首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present [N  ii ] and H α images and high-resolution long-slit spectra of the planetary nebula IC 4846, which reveal, for the first time, its complex structure and the existence of collimated outflows. The object consists of a moderately elongated shell, two (and probably three) pairs of collimated bipolar outflows at different orientations, and an attached circular shell. One of the collimated pairs is constituted by two curved, extended filaments the properties of which indicate a high-velocity, bipolar precessing jet. A difference of ≃10 km s−1 is found between the systemic velocity of the precessing jets and the centroid velocity of the nebula, as recently reported for Hu 2-1. We propose that this difference is as a result of orbital motion of the ejection source in a binary central star. The orbital separation of 30 au and period 100 yr estimated for the binary are similar to those in Hu 2-1, linking the central stars of both planetary nebulae to interacting binaries. Extraordinary similarities also exist between IC 4846 and the bewildering planetary nebula NGC 6543, suggesting a similar formation history for both objects.  相似文献   

2.
High-resolution, spatially-resolved profiles of H α , He  ii λ 6560 and [O  iii ] λ 5007 and deep narrow-band CCD images in the H α and [O  iii ] λ 5007 emission lines have been obtained of the planetary nebula (PN) NGC 4361. In addition, VLA-DnC λ 3.6-cm continuum observations are presented. This material allows one to explore in unprecedented detail the morphology and kinematics of this PN. The morphology of this object is complex given the highly filamentary structure of the envelope, which is confirmed to possess a low mass. The halo has a high expansion velocity that yields incompatible kinematic and evolutionary ages, unless previous acceleration of the nebular expansion is considered. However, the most remarkable result from the present observations is the detection of a bipolar outflow in NGC 4361, which is unexpected in a PN with a Population II low-mass-core progenitor. It is shown that shocks resulting from the interaction of the bipolar outflow with the outer shell are able to provide an additional heating source in this nebula.  相似文献   

3.
Narrow-band H α and [N  ii ] images and high-dispersion spatially resolved echelle spectroscopy of the planetary nebula NGC 6891 are presented. These observations show a great wealth of structures. The bright central nebula is surrounded by an attached shell and a detached outer halo. Both the inner and intermediate shells can be described as ellipsoids with similar major to minor axial ratios, but different spatial orientations. The kinematical ages of the intermediate shell and halo are 4800 and 28 000 yr, respectively. The intershell time lapse is in good agreement with the evolutionary interpulse time lapse. A highly collimated outflow is observed to protrude from the tips of the major axis of the inner nebula and impact on the outer edge of the intermediate shell. Kinematics and excitation of this outflow provide conclusive evidence that it is deflected during the interaction with the outer edge of the intermediate shell. At the same time, both the kinematics and the morphology of the intermediate shell appear to be affected by this interaction.  相似文献   

4.
We present high-quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy-element ions. Analysis of the H  i and He  i recombination spectrum yields an electron temperature of ∼900 K, a factor of 10 lower than given by the collisionally excited [O  iii ] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O  ii λ4089/λ4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O  ii ORLs arise from ionized regions with an electron temperature of only ∼630 K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown component of cold, high-metallicity gas, which is too cool to excite any significant optical or ultraviolet CELs and is thus invisible via such lines. The existence of such a plasma component in PNe provides a natural solution to the long-standing dichotomy between nebular plasma diagnostics and abundance determinations using CELs on the one hand and ORLs on the other.  相似文献   

5.
We present Hα, [N  II ]6583 and 6-cm continuum images of the emission line nebula K 3-35. The optical images reveal an extended nebula (size ≃ 11 × 9 arcsec2 in [N  II ]) in which most of the emission originates in a very narrow (width 0.7–1.3 arcsec) S-shaped region which extends almost all along the nebula (≃ 7 arcsec). The 6-cm continuum emission also arises in this narrow region, which is characterized by an exceedingly high point-symmetry and systematic and continuous changes of the orientation with respect to the nebular centre. The properties of the narrow region suggest that it represents a system of precessing bipolar jet-like components. Two low-excitation, compact bipolar knots near the tips of the jet-like components are observed in the deduced [N  II ]/Hα image ratio. These knots may be generated by the interaction of the collimated outflows with surrounding material. A comparison of the optical and radio images shows the existence of differential extinction within the nebula. Maximum extinction is observed in a disc-like region which traces the equator of the elliptical shell previously observed at 20-cm continuum. All available data strongly suggest that K 3-35 is a very young planetary nebula in which we could be observing the first stages of the formation of collimated outflows and point-symmetric structures typically observed in planetary nebulae. The properties of the jet-like components in K 3-35 are in good agreement with models of binary central stars in which highly collimated outflows originate either from a precessing accretion disc or via magnetic collimation in a precessing star.  相似文献   

