共查询到20条相似文献,搜索用时 10 毫秒
1.
Mesozoic high-K granitic rocks from the eastern Dabie Mountains, Central China and their geological implications 总被引:9,自引:0,他引:9
The Mesozoic high-K granitic intrusions from the eastern Dabie Mountains, Central China, can be divided into three superunits
namely the Yaohe, Penghe and Huangbai superunits. The Yaohe superunit is compositionally dominated by quartz monzonite extending
as a band in NW direction which is differently foliated, contains numerous dioritic enclaves and has been dated as 174 Ma.
The Penghe superunit, widely distributed in the field, varies in composition but is dominated by quartz monzonitic and granitic
rocks, which is massive in structure, has well developed with dioritic enclaves and is aged in 125-127 Ma. The Huangbai superunit
is mainly composed of granitic composition which is massive in structure, rarely contains dioritic enclaves and is aged in
120-111 Ma. These three superunits of granitic intrusions can also be clearly distinguished in geochemistry. They have recorded
an orogenic process of the Dabie Mountains from the end of regional metamorphism to the overprinting of the circum-Pacific
tectonic regime. 相似文献
2.
Mesozoic basin-fill records in south foot of the Dabie Mountains: Implication for Dabie Orogenic attributes 总被引:4,自引:0,他引:4
For the Triassic continental collision, subduction and orogenesis in the Dabie-Sulu belt, a lot of data on petrology, geochemistry and chronology have been published[1]. However, so far no depositional records on the Triassic syn-collisional orogenesis of… 相似文献
3.
The occurrence of ultrahigh pressure (UHP) minerals, such as coesite and diamond in crustal rocks in orogenic belts suggests that a huge amount of continental crust can be subducted to man-tle depth during the continental-continental collision[1—6]. This… 相似文献
4.
Early Cretaceous uplift history of the Dabie orogenic belt: Evidence from pluton emplacement depths 总被引:1,自引:0,他引:1
The North Dabie complex unit(NDC)is a widely exposed petro-tectonic unit.To understand post-orogenic uplift history and mechanism of the Dabie orogenic belt,many samples of granite,granodiorite,diorite,and alkali feldspar granite with precise zircon U-Pb ages were collected for electron microprobe analysis of hornblende.Emplacement pressure values were then calculated by using an Al-in-hornblende geobarometer.The result shows that total Al(AlT)values in hornblende range from 1.17to 1.97 p.f.u.,XFe(=Fe/(Fe+Mg))from 0.4 to 0.65,and corresponding pressure values from 256.8 to 676.2 MPa for AlT greater than 1.17.It is suggested that although the main mechanism for the uplift is tectonic extension,inhomogeneous uplift related to the pluton emplacement is also important during post-orogenic evolution of the Dabie orogenic belt.Emplacement depth distribution of the plutons shows that uplift in the NDC is affected by horst-graben structures since 120 Ma. 相似文献
5.
Differential exhumation of tectonic units and ultrahigh-pressure metamorphic rocks in the Dabie Mountains, China 总被引:9,自引:0,他引:9
A model involving buoyancy, wedging and thermal doming is postulated to explain the differential exhumation of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie Mountains, China, with an emphasis on the exhumation of the UHP rocks from the base of the crust to the upper crust by opposite wedging of the North China Block (NCB). The Yangtze Block was subducted northward under the NCB and Northern Dabie microblock, forming UHP metamorphic rocks in the Triassic (240–220 Ma). After delamination of the subduction wedge, the UHP rocks were exhumed rapidly to the base of the crust by buoyancy (220–200 Ma). Subsequently, when the left-lateral Tan–Lu transform fault began to be activated, continuous north–south compression and uplifting of the orogen forced the NCB to be subducted southward under the Dabie Orogen (`opposite subduction'). Opposite subduction and wedging of the North China continental crust is responsible for the rapid exhumation of the UHP and South Dabie Block units during the Early Jurassic, at ca 200–180 Ma at a rate of ∼ 3.0 mm/year. The UHP eclogite suffered retrograde metamorphism to greenschist facies. Rapid exhumation of the North Dabie Block (NDB) occurred during 135–120 Ma because of thermal doming and granitoid formation during extension of continental margin of the Eurasia. Amphibolite facies rocks from NDB suffered retrograde metamorphism to greenschist facies. Different unit(s) and terrane(s) were welded together by granites and the wedging ceased. Since 120–110 Ma, slow uplift of the entire Dabie terrane is caused by gravitational equilibrium. 相似文献
6.
