by barren carbonates and zeolites. Whole rock geochemistry has revealed that at Dafulou, Bi and Cu correlate strongly with S, whereas V and Pb correlate well with Corg (organic carbon). The similar distribution patterns of selected elements in average slightly mineralized low-Ca black shales indicate a fluid composition similar for all deposits studied. Studies of graphitization of the organic matter in black shales adjacent to orebodies indicate that d(002) and FWHM (full width in half maximum)/peak height values gradually decrease in the following sequence: Dafulou deposit M Kangma deposit M Huile deposit. The pyrolysate of wall rocks at the Dafulou deposit is relatively enriched in asphaltenes and maltenes (55.6-72.0% of the pyrolysate) comparable with pyrolysate obtained from more distal black shales (19.2-28.5%). Typical GC-MS spectra of pyrolysate from distal black shales are dominated by alkanes in the n-C15 to n-C25 range, aromatic molecules being represented mostly by alkyl-naphthalenes. In contrast, only traces of aliphatic hydrocarbons in the n-C14 to n-C18 range and elemental sulfur were identified in pyrolysates from pyrrhotitized wall rocks. The earliest fluid inclusions of the studied system occur in the quartz-tourmaline-cassiterite assemblage of stage I at Dafulou. These inclusions are H2O-CO2-CH4-rich, with 10 to 20 vol% of aqueous phase. P-T conditions of the trapping of inclusions are estimated to be up to 400 °C and 1.3 to 2.0 kbar (between 5.0 and 7.5 km under lithostatic pressure). In contrast, the presence of a low density gaseous CO2-CH4 phase indicates relatively low pressures during the formation of the breccia-type quartz-calcite-cassiterite-sulfide mineralization (stage II), when P-T conditions probably reached approx. 380 to 400 °C and 0.6 kbar (up to 6 km under hydrostatic pressure). Fluid inclusion data and oxygen isotope thermometry indicate that cassiterite-sulfide ores of the main sulfide stage (stage II) formed from aqueous-carbonic fluid (CO2/CH4 =ᄺ) at temperatures of up to 390 °C at Dafulou and in a temperature range of 250 to 360 °C at Huile and 260 to 370 °C at Kangma. The '34S values of sulfides from Dafulou range mostly between -1 and -6‰, whereas sulfides from the Kangma and Huile deposits are characterized by more negative '34S values (between -8 and -11‰, and between -9 and -12‰, respectively). These data suggest that bacteriogenic sulfides of black shales were a dominant source of reduced sulfur for epigenetic (vein and replacement) mineralization. Oxygen isotopic compositions of five quartz-cassiterite pairs from Dafulou and Huile show a relatively narrow range of calculated oxygen isotope temperatures (250-320 °C, using the equation of Alderton 1989) and high '18Ofluid values between +8 and +10‰ (SMOW), which are in agreement with fluid derivation from and/or high temperature equilibration with the Longxianggai granite. The carbon and oxygen isotope composition of carbonates reflects variable carbon sources. Stage I calcite is characterized by narrow ranges of '13C (-7.0 to -9.5‰ PDB) and '18O (+15.0 to +17.5‰ SMOW). This calcite shows ubiquitous deformation, evidenced by intense development of twins. Fluid compositions calculated at 330 °C for the Dafulou and Huile deposits and at 270-300 °C for the Kangma deposit ('18Ofluid between +10.0 and +11.5‰ SMOW, '13Cfluid between -5.5 and -7.5‰ PDB), agree with fluid derivation from and/or equilibration with the peraluminous, high-'18O Longxianggai granite and suggest a significant influence of contact metasedimentary sequences (carbon derived from decomposition and/or alteration of organic matter of calcareous black shales). The '13 C values of organic matter from the Lower to Upper Devonian host rocks at the Dafulou deposit (-24.0 and -28.0‰) fit with a marine origin from algae. However, organic matter adjacent to the host rock-ore contact displays a slight enrichment in 13C. The organic carbon from the Huile and Kangma deposits is even more 13C enriched (-24.6 to -23.5‰). The most heavy '13 C values (-16.5‰) were detected in hornfels sampled at the contact of the Upper Devonian sediments with the Longxianggai granite. The '13C data broadly correlate with the degree of structural ordering (degree of graphitization) of organic matter, which indicates that both variables are related to thermal overprint.  相似文献   