6.
We study the formation of radially aligned condensations and tails through the compression of material inside ionization shadows at early ionization phases of planetary nebulae. A dense clump, formed before ionization starts, forms an ionization shadow behind it. The surroundings, which are ionized before the shadow, have a higher temperature, and as a result compress the material in the shadow, forming a compressed tail. If the compressed tail crosses a dense shell, a dense condensation (clump) is formed there. At later stages this condensation is ionized and observed as a bright knot, radially aligned with the inner clump. We find that for the shadow to be effective, the clump should be already present as the ionization by the central star starts, and its density enhancement should be by a factor of ≳ 5. We propose this mechanism as an explanation for the radially aligned condensations recently found in the planetary nebula IC 4593.  相似文献   

7.
We present H α , [N  ii ] and [O  iii ] ground-based and HST archive images, VLA–A 3.6-cm continuum and H92 α emission-line data and high-resolution long-slit [N  ii ] spectra of the planetary nebula Hu 2-1. A large number of structural components are identified in the nebula: an outer bipolar and an inner shell, two pairs of collimated bipolar structures at different directions, monopolar bow-shock-like structures, and an extended equatorial structure within a halo. The formation of Hu 2-1 appears to be dominated by anisotropic mass ejection during the late-AGB stage of the progenitor and by variable, 'precessing' collimated bipolar outflows during the protoplanetary nebula and/or early planetary nebula phases. Different observational results strongly support the existence of a binary central star in Hu 2-1, among them (1) the observed point-symmetry of the bipolar lobes and inner shell, and the departures from axial symmetry of the bipolar lobes, (2) the off-centre position of the central star, (3) the detection of mass ejection towards the equatorial plane, and (4) the presence of 'precessing' collimated outflows. In addition, (5) an analysis of the kinematics shows that the systemic velocity of the bipolar outflows does not coincide with the systemic velocity of the bipolar shell. We propose that this velocity difference is a direct evidence of orbital motion of the ejection source in a binary system. From a deduced orbital velocity of ∼10 km s−1, a semimajor axis of ∼ 9–27 au and period of ∼ 25–80 yr are obtained, assuming a reasonable range of masses. These parameters are used to analyse the formation of Hu 2-1 within current scenarios of planetary nebulae with binary central stars.  相似文献   

8.
With the Hamilton echelle spectrograph at the Lick Observatory, emission-rich spectral lines of the planetary nebula NGC 6543 were secured in the wavelength range from 3550 to 10 100 Å. We chose two bright regions, ∼8 arcsec east and ∼13 arcsec north of the central star, the physical conditions and chemical abundances of which may differ as a result of the different physical characteristics involving the mass ejection of different epochs. By combining Hamilton echelle observations with archive UV data secured with the International Ultraviolet Explorer ( IUE ), we obtain improved diagnostics and chemical compositions for the two observed regions. The diagnostic diagram gives the average value of T e=8000∼8300 K, and the electron number density near N e∼5000 cm−3 for most ions, while some low-excitation lines indicate much higher temperatures, i.e. T e∼10 000 K. With the construction of a photoionization model, we try to fit the observed spectra in a self-consistent way: thus, for most elements, we employ the same chemical abundances in the nebular shell; and we adopt an improved Sobolev approximation model atmosphere for the hydrogen-deficient Wolf–Rayet type central star. Within the observational errors, the chemical abundances do not seem to show any positional variation except for helium. The chemical abundances of NGC 6543 appear to be the same as in average planetary nebulae. The progenitor star may have been an object of one solar mass, most of the heavier elements of which were less plentiful than in the Sun.  相似文献   

9.
We have studied the chemistry of the molecular gas in evolved planetary nebulae. Three pseudo-time-dependent gas-phase models have been constructed for dense (104–105 cm−3) and cool ( T ∼15 K) clumpy envelopes of the evolved nebulae NGC 6781, M4-9 and NGC 7293. The three nebulae are modelled as carbon-rich stars evolved from the asymptotic giant branch to the late planetary nebula phase. The clumpy neutral envelopes are subjected to ultraviolet radiation from the central star and X-rays that enhance the rate of ionization in the clumps. With the ionization rate enhanced by four orders of magnitude over that of the ISM, we find that resultant abundances of the species HCN, HNC, HC3N and SiC2 are in good agreement with observations, while those of CN, HCO+, CS and SiO are in rough agreement. The results indicate that molecular species such as CH, CH2, CH2+ , HCl, OH and H2O are anticipated to be highly abundant in these objects.  相似文献   