Previous studies of weathering generally started with geochemistry[1—8] and mineralogy[9—12], and have been focused on chemical weathering rates[1—3], removability-enrichment of elements[3—6] during chemical weathering, and the age of weathering profi… 相似文献
7.
大别山北缘位于大别造山带与华北陆块会聚地带,其深部精细结构还存在一些争议问题.根据近年来在研究区域内采集的地球物理数据,通过OMEGA、OASIS和FUGRO-LCT等多个重磁电震软件处理,获得了深部信息丰富的多种地球物理属性图像.本文从中选取了2条平行的电法和地震剖面,辅以高精度重磁数据,揭示了大别山北缘深部地质结构总体呈现华北陆块南向俯冲、北淮阳构造带向北逆冲的特征,并可清楚地识别大别山北缘造山带、肥南山前坳陷带和肥北斜坡带.其特征分别如下:①大别山北缘造山带,地震反射杂乱,电性高阻大于2000Ωm,以磨子潭-晓天断裂为界分为北大别杂岩带和北淮阳构造带,主要由大别群、卢镇关杂岩和佛子岭群组成,沿舒城-信阳断裂逆冲于中、下侏罗统之上,浅部发育北倾的金寨-龙门冲滑覆断裂.②肥南山前坳陷带,上部为中、新生界,呈现中低阻特征,地震反射界面清楚,断面波明显;下部为华北型前中生界沉积岩(上部可能残存古生界),电性特征为低阻(5~50 Ωm),地震反射较连续,内部反射弱.以六安断裂为界分为舒城凹陷和肥中断裂带,其北侧边界为肥中断裂.③肥北斜坡带,上部主要为侏罗系,呈现中低阻、水平层状地震反射特征;下部主要为霍邱群,电性为高阻,地震反射杂乱;中间为华北型前中生界沉积岩,向北逐渐减薄、直至缺失.上述认识将为华北陆块南向俯冲、南北板块碰撞缝合线和油气资源勘查等研究提供深部地质约束. 相似文献
8.
The Pleistocene Ashigara Basin and adjacent Tanzawa Mountains, Izu collision zone, central Japan, are examined to better understand the development of an arc–arc orogeny, where the Izu–Bonin – Mariana (IBM) arc collides with the Honshu Arc. Three tectonic phases were identified based on the geohistory of the Ashigara Basin and the denudation history of the Tanzawa Mountains. In phase I, the IBM arc collided with the Honshu Arc along the Kannawa Fault. The Ashigara Basin formed as a trench basin, filled mainly by thin-bedded turbidites derived from the Tanzawa Mountains together with pyroclastics. The Ashigara Basin subsided at a rate of 1.7 mm/year, and the denudation rate of the Tanzawa Mountains was 1.1 mm/year. The onset of Ashigara Basin Formation is likely to be older than 2.2 Ma, interpreted as the onset of collision along the Kannawa Fault. Significant tectonic disruption due to the arc–arc collision took place in phase II, ranging from 1.1 to 0.7 Ma in age. The Ashigara Basin subsided abruptly (4.6 mm/year) and the accumulation rate increased to approximately 10 times that of phase I. Simultaneously, the Tanzawa Mountains were abruptly uplifted. A tremendous volume of coarse-grained detritus was provided from the Tanzawa Mountains and deposited in the Ashigara Basin as a slope-type fan delta. In phase III, 0.7–0.5 Ma, the entire Ashigara Basin was uplifted at a rate of 3.6 mm/year. This uplift was most likely caused by isostatic rebound resulting from stacking of IBM arc crust along the Kannawa Fault which is not active as the decollement fault by this time. The evolution of the Ashigara Basin and adjacent Tanzawa Mountains shows a series of the development of the arc–arc collision; from the subduction of the IBM arc beneath the Honshu Arc to the accretion of IBM arc crust onto Honshu. Arc–arc collision is not the collision between the hard crusts (massif) like a continent–continent collision, but crustal stacking of the subducting IBM arc beneath the Honshu Arc intercalated with very thick trench fill deposits. 相似文献
9.