10.
Study of biogeochemical processes in water and sediments of the Chukchi Sea in August 2004 revealed atypical maximums of the concentration of biogenic elements (N, P, and Si) and the rate of microbial sulfate reduction in the surface layer (0–3 cm) of marine sediments. The C: N: P ratio in the organic matter (OM) of this layer does not fit the Redfield-Richards stoichiometric model. Specific features of biogeochemical processes in sea are likely related to the complex dynamics of water, high primary productivity (110–1400 mg C/(m2 day)), low depth of basin (<50 m in 60% of the water area), reduced food chain due to low population of zooplankton, high density of zoobenthos (up to 4230 g m?2), and high activity of microbial processes. Drastic decrease in the concentration of biogenic elements, iodine, total alkalinity (Alk), and population of microorganisms beneath the 0–3 cm layer testify to a large-scale OM decay at the water-seafloor barrier. Our original experimental data support the high annual rate of OM mineralization at the bottom of the Chukchi Sea.  相似文献   

11.
Amino acids and the bacterial biomarkers muramic acid and d-amino acids were quantified in the ultrafiltered dissolved, particulate and sedimentary organic matter (UDOM, POM and SOM) of the St. Lawrence system (Canada). The main objectives were to better describe the fate of terrigenous and marine organic matter (OM) in coastal zones and to quantify the bacterial contributions to OM composition and diagenesis. Regardless of their origin, the carbon (C) content of the particles substantially decreased with depth, especially near the water-sediment interface. Major diagenetic transformations of organic nitrogen (N) were revealed and important differences were observed between terrigenous and marine OM. Amino acid contents of particles decreased by 66-93% with depth and accounted for 12-30% of the particulate C losses in marine locations. These percentages were respectively 18-56% and 7-11% in the Saguenay Fjord where terrigenous input is important. A preferential removal of particulate N and amino acids with depth or during transport was measured, but only in marine locations and for N-rich particles. This leads to very low amino acid yields in deep marine POM. However, these yields then increased to a level up to three times higher after deposition on sediments, where SOM showed lower C:N ratios than deep POM. The associated increase of bacterial biomarker yields suggests an active in situ resynthesis of amino acids by benthic bacteria. The N content of the substrate most likely determines whether a preferential degradation or an enrichment of N and amino acid are observed. For N-poor OM, such as terrigenous or deep marine POM, the incorporation of exogenous N by attached bacteria can be measured, while the organic N is preferentially used or degraded in N-rich OM. Compared to the POM from the same water samples, the extracted UDOM was poor in N and amino acids and appeared to be mostly made of altered plant and bacterial fragments. Signs of in situ marine production of UDOM were observed in the most marine location. The POM entering the St. Lawrence Upper Estuary and the Saguenay Fjord appeared made of relatively fresh vascular plant OM mixed with highly altered bacterial debris from soils. In contrast, the POM samples from the more marine sites appeared mostly made of fresh planktonic and bacterial OM, although they were rapidly degraded during sinking. Based on biomarker yields, bacterial OM represented on average ∼20% of bulk C and approximately 40-70% of bulk N in POM and SOM, with the exception of deep marine POM exhibiting approximately two times lower bacterial contributions.  相似文献   

