首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A. G. PLINT 《Sedimentology》1983,30(5):625-653
The Bracklesham Formation is of Middle Eocene age and occurs throughout the Hampshire Basin of southern England. The basin is elongated east-west and filled with Lower Tertiary sediments. Its southern margin is marked by either large, northward-facing monoclines, or faults, both of which underwent differential movement, with uplift of the southern side throughout the Middle Eocene. The Bracklesham Formation, which is up to 240 m thick, shows pronounced lateral facies changes with dominantly marine sediments in the east passing to alluvial sediments in the west. Four principal sedimentary environments: marine, lagoonal, estuarine and alluvial are distinguished. Marine sediments comprise six facies including offshore silty clays and glauconitic silty sands, beach and aeolian dune sands, and flint conglomerates formed on pebble beaches. Offshore sediments predominate in the eastern part of the basin, as far west as Alum Bay, where they are replaced by nearshore sediments. Lagoonal sediments comprise four facies and formed in back-barrier lagoons, coastal marshes and, on occasions, were deposited over much of the basin during periods of low salinity and restricted tidal motion. Five estuarine facies represent tidal channels, channel mouth-bars and abandoned channels. These sediments suggest that much of the Bracklesham Formation was deposited under micro- to meso-tidal conditions. Alluvial sediments dominate the formation to the west of Alum Bay. They comprise coarse to fine sands deposited on the point-bars of meandering rivers, interbedded with thick sequences of laminated interchannel mudstones, deposited in marshes, swamps and lakes. Extensive layers of ball clay were periodically deposited in a lake occupying much of the alluvial basin. In alluvial areas, fault movement exposed Mesozoic rocks along the southern margin of the basin, the erosion of which generated fault-scarp alluvial fan gravels. Locally, pisolitic limestone formed in pools fed by springs emerging at the faulted Chalk-Tertiary contact. In marine areas, flint pebbles were eroded from coastal exposures of chalk and accumulated on pebble beaches and in estuaries. From other evidence it is suggested that older Tertiary sediments were also reworked. The Bracklesham Formation is strongly cyclic and was deposited during five marine transgressions, the effects of which can be recognized throughout the basin in both marine and alluvial areas. Each of the five transgressive cycles is a few tens of metres thick and contains little evidence of intervening major regression. The cycles are thought to represent small-scale eustatic sea-level rises (‘paracycles’) superimposed upon a major transgressive ‘cycle’ that began at the base of the Bracklesham Formation, following a major regression, and was terminated, at the top of the Barton Formation by another major regression. This major cycle can be recognized world-wide and may reflect a period of rapid northward extension of the mid-Atlantic ridge.  相似文献   

2.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

3.
The Quaternary sediments of the West Sussex Coastal Plain have produced a wide range of floral, faunal and archaeological remains. These sediments consist of marine sands and gravels exhibiting transgressive and regressive trends which occur from present day sea-level to c. +43.0 m O.D. and are overlain by terrestrial silts and cold climate periglacial sediments. At the present day coastline, channel fill deposits occur below modern beach levels. New field observations, coupled with a re-investigation of old sites and literature, suggest that five discrete high stands of sea-level may be preserved in the area of the West Sussex Coastal Plain. Age estimates for these deposits suggest that they span large parts of the Middle and Upper Pleistocene (Oxygen Isotope Stages 13 to 5). Conformable relationships between many of the marine and terrestrial sediments suggest that the potential exists within the area to correlate the marine and terrestrial Quaternary stratigraphic records. In addition sediments associated with two of these high sea-level stands are associated with extensive buried landsurfaces covering large areas of the coastal plain. At some locations these intact landsurfaces are associated with evidence for human activity and represent stratigraphic and cultural resources of international importance.  相似文献   

4.
The pioneer compositional analysis carried out for clayey sediments from most regional Miocene stages of the Taman trough made it possible to define the main types of clays and trace their variability through the section. It is established that the composition of these clays is largely controlled by the sedimentary rather than postsedimentary lithogenetic factors. The maximal hydromica (hereafter, illite) concentrations (up to 73%) are recorded in sediments deposited during orogenesis activation and major regressions (terminal Tarkhanian, Sarmatian, and early Pontian). The dominant role and elevated concentration of the smectite component are characteristic of sediments corresponding to transgressive phases of the basin development. The shallow-water sediments, which show a notable facies heterogeneity, differ from their deepwater counterparts by a higher diversity in the clay composition. These regularities in the distribution of clay minerals may be used for the lithostratigraphic subdivision of the sequences with a lower content of the fossil mollusc assemblages.  相似文献   