Hydrogen and oxygen isotope compositions of eclogites from the Dabie Mountains and geodynamic implications 总被引:3,自引:0,他引:3
Heterogeneous δ18O values as low as - 2.6‰ to+7.0% are observed for ultrahigh pressure eclogites from the Dabie Mountains in East China. Oxygen
isotope equilibrium has been approached between the eclogite minerals, suggesting that the rocks would have acquired the unusual
δ18O values prior to ultrahigh pressure metamorphism by interaction with18O-depleted fluid. δD values of hydroxyl-bearing are between — 51% and - 83‰, precluding the possibility of paleoseawater involvement.
The only likely fluid is ancient meteoric water that exchanged oxygen isotopes with the eclogite precursor (a kind of basaltic
rocks) formerly resident on the continental crust. This suggests a crustal recycling process in the suture zone of late subduction.
Because silicate minerals undergo rapid oxygen isotope exchange at mantle pressures, preservation of the isotopic signature
of meteoric water in the eclogites indicates limited crust-mantle interaction and thus a short residence time (<20 Ma) when
the plate containing the eclogite precursor was subducted to mantle depths. The agreement in oxygen isotope temperatures for
different mineral pairs suggests a rapid cooling and ascent process for the eclogites subsequent to their formation at mantle
depths.
Project supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences. 相似文献
10.
A broadband seismic array of 7 stations was set up in the western Dabie Mountains (31°20′-31°50′N, 114°30′-115°E). Teleseismic events from May 2001 to November 2001 were collected and analyzed by radial receiver function to determine the S-wave velocity structure of the crust and uppermost mantle. The crustal thickness is 32-38 km beneath the array. The crust-mantle boundary appears as a gently north-dipping velocity discontinuity, but turns to be a velocity gradient beneath a station near the Qiliping shea... 相似文献
11.
Geochronological studies of mafic-ultramafic intrusions occurrence in the northern Dabie zone (NDZ) suggest that these pyroxenite-gabbro intrusions formed 120—130 Ma ago should be post-collisional magmatic rocks[1—4]. These mafic-ultramafic rocks provid… 相似文献
12.