10.
Flux-calibrated low-resolution spectra covering the optical wavelength range from 3400 to 7500 Å have been obtained over the central region and the surroundings of the extraordinary planetary nebula (PN) KjPn 8 (PNG 112.5-00.1). The spectrum from the core is of low excitation with T e(N  II ) = 8000 K and n e(S  II ) = 550 cm−3. KjPn 8 is found to be a Type I PN according to the original classification scheme of Peimbert & Torres-Peimbert, with enriched He/H and N/O ratios with respect to mean values for PN. Increased O/H, Ne/H and Ar/H ratios over those of average PN reflect the possible metal-rich environment from which the progenitor star formed, and also are similar to those found in the extreme Type I PN He 2-111. The N/H ratio is found to be only moderately high compared to the average PN and consequently, the large O abundance pulls the N/O ratio towards the lower limit of the criterion for Type I planetary nebulae (PNe) in this case. In addition, the spectra of some knots and faint regions in the KjPn 8 surroundings are presented, which show only a few spectral lines. Low electron densities ranging from 100 to 300 cm−3 have been derived in these outer regions.  相似文献   

11.
This paper presents an analysis of a series of spectra in the Red Rectangle nebula. Only the reddest part of the spectra can safely be attributed to light from the nebula, and indicates Rayleigh scattering by the gas, in conformity with the large angles of scattering involved and the proximity of the star. In the blue, light from HD 44179, refracted or scattered in the atmosphere, dominates the spectra. This paper questions the reliability of ground-based broad-band spectra of extended objects in the blue.  相似文献   

12.
Long-slit spectra of high spectral and spatial resolution of the compact planetary nebula Hu 2-1, are presented. The analysis of the [NII] 6583 emission line detected in the spectra allows us to identify the kinematical components present in the nebula and to deduce their basic geometry. We use position-velocity maps of the [NII] 6583/H line intensity ratio in order to identify nebular regions in which shock-excitation and/or overabundace of N exist.  相似文献   

13.
We present ISO observations of A58 and A78. Both objects are suspected to have undergone late He flashes ('born-again' nebulae). With ISOCAM we have been able to obtain data of much higher spatial resolution over the wavelength range 4.5–18 μm than has been possible in the past. In order to extract full information from our data we have developed a method to eliminate residual variations in the dark field. The results for A58 and A78 are compared with literature data and with A30 – the most prominent 'born-again' planetary nebula (PN).  相似文献   

14.
We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and long-slit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Mártir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [N  ii ]λ6584 image of Hb 12. We measured from our spectroscopy radial velocities of  ∼120 km s−1  for these knots.
We have derived the inclination angle of the hourglass-shaped nebular shell to be ∼65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula, then both nebula and binary would be expected to share a common inclination angle.
Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in Hα and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.  相似文献   

15.
The low excitation properties of the planetary nebula (PN) NGC 6720 are known to be unusual, and to imply large ring/core emission ratios. We point out that such characteristics are by no means confined to this source alone, and that high ratios may occur in a large fraction of elliptical and circular PNe. Such trends may arise because of the presence of thin low-excitation emission sheets 'wrapped' within and around the primary outflows. The widths of such shells are required to be exceedingly small, and may (for certain cases) be of order ≪10−2 pc. Such a mechanism appears capable of explaining most of the observed emission properties, and may arise through shock interaction between differing envelopes. Alternative explanations in terms of bipolar or cylindrical outflows are shown to be implausible.  相似文献   

16.
We present high-resolution echelle and long-slit spectra and broad-band ( R , I ) images of the very young planetary nebula K 3-35. Several emission lines are identified, including the He  ii  4686 line and strong [N  ii ]6548, 6583 and [O  iii ]4959, 5007 emissions [ I ([N  ii ])/ I (H α )≃5.5, I ([O  iii ])/ I (H β )≃30]. A systemic velocity V LSR≃10±2 km s−1 for K 3-35 is obtained from the optical emission lines. Two different kinematic components are identified in the nebula. One of them is probably related to the elliptical envelope previously observed. The second component exhibits systematic changes of the radial velocity with position, and a relatively small velocity width. This component may be attributed to the precessing jet-like outflows previously identified. The R and I images and the deduced R − I colour map strongly support the existence of a dense, partially neutral disc-like region in the equatorial plane of the nebula, which probably represents an equatorial density enhancement in a previously ejected slow wind. Diagnostic diagrams for line intensity ratios in K 3-35 and collimated components of other planetary nebulae suggest that the emission spectrum of this kind of structure is a combination of radiative and shock excitation, in agreement with recent models of shocks in a strongly photoionized medium.  相似文献   