5.
A previously unknown amber‐bearing bed in the Lower Cretaceous Miyako Group, northeastern Japan, was deposited within a sequence that contains abundant marine macrofossils and wave‐generated sedimentary structures that suggest deposition in an open shallow marine environment. How the amber was transported from its terrestrial origin to the marine environment is unclear, but sedimentary gravity flow is a strong candidate. Our observations suggest that the occurrence of amber clasts in sediments deposited in open and closed shallow marine environments is not uncommon. Thus, in addition to terrestrial sediments, sediments of marine origin have potential as targets for amber exploration.  相似文献   

6.
王坤  李伟  陆进  张朝军 《地球化学》2011,(4):351-362
利用微量元素和碳、氧同位素特征对样品有效性作出了检验.在证明样品未受明显蚀变的前提下对川东地区石炭系碳酸盐岩碳、氧、锶同位素进行了分析.在层序地层格架中对比不同体系域、不同岩性的碳、氧同位素特征,87Sr/86Sr比值特征,Z值与古温度特征,分析了碳酸盐岩的成岩环境.低位体系域以膏盐湖及萨巴哈环境为主,炎热干旱,陆源淡...  相似文献   

7.
对黄河三角洲ZK1孔粒度、岩性、微体古生物组合和14C年代进行了分析,探讨了研究区晚第四纪以来的沉积层序演化历史及其古环境意义。黄河三角洲的ZK1孔共发育三个海侵层,自下而上为深海氧同位素3期(MIS3)的第Ⅲ海侵层和第Ⅱ海侵层以及氧同位素1期(MIS1)的第Ⅰ海侵层,指示自氧同位素4期(MIS4)以来研究区共发生三次主要海平面波动。这三次海平面波动分别对应于渤海海侵、献县海侵和黄骅海侵。根据沉积记录信息,ZK1孔可分辨第Ⅰ海侵层的河口三角洲相(5.63~14.04 m)和滨岸浅海相(14.04~20.62 m),第Ⅱ海侵层的滨岸浅海相(39.52~49.57 m)和河口三角洲相(49.57~ 51.52 m),第Ⅲ海侵层的滨岸浅海相(76.00~83.63 m)和潮滩相(83.63~92.70 m),均以特征的微体古生物组合和沉积相为标志。结合前人研究,阐明了本区自晚第四纪以来的海平面变化及沉积环境演变历史。  相似文献   

8.
Upper Carboniferous to Lower Permian sedimentary rocks extend along the periphery of the northern Sydney Basin, a sub‐basin of the Sydney‐Gunnedah‐Bowen Basin complex. The basin contains basal basalts and volcanic sediments deposited in a nascent rift zone. This rift zone was created through crustal thinning during trench rollback on the eastern edge of the New England Orogen. Thermal subsidence created accommodation for predominantly marine Dalwood Group sediments. Clastic sedimentation then occurred in the Maitland‐Cessnock‐Greta Coalfield and Cranky Corner Basin during the Early Permian. This occurred on a broad shelf undergoing renewed thermal subsidence on the margin of a rift flank of the Tamworth Belt of the southern New England Orogen. Braidplain fans prograded or aggraded in two depositional sequences. The first sequence commences near the top of the Farley Formation and includes part of the Greta Coal Measures, while the second sequence includes the majority of the Greta Coal Measures and basal Branxton Formation. Thin, areally restricted mires formed during interludes in a high sedimentation regime in the lowstand systems tracts. As base‐level rose, areally extensive mires developed on the transgressive surface of both sequences. A paludal to estuarine facies changed to a shallow‐marine facies as the braidplain was transgressed. The transgressive systems tracts continued to develop with rising relative sea‐level. Renewed uplift in the hinterland resulted in the erosion of part of the transgressive systems tract and all of the highstand systems tract of the lower sequence. In the upper sequence a reduction in relative sea‐level rise saw the development of a deltaic to nearshore shelf highstand systems tract. Extensional dynamics caused a fall in relative base‐level and the development of a sequence boundary in the Branxton Formation. Finally, renewed thermal subsidence created accommodation for the overlying, predominantly marine Maitland Group.  相似文献   