HU Jian QIU JianSheng XU XiSheng WANG XiaoLei & LI Zhen State Key Laboratory for Mineral Deposits Research Nanjing University Nanjing China 《中国科学:地球科学(英文版)》2010,(4)
The gneissic metagranites with Neoproterozoic protolith ages are widely exposed along the eastern margin of the Dabie ultra-high-pressure(UHP) metamorphic belt.In this paper,five representative plutons,including Huangzhen,Daba,Shima,Shuanghe,and Sanzusi,were selected for a detailed chronological and geochemical study aiming to identify the nature of the protoliths and to reveal their implications for the Neoproterozoic tectono-magmatic evolution along the northeastern margin of the Yangtze Block.These gneissic metagranites consist mainly of quartz,albite(oligoclase) and K-feldspar,and minor amphibole and biotite,as well as some metamorphic minerals due to the UHP metamorphism,such as phengite,epidote and minor kyanite and garnet.Mafic alkaline minerals(e.g.,aegirine or aegirine-augite) have been observed in some of these plutons.Zircon LA-ICP-MS U-Pb dating results indicate that the protoliths of the gneissic metagranites have been generated in Mid-Neoproterozoic(770-780 Ma),and suffered both ultrahigh-pressure metamorphism in Early Mesozoic and subsequently high-pressure eclogite-facies recrystallization at about 215 Ma.Although the gneissic metagranites generally have high SiO2 contents(70.23%-77.23%) and show metaluminous-weakly peraluminous signatures(ASI=0.90-1.05),there are still some geochemical variances between different plutons.Compared with the Sanzusi pluton,the metagranites from the Huangzhen,Daba,Shima,and Shuanghe have high K2O+Na2O contents(7.76%-9.45%),FeOtotal/(FeOtotal+MgO) ratios(0.82-0.96),HFSEs and Ga concentrations with an average 104×Ga/Al ratio up to 3.07.Combined with the features that the four plutons commonly contain aegirine-augite and have high zircon saturation temperatures(816-918°C),it is suggested that their proto-liths belong to peralkaline A-type granites.The Sanzusi pluton generally contains biotite and epidote generated from metamorphic reaction of amphibole,and is chemically enriched in calcium and depleted in potassium with K2O/Na2O ratios ranging from 0.42 to 0.54,suggesting their protoliths should be ascribed to calc-alkaline granitoids(I-type).The gneissic metagranites in the eastern margin of Dabie Mountains show both arc-and rift-like geochemical signatures,and their protoliths likely have been generated by reworking of the preexisting arc-related crust under an extensional setting,suggesting that the northeastern margin of the Yangtze Block during the Middle Neoproterozoic likely have been under the initial stage of a passive rifting rather than in an active rifting setting typically induced by the upwelling of a mantle plume. 相似文献
13.
The existence and subduction of the eastern Mianlue oceanic basin in the south Qinling belt are keys to understand the Qinling orogen. Based on geological mapping, several volcanic slices have been identified in Tumen, Zhoujiawan, Xiaofu and Yuantan areas, which distribute in the northern margin of the Dahong Mountains (DHM), and thrust into the Sanligang-Sanyang fault. These slices consist mainly of diabases, basaltic-andesitic lavas, pyroclastic rocks and a minor tuff. The geochemistry of the basalts, andesites, and diabases is characterized by depleting in Nb and Ta, enriching in Th and LILE (e.g.K, Rb, Ba), and undifferentiating in HFSE. These geochemical characteristics suggest that the original magma of these rocks was derived from a mantle wedge above a subduction zone, and formed in an island-arc setting in Carboniferous-early Triassic. Comparing with the ophiolites and island-arc volcanic rocks in Mianxian-Lueyang area to the west, it is reasonable to consider that there had been an oceanic basin connecting with the Mianlue ancient ocean to the westward, distributing along the south edge of the Tongbai-Dabie block. In view of the ophiolite in Huashan area and these island-arc volcanic rocks along the north of the Dahong Mountains, it is suggested that there had been a plate tectonic evolutionary history with oceanic basin rifting and subduction in this region. 相似文献
14.