17.
We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the angular diameter of the nebula. We also conducted a literature search for physical parameters determined with classical methods for these nebulae. Comparison of the distance-independent physical parameters with published data shows that the stellar temperatures generally are in good agreement and can be considered reliable. The literature data for the electron temperature, electron density and also for the abundances show a large spread, indicating that the use of line diagnostics is not reliable and that the accuracy of these methods needs to be improved. Comparison of the various abundance determinations indicates that the uncertainty in the electron temperature is the main source of uncertainty in the abundance determination. The stellar magnitudes predicted by the photoionization models are in good agreement with observed values.  相似文献   

18.
We explore the possible evolutionary status of the primary component of the binary 85 Pegasi, listed as a target for asteroseismic observations by the MOST satellite. In spite of the assessed 'subdwarf' status, and of the accurate distance determination from the Hipparcos data, the uncertainties in the metallicity and age, coupled with the uncertainty in the theoretical models, lead to a range of predictions on the oscillation frequency spectrum. Nevertheless, the determination of the ratio between the small separation in frequency modes, and the large separation as suggested by Roxburgh, provides a very good measure of the star age, quite independent of the metallicity in the assumed uncertainty range. In this range, the constraint on the dynamical mass and the further constraint provided by the assumption that the maximum age is 14 Gyr limits the mass of 85 Peg A to the range from 0.75 to  0.82 M  . This difference of a few hundredths of a solar mass leads to well detectable differences both in the evolutionary stage (age) and in the asteroseismic properties. We show that the age determination which will be possible through the asteroseismic measurements for this star is independent either of the convection model adopted or the microscopic metal diffusion. The latter conclusion is strengthened by the fact that, although metal diffusion is still described in an approximate way, recent observations suggest that real stars suffer a smaller metal sedimentation compared with the models.  相似文献   

19.
Near-infrared linear imaging polarimetry of the young stellar objects R CrA and T CrA in the J , H and K n bands, and circular imaging polarimetry in the H band, is presented. The data are modelled with the Clark and McCall scattering model. The R CrA and T CrA system is shown to be a particularly complex scattering environment. In the case of R CrA there is evidence that the wavelength dependence of polarization changes across the nebula. MRN dust grain models do not explain this behaviour. Depolarization by line emission is considered as an alternative explanation. The dust grain properties could also be changing across the nebula.
Although surrounded by reflection nebulosity, there is a region of particularly low polarization surrounding R CrA that is best modelled by the canonical bipolar outflow being truncated by an evacuated spherical cavity surrounding the star. The symmetry axis of the nebula appears inclined by 50° to the plane of the sky.
The H -band circular polarimetry of R CrA clearly shows a quadrupolar structure of positive and negative degrees of circular polarization that reach peak magnitudes of ∼5 per cent within our limited map. It is shown that spherical MRN grains are incapable of producing this circular polarization given the observed linear polarization of the R CrA system. Instead, scattering from aligned non-spherical grains is proposed as the operating mechanism.
T CrA is a more archetypical bipolar reflection nebula, and this object is modelled as a canonical parabolic reflection nebula that lies in the plane of the sky. The wavelength independence of linear polarization in the T CrA reflection nebula suggests that the scattering particles are Rayleigh sized. This is modelled with the MRN interstellar grain size distribution.  相似文献   

20.
We report on advances in the study of the cores of NGC 6302 and 6537 using infrared grating and echelle spectroscopy. In NGC 6302, emission lines from species spanning a large range of ionization potential, and in particular [Si  ix ] 3.934 μm, are interpreted using photoionization models (including cloudy ), which allow us to re-estimate the temperature of the central star to be about 250 000 K. All of the detected lines are consistent with this value, except for [Al  v ] and [Al  vi ]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154 eV). A similar depletion pattern is observed in NGC 6537. Echelle spectroscopy of IR coronal ions in NGC 6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (<22 km s−1 FWHM), with no evidence of the broad wings found in optical lines from species with similar ionization potentials, such as [Ne  v ] 3426 Å. We note the absence of a hot bubble, or a wind-blown bipolar cavity filled with a hot plasma, at least on 1 arcsec and 10 km s−1 scales. The systemic heliocentric velocities for NGC 6302 and 6537, measured from the echelle spectra of IR recombination lines, are found to be −34.8±1 km s−1 and −17.8±3 km s−1. We also provide accurate new wavelengths for several of the infrared coronal lines observed with the echelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号