9.
A small, protected karstic feature exposed in a limestone quarry in Bermuda preserved abundant sedimentary and biogenic materials documenting a transgressive phase, still-stand, and regressive phase of a sea-level in excess of 21.3 m above present during Marine Isotope Stage (MIS) 11 (400 ka) as determined by U/Th dating and amino acid racemization. Cobbles and marine sediments deposited during the high-energy transgressive phase exhibit rim cements indicating a subsequent phreatic environment. This was succeeded stratigraphically by a still-stand deposition of fine calcareous lagoonal sediments containing bioclasts of red algae and benthic and planktonic foraminifera that was intensely burrowed by marine invertebrates, probably upogebiid shrimp, that could not be produced under any condition other than sustained marine submergence. Overlying this were pure carbonate beach sands of a low-energy regressive phase containing abundant remains of terrestrial and marine vertebrates and invertebrates. The considerable diversity of this fauna along with taphonomic evidence from seabird remains indicates deposition by high run-up waves over a minimum duration of months, if not years. The maximum duration has yet to be determined but probably did not exceed one or two thousand years. The most abundant snails in this fauna are two species indicative of brackish water and high-tide line showing that a Ghyben-Herzberg lens must have existed at > + 20 m. The nature of these sediments and fossil accumulation is incompatible with tsunami deposition and, given the absence of evidence for tectonic uplift of the Bermuda pedestal or platform, provide proof that sea-level during MIS 11 exceeded +20 m, a fact that has widespread ramifications for geologists, biogeographers, and human demographics along the world's coastlines.  相似文献   

10.
In the Late Triassic the landscape NE of present-day Bristol, SW England was dominated by Carboniferous Limestone ridges and cuestas that became progressively buried by continental Mercia Mudstones and finally inundated during the Rhaetian marine transgression. Mussini et al. (2020) adopt the assertions of earlier collaborators back to Whiteside and Marshall (2008) that terrestrial vertebrate assemblages from sediments contained within karstic fissure systems in the former limestone ridges at Cromhall, Tytherington and elsewhere are restricted to the Rhaetian. We review and reject the sedimentological, stratigraphic, geomorphological and topographic arguments for this and reassert a long pre-Rhaetian (Norian) history for the vertebrate-bearing fissure systems at both Tytherington and Cromhall. We also reject the contemporaneous Rhaetian freshwater-seawater mixing zone dissolution model for the fissure systems adopted by Mussini et al. (2020) and reaffirm that the Tytherington and Cromhall fissures developed as conduit caves with a long Triassic history. Applying a new regional study of the Rhaetian transgressive surface, we also show that whilst the fissures at Cromhall remained sealed after the Norian, those at nearby Tytherington were re-exposed in the Late Rhaetian. Already partially filled with Norian sediments, the Tytherington fissures were subject to reworking on the seabed. Internal collapses, probably triggered by well documented repeated regional seismicity, led to the chaotic state of the Tytherington fills when downward moving Rhaetian marine components came to lie amongst and mix with earlier Norian terrestrial sediments. The vertebrate associations in the Tytherington fissures therefore contain a substantial Rhaetian input whilst those at Cromhall do not.  相似文献   