Abstract We present chemical and Sr–Nd–Pb isotopic compositions of three Triassic (226–241 Ma) calc‐alkaline granitoids (the Yeongdeok granite, Yeonghae diorite and Cheongsong granodiorite) and basement rocks in the northern Gyeongsang basin, south‐eastern Korea. These plutons exhibit typical geochemical characteristics of I‐type granitoids generated in a continental magmatic arc. The Yeongdeok and Yeonghae plutons have similar initial Sr, Nd and Pb isotope ratios (87Sr/86Srinitial = 0.7041 ~ 0.7050, ?Nd(t) = 2.3 ~ 4.0, 206Pb/204Pbfeldspar = 18.22 ~ 18.34), but distinct rare earth element patterns, suggesting that the two plutons formed from partial melting of a similar source material at different depths. The Cheongsong pluton has slightly more enriched Sr–Nd–Pb isotopic compositions (87Sr/86Srinitial = 0.7047 ~ 0.7065, ?Nd(t) = 3.9 ~ 2.8, 206Pb/204Pbfeldspar = 18.24 ~ 18.37) than the other two plutons. The Nd model ages of the basement rocks (1.1 ~ 1.4 Ga) are slightly older than those of the plutons (0.6 ~ 1.0 Ga). The initial Sr and Nd isotopic ratios of the plutons can be modeled by the mixing between the mid‐oceanic ridge basalt‐like depleted mantle component and the crustal component represented by basement rocks, which is also supported by Pb isotope data. The Sr and Nd isotope data from granitoids and basement rocks suggest that the Gyeongsang basin, the Hida belt and the inner zone of south‐western Japan share relatively young basement histories (middle Proterozoic), compared with those (early Proterozoic to Archean) of the Gyeonggi and Yeongnam massifs and the Okcheon belt. The Nd isotope data of basement rocks suggest that the Hida belt might be better correlated with the basement of the Gyeongsang basin than the Gyeonggi massif, the Okcheon belt or the Yeongnam massif, although it may represent an older continental margin of East Asia than the Gyeongsang basin considering its slightly older Nd model ages. 相似文献
15.
浮游动物作为食物链中重要的初级消费者,其群落结构特征是水生态系统健康评价的重要指标之一.本研究于2017年秋季和2018年春季对渭河干流及秦岭北麓五条典型支流开展了系统的水环境及浮游动物群落调查.结果表明,渭河干流营养盐浓度整体高于秦岭北麓支流,干流浊度远高于支流.两次调查共鉴定出浮游动物种类数136种(原生动物65种,轮虫44种,枝角类15种,桡足类12种),其中2017年秋季渭河干流浮游动物种类数、密度和生物量分别为14种、9.02 ind./L和0.0051 mg/L,秦岭北麓支流为37种、42.78 ind./L和0.0229 mg/L;2018年春季渭河干流浮游动物种类数、密度和生物量分别为52种、292.89 ind./L和0.1734 mg/L,秦岭北麓支流为68种、70.15 ind./L和0.0508 mg/L.秋季渭河干流下游浮游动物种类数、密度和生物量最低,而春季随上、中、下游三者均依次增大;秋季秦岭支流中罗敷河浮游动物密度和生物量最高,而春季灞河最高.春、秋两季干支流间浮游动物优势种差异较小,但秋季优势种种类数少于春季.秋季渭河干流中游Shannon-Wiene... 相似文献
16.
Assessing tectonic and climatic causal mechanisms in foreland‐basin stratal architecture: insights from the Alborz Mountains,northern Iran 下载免费PDF全文
The southern foreland basin of the Alborz Mountains of northern Iran is characterized by an approximately 7.3‐km‐thick sequence of Miocene sedimentary rocks, constituting three basin‐wde coarsening‐upward units spanning a period of 106 years. We assess available magnetostratigraphy, paleoclimatic reconstructions, stratal architecture, records of depositional environments, and sediment‐provenance data to characterize the relationships between tectonically‐generated accommodation space (A) and sediment supply (S). Our analysis allows an inversion of the stratigraphy for particular forcing mechanisms, documenting causal relationships, and providing a basis to decipher the relative contributions of tectonics and climate (inferred changes in precipitation) in controlling sediment supply to the foreland basin. Specifically, A/S > 1, typical of each basal unit (17.5–16.0, 13.8–13.1 and 10.3–9.6 Ma), is associated with sharp facies retrogradation and reflects substantial tectonic subsidence. Within these time intervals, arid climatic conditions, changes in sediment provenance, and accelerated exhumation in the orogen suggest that sediment supply was most likely driven by high uplift rates. Conversely, A/S < 1 (13.8 and 13.8–11 Ma, units 1, and 2) reflects facies progradation during a sharp decline in tectonic subsidence caused by localized intra‐basinal uplift. During these time intervals, climate continued to be arid and exhumation active, suggesting that sediment supply was again controlled by tectonics. A/S < 1, at 11–10.3 Ma and 9‐6–7.6 Ma (and possibly 6.2; top of units 2 and 3), is also associated with two episodes of extensive progradation, but during wetter phases. The first episode appears to have been linked to a pulse in sediment supply driven by an increase in precipitation. The second episode reflects a balance between a climatically‐induced increase in sediment supply and a reduction of subsidence through the incorporation of the proximal foreland into the orogenic wedge. This in turn caused an expansion of the catchment and a consequent further increase in sediment supply. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