12.
The Pichavaram mangrove ecosystem is located between the Vellar and Coleroon Estuaries in south-eastern India. To document the spatial-depth-based variabilities in organic matter (OM) input and cycling, five sediment cores were collected. A comparative study was carried out of grain-size composition, pore water salinity, dissolved organic C (DOC), loss-on-ignition (LOI), elemental ratios (C/N and H/C), pigments (Chl a, Chl b, and total carotenoids), and humification indices. Sand is the major fraction in these cores ranging from 60% to 99% followed by silt and clay; cores from the estuarine margin have high sand content. In mangrove forests, pore-water DOC concentrations are high (32 ± 14 mg L−1), whereas salinity levels are low (50 ± 5.5‰). Likewise, LOI, organic C and N, and pigment concentrations are high in mangroves. OM is mainly derived from upstream terrestrial matter and/or mangrove litter, and marine OM. The humification indices do not vary significantly with depth because of rapid OM turnover. The bulk parameters indicate that the Vellar and Coleroon Estuaries are more affected by anthropogenic processes than mangrove forests. Finally, greater variability and sometimes lack of specific trends in bulk parameters implies that the 2004 tsunami caused extensive mixing in sediments.  相似文献   

13.
Mesozoic granitoid plutons in the southern Death Valley region of southeastern California reveal substantial compositional and isotopic diversity for Mesozoic magmatism in the southwestern US Cordillera. Jurassic plutons of the region are mainly calc-alkaline mafic granodiorites with )Ndi of -5 to -16, 87Sr/86Sri of 0.707-0.726, and 206Pb/204Pbi of 17.5-20.0. Cretaceous granitoids of the region are mainly monzogranites with )Ndi of -6 to -19, 87Sr/86Sri of 0.707-0.723, and 206Pb/204Pbi of 17.4-18.6. The granitoids were generated by mixing of mantle-derived mafic melts and pre-existing crust - some of the Cretaceous plutons represent melting of Paleoproterozoic crust that, in the southern Death Valley region, is exceptionally heterogeneous. A Cretaceous gabbro on the southern flank of the region has an unusually juvenile composition ()Ndi -3.2, 87Sr/86Sri 0.7060). Geographic position of the Mesozoic plutons and comparison with Cordilleran plutonism in the Mojave Desert show that the Precambrian lithosphere (craton margin) in the eastern Mojave Desert region may consists of two crustal blocks separated by a more juvenile terrane.  相似文献   

14.
This paper assesses the role of airborne pollution and natural geological sources for lead enrichment in lake sediments and in surface soils of boreal forests. This assessment is based on analyses of stable lead isotopes (206Pb and 207Pb) and lead concentrations in sediment cores (>30 lakes), ombrotrophic peat and soil samples in Sweden. The 206Pb/207Pb ratio and concentration profiles in the sediment cores change synchronously over the last 3,000 years in different lakes, temporal concentration changes in sediments and peat deposits are very consistent, and these temporal concentration changes coincide well with the history of lead production in Europe. The 206Pb/207Pb ratio is almost the same in all soil mor samples (1.152ǂ.009; n=94), and similar to values recorded in aerosols, despite very high and different 206Pb/207Pb ratio of the mineral soil in the C-horizon (1.3-1.7). This study provides evidence that lead enrichment in recent sediments and peat, and in the mor layer are caused by deposition of pollution lead and not natural processes.  相似文献   

15.
Stable carbon isotope ratios in the organic fraction of surface sediments from the Laptev Sea shelf were analyzed in order to study the modern distribution pattern of terrestrial organic matter. The '13Corg signature of the surface sediments range from -26.6‰ near the coastal margin to -22.8‰ in the north towards the outer shelf. Characterizing the possible sources of organic matter by their '13Corg signature reveals that the terrestrial influence reaches further north in the eastern than in the western Laptev Sea. Downcore records of the '13Corg, measured on three AMS 14C-dated cores from water depths between 46 and 77 m, specify the spatial and temporal changes in the deposition of terrestrial organic matter on the Laptev Sea shelf during the past 12.7 ka. The major depositional changes of terrestrial organic matter occurred between 11 and 7 ka and comprised the main phase of the southward retreat of the coastline and of the river depocenters due to the postglacial sea level rise.  相似文献   