11.
Joseph Bonaparte Gulf is a large embayment on the northwestern continental margin of Australia. It is approximately 300 km east‐west and 120 km north‐south with a broad continental shelf to seaward. Maximum width from the southernmost shore of Joseph Bonaparte Gulf to the edge of the continental shelf is 560 km. Several large rivers enter the gulf along its shores. The climate is monsoonal, sub‐humid, and cyclone‐prone during the December‐March wet season. A bedrock high (Sahul Rise) rims the shelf margin. The sediments within the gulf are carbonates to seaward, grading into clastics inshore. A seaward‐thinning wedge of highstand muds dominates the sediments of the inner shelf of Joseph Bonaparte Gulf. Mud banks up to 15m thick have developed inshore. Coarse‐grained sand ridges up to 15 m high are found off the mouth of the Ord River. These overlie an Upper Pleistocene transgressive lag of mixed carbonate and gravelly siliciclastic sand. Four drowned strandlines are present on the inner shelf at depths of 20, 25, 28 and 30 m below datum. These are interpreted as having formed during stillstands in the Late Pleistocene transgression. Older strandlines at great depths are inferred as having formed during the fall in sea‐level following the last highstand. For the most part the Upper Pleistocene‐Holocene marine sediments overlie an erosion surface cut into older Pleistocene sediments. Incised valleys cut into this erosion surface are up to 5 km wide and have a relief of at least 20 m. The largest valley is that cut by the Ord River. Upper Pleistocene sediments deposited in the incised valleys include interpreted lowstand fluvial gravels, early transgressive channel sands and floodplain silts, and late transgressive estuarine sands and gravels. Older Pleistocene sediments are inferred to have been deposited before and during the 120 ka highstand (isotope stage 5). They consist of sandy calcarenites deposited in high‐energy tide‐dominated shelf environments. Still older shelf and valley‐fill sediments underlie these. The contrast between the Holocene muddy clastic sediments and the sandy carbonates deposited by the 120 ka highstand suggests that either the climate was more arid in the past, with less fluvial transport, or that mud was more effectively trapped in estuaries, allowing development of carbonate depositional environments inshore.  相似文献   

12.
A total of 49 elements have been identified in 338 coastal sea sediment samples collected from an area situated off the Ise-Tokai region of Japan for a nationwide marine geochemical mapping project. The spatial distribution patterns of the elemental concentrations in coastal seas along with the existing geochemical maps in terrestrial areas were used to define the natural geochemical background variation, mass transport, and contamination processes. The elemental concentrations of coastal sea sediments are determined primarily by particle size and regional differences. Most elemental concentrations increase with a decrease in particle size. Some elements such as Ca, Mn, and Yb are found to exist in large quantities in coarse particles containing calcareous shells, Fe–Mn oxides, and felsic volcanic sediments. Regional differences reflect the mass transfer process from terrestrial areas to coastal seas and the influence of the local marine geology. An analysis of variance (ANOVA) reveals that for many elements, the particle size effect is predominant over regional difference. The mean chemical compositions of coastal sea sediments are similar to those of stream sediments in adjacent terrestrial areas and in the upper crust of Japan. This observation supports the fact that coastal sea sediments have certainly originated from terrestrial materials. However, the spatial distributions of elemental concentrations are not always continuous between the land and coastal seas. The scale of mass movement observed in marine geochemical maps occurs at a distance of 20 km from the river mouth. A detailed examination of the spatial distribution patterns of K (K2O) and Cr concentrations suggests that terrestrial materials supplied through rivers are deposited near the shore initially, and then gravity-driven processes shift the sediments deeper into the basin. Contamination with heavy metals such as Zn, Cd and Pb was observed in coastal bays surrounded by urban and industrial areas. It is noteworthy that the areas with the highest concentration of these elements usually do not occur near the shore (not near the contamination source) but at the center of the bay. Unexpected low concentrations of Zn, Cd and Pb near shore may either be due to a decreased anthropogenic load in the most recent sediments or to dilution by unpolluted flood sediments.  相似文献   

13.
The vertical distribution of arsenic and other trace and major elements has been studied in four sediment cores from Masuda City, Nagashima and Okite in the Shimane Prefecture of southwestern Japan. The sediment cores were also subjected to leaching techniques and 14C dating. The stratigraphic sequences in the cores consist of silt and sandy silt at top, passing downward into gray to black clays. Elevated values of As, Pb, Zn, Cu, Ni, Cr, and V are present in several horizons while abundances of these elements tend to be higher in the black and gray clays, probably due to adsorption onto clay sediments. Higher concentrations of Fe and total sulfur (TS) occur in black clays. The correlations of the trace metals with iron suggest their adsorption onto Fe (oxy)hydroxides, whereas correlations with sulfur in some cores indicate that they were precipitated as Fe-sulfides. Age determinations suggest that clay horizons at ∼5 m depth were deposited at around 5,000 and 6,000 years BP (14C ages) during the transgressive phase of sea level change. The results of the leaching techniques in the core samples show that higher amounts of As were extracted with deionized water. Even at neutral pH, As can be released from sediments to groundwater, and therefore groundwater pollution is a concern in Masuda City and the surrounding area.  相似文献   

14.
Sediments cored to a depth of about 1 m in Bay St. George, Newfoundland, were