Changqun Cao Wei Wang Lujun Liu Shuzhong Shen Roger E. Summons 《Earth and Planetary Science Letters》2008,270(3-4):251-257
New analyses reveal two intervals of distinctly lower δ13C values in the terrestrial organic matter of Permian–Triassic sequences in northern Xinjiang, China. The younger negative δ13Corg spike can be correlated to the conspicuous and sharp δ13C drops both in carbonate carbon and organic carbon near the Permian–Triassic event boundary (PTEB) in the marine section at Meishan. The geochemical correlation criteria are accompanied by a magnetic susceptibility pulse and higher abundances of distinctive, chain-like organic fossil remains of Reduviasporonites.The older negative δ13Corg spike originates within a latest Permian regression. Significant changes in organic geochemical proxies are recorded in the equivalent interval of the marine section at Meishan. These include relatively higher concentrations of total organic carbon, isorenieratane, C14–C30 aryl isoprenoids and lower ratios of pristane/phytane that, together, indicate the onset of anoxic, euxinic and restricted environments within the photic zone. The massive and widespread oxidation of buried organic matter that induced these euxinic conditions in the ocean would also result in increased concentrations of 13C-depleted atmospheric CO2. The latest Permian environmental stress marked by the older negative δ13Corg episode can be correlated with the distinct changeover of ostracod assemblages and the occurrences of morphological abnormalities of pollen grains. These observations imply that biogeochemical disturbance was manifested on the land at the end of the Permian and that terrestrial organisms responded to it before the main extinction of the marine fauna. 相似文献
18.
Petrological modeling is a powerful technique to address different types of geological problems via phase-equilibria predictions at different pressure–temperature-composition conditions. Here, we show the versatility of this technique by (1) performing thermobarometrical calculations using phase equilibrium diagrams to explore the petrological evolution of high-pressure (HP) metabasites from the Renge and Sanbagawa belts, Japan and (2) forward-modeling the mineral–melt evolution of the subducted fresh and altered oceanic crust along the Nankai subduction zone geotherm at the Kii peninsula, Japan. In the first case, we selected three representative samples from these metamorphic belts: a glaucophane eclogite and a garnet glaucophane schist from the Renge belt (Omi area) and a quartz eclogite from the Sanbagawa belt (Besshi area). We calculated the peak metamorphic conditions at ~2.0–2.3 GPa and ~550–630 °C for the HP metabasites from the Renge belt, whereas for the quartz eclogite, the peak equilibrium conditions were calculated at 2.5–2.8 GPa and ~640–750 °C. According to our models, the quartz eclogite experienced partial melting after peak metamorphism. In terms of the petrological evolution of the subducted uppermost portion of the oceanic crust along the warm Nankai geotherm, our models show that fluid release occurs at ~20–60 km, likely promoting high pore-fluid pressure, and thus, seismicity at these depths; dehydration is controlled by chlorite breakdown. Our petrological models predict partial melting at >60 km, mainly driven by phengite and amphibole breakdown. According to our models, the melt proportion is relatively small, suggesting that slab anatexis is not an efficient mechanism for generating voluminous magmatism at these conditions. Modeled melt compositions correspond to high-SiO2 adakites; these are similar to compositions found in the Daisen and Sambe volcanoes, in southwest Japan, suggesting that the modeled melts may serve as an analog to explain adakite petrogenesis. 相似文献
19.