16.
End member boromuscovite, with nearly the ideal composition, was synthesized as a single phase from mixtures of its own composition, or with excess boron and water, at high pressures of between 15 and 30 kbar at 700 °C. The mica synthesized consists of a mixture of 2M1 and 1M polytypes with the cell dimensions of 2M1: a=5.071(4), b=8.786(4), c=19.830(89) Å, #=95.84(12)°, V=878.5(1.4) Å3; and 1M: a=5.059(5), b=8.819(6), c=10.025(17) Å, #=101.39(57)°, V=438.4(1.3) Å. The IR spectrum shows characteristic differences relative to that of muscovite. DTA registers an endothermic peak due to dehydration breakdown above 680 °C. Seeded experiments indicate that boromuscovite is a high-pressure phase requiring minimum pressures of 3 to 10 kbar at temperatures that concomitantly increase from 300 to 750 °C. At lower pressures, the anhydrous solid assemblage K-feldspar + Al-borate (probably Al4B2O9) coexists with a vapor rich in boric acid. The conversion of this assemblage to boromuscovite is connected with increases in the coordination number of B from [3] to [4], and of Al from [4] to [6]. Above 10 kbar, the boromuscovite stability field is limited along its high-temperature side by congruent (or incongruent?) melting of the mica, starting near 750 °C and 10 kbar and increasing to about 900 °C at 50 kbar, although, at such very high pressures a supercritical fluid may be present. Because, even in the presence of excess-boron fluid, the synthetic mica shows invariable X-ray properties, it is concluded that one B atom per formula unit represents the maximum, and - contrary to olenitic tourmalines - no further substitution of Si by B linked with addition of hydrogen takes place. In contrast to muscovite, KAl2[AlSi3O10](OH)2, end member boromuscovite is not stable under normal P-T conditions of the Continental Crust along a 30 °C/km geotherm, and especially not during the intrusion of acidic igneous rocks including their pegmatites, which may explain its scarcity in nature. However, it may form in the waning hydrothermal stages of deep-seated (>10.5 km) pegmatites and - providing sufficient boron is available - in HP/LT subduction zone environments, where it may carry boron to considerable depths.  相似文献   

17.
The Mattaponi River is part of the York River estuary in Chesapeake Bay. Our objective was to identify the organic matter (OM) sources fueling the lower food web in the tidal freshwater and oligohaline portions of the Mattaponi using the stable isotopes of carbon (C) and nitrogen (N). Over 3 years (2002–2004), we measured zooplankton densities and C and N stable isotope ratios during the spring zooplankton bloom. The river was characterized by a May–June zooplankton bloom numerically dominated by the calanoid copepod Eurytemora affinis and cladocera Bosmina freyi. Cluster analysis of the stable isotope data identified four distinct signatures within the lower food web: freshwater riverine, brackish water, benthic, and terrestrial. The stable isotope signatures of pelagic zooplankton, including E. affinis and B. freyi, were consistent with reliance on a mix of autochthonous and allochthonous OM, including OM derived from vascular plants and humic-rich sediments, whereas macroinvertebrates consistently utilized allochthonous OM. Based on a dual-isotope mixing model, reliance on autochthonous OM by pelagic zooplankton ranged from 20% to 95% of production, declining exponentially with increasing river discharge. The results imply that discharge plays an important role in regulating the energy sources utilized by pelagic zooplankton in the upper estuary. We hypothesize that this is so because during high discharge, particulate organic C loading to the upper estuary increased and phytoplankton biomass decreased, thereby decreasing phytoplankton availability to the food web.  相似文献   

18.
Freshwater chlorophycean algae are characteristic organic-walled microfossils in recent coastal and shelf sediments from the Beaufort, Laptev and Kara seas (Arctic Ocean). The persistent occurrence of the chlorophycean algae Pediastrum spp. and Botryococcus cf. braunii in marine palynomorph assemblages is related to the discharge of freshwater and suspended matter from the large Siberian and North American rivers into the Arctic shelf seas. The distribution patterns of these algae in the marine environments reflect the predominant deposition of riverine sediments and organic matter along the salinity gradient from the outer estuaries and prodeltas to the shelf break. Sedimentary processes overprint the primary distribution of these algae. Resuspension of sediments by waves and bottom currents may transport sediments in the bottom nepheloid layer along the submarine channels to the shelf break. Bottom sediments and microfossils may be incorporated into sea ice during freeze-up in autumn and winter leading to an export from the shelves into the deep sea. The presence of these freshwater algae in sea-ice and bottom sediments in the central Arctic Ocean confirm that transport in sea ice is an important process which leads to a redistribution of shallow water microfossils.  相似文献   