Abstract The Southern Uralides are a collisional orogen generated in the Late Devonian–Early Carboniferous by the collision of the Magnitogorsk island arc (MA) generated in the Early to Middle Devonian by intra‐oceanic convergence opposite to the continental margin, and the continental margin of the East European craton. A suture zone of the arc to the continental margin, the Main Uralian Fault (MUF), is marked by ophiolites and exhumed high‐pressure–low‐temperature metamorphic rocks of continental origin. The pre‐orogenic events of the Southern Urals and their geodynamic setting are traced by means of fluid‐immobile incompatible trace elements (rare earth elements and high field strength elements) and Sr–Nd–Pb isotope geochemistry of the MA suites, in particular the protoarc suite with boninites and probably ankaramites, and the mature arc comprised of island arc tholeiitic (IAT) suites, transitional IAT to calc‐alkaline (CA), and CA suites. The MA volcanics result in genetically distinct magmatic source components. In particular, depleted normal‐mid‐oceanic ridge basalt‐type mantle sources with various enrichments in a slab‐derived aqueous fluid component are evident. The enriched component is not involved in significant amounts, as testified by the rather radiogenic Nd isotopes and unradiogenic Pb isotopes. Further information on the pre‐orogenic events is provided by the Mindyak Massif metagabbros derived from diverse gabbroic protoliths that were affected by oceanic rodingitization, and subsequently by a high‐temperature (HT) metamorphism related to the development of a metamorphic sole. The HT metamorphism has the same age as the protoarc volcanism, and constrains the initiation of subduction at approximately 410 Ma. Consequently, the maximum timespan between initial intra‐oceanic convergence and final collision is approximately 31 my, a duration consistent with that of present‐day ongoing collisions in the western Pacific. The characteristics of early volcanism and the traces of a metamorphic sole provide useful criteria to attribute most MUF ophiolites to the Tethyan type with a complex pre‐orogenic evolution. 相似文献
20.
Haixiang Zhang Hecai Niu Hiroaki Sato Xueyuan Yu Qiang Shan Boyou Zhang Jun'ichi Ito Takashi Nagao 《Island Arc》2005,14(1):55-68
Abstract Volcanic rocks consisting of adakite and Nb-enriched basalt are found in the early Devonian Tuoranggekuduke Group in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, northwest China. The geochemical characteristics of the andesitic and dacitic rocks in this area resemble that of adakites. The relatively high Al2 O3 , Na2 O and MgO content and Mg♯ values indicate that the adakites were generated in relation to oceanic slab subduction rather than the partial melting of basaltic crust. A slightly higher SrI and a lower ɛ Nd ( t = 375 Ma) compared to adakites of mid-oceanic ridge basalt (MORB) imply that slab sediments were incorporated into these adakites during slab melting. The Nb-enriched basalt lavas, which are intercalated in adakite lava suite, are silica saturated and are distinguished from the typical arc basalts by their higher Nb and Ti content (high field strength element enrichment). They are derived from the partial melting of the slab melt-metasomatized mantle wedge peridotite. Apparently, positive Sr anomalies and a slightly higher heavy rare earth element content in these adakites compared to their Cenozoic counterparts indicate that the geothermal gradient in the Paleo-Asian Oceanic subduction zone and the depth of the Paleo-Asian Oceanic slab melting are between those of their Archean and Cenozoic counterparts. The distribution of the adakites and Nb-enriched basalts in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, indicates that the Paleo-Asian Oceanic Plate subducted southward beneath the Kazakhstan-Junggar Plate in the early Devonian period. 相似文献