19.
Several types of anhydrite-bearing rocks have been found in the amphibolite-facies metamorphosed rocks at the north-eastern margin of the Moldanubian Zone. Anhydrite either forms monomineralic bands up to 40 cm thick, or occurs in the form of disseminated grains in surrounding calc-silicate gneiss together with feldspar, scapolite, amphibole, pyroxene, epidote and pyrite. The isotopic composition of sulphur ('34S=30.6 to 32.3‰) and strontium (87Sr/86Sr=0.70797 to 0.70781) in anhydrite may indicate a marine source of sulphate. The isotopic ratio of strontium is in the same range as that of metamorphosed strata-bound barite-sulphide ores, which have been previously described in the same area. The '34S values of coexisting pyrite range from 21.4 to 22.5‰, the (34Sanhydrite-pyrite corresponding to the metamorphic temperature of 600 to 660 °C. In contrast to many submarine-exhalative deposits, the oxygen isotopic compositions of anhydrite ('18O=9.3 to 10.2‰) are lighter than that of barite ('18O=10.4 to 13.8‰). This indicates that the both minerals are not in isotopic equilibrium. Therefore, it is probable that anhydrite and barite from the Ro—ná district were deposited from fluids that contained different proportions of seawater and hydrothermal fluids or from hydrothermal fluids that underwent variable extent of oxygen isotope exchange with seafloor rocks. The '13C values in calcite ('13C=-17.2 to -18.7‰) from anhydrite-bearing rock are lower than those in distant marbles. As graphite is absent in anhydrite- and calcite-bearing rocks, impoverishment in the 13C isotope cannot be attributed to the graphite-carbonate isotopic exchange during metamorphism. It is proposed that low '13C values in carbonates are caused by pre-metamorphic oxidation of organic matter in course of hydrothermal processes. Anhydrite and anhydrite-bearing calc-silicate gneiss from the north-eastern part of the Moldanubian Zone are interpreted to be the high-grade metamorphosed analogue of anhydrite-rich exhalites commonly found in submarine-exhalative hydrothermal deposits.  相似文献   

20.
Sixty low-magnesium-calcite samples from Cenomanian articulate brachiopods, belemnites and oysters from the epicontinental shelf sea of Europe were geochemically and microscopically studied in order to evaluate their preservation and potential as carriers of palaeoenvironmental information. The sampled localities in northern Spain, Germany and southern England cover the transition between subtropical (25-30°N) and temperate (33-38°N) climates. Mean Cenomanian salinity-adjusted palaeotemperatures of diagenetically unaltered terebratulid and rhynchonellid brachiopods are 25.5ǃ.3 °C in Spain and 19.4ǃ.9 °C in southern England. The resulting low-to-mid-latitude meridional temperature gradient of ~0.7 °C per degree latitude is similar to the gradient today and suggests modern heat transport values for Cenomanian low latitudes. Oxygen isotopic composition of unaltered specimens of the Upper Cenomanian belemnite Praeactinocamax plenus (mean: 0.2‰) is enriched in 18O by 1‰ in comparison to brachiopod shells. Correspondingly, Upper Cenomanian palaeotemperatures derived from belemnite calcite (~13.0ǃ.3 °C) underestimate modelled mid-latitude sea surface temperatures by ~6 °C. Since P. plenus occurs as Boreal pulse fauna during a short interval in the Late Cenomanian, its heavy oxygen isotopic composition can be attributed either to migration from a cooler and/or deeper water mass or to unknown vital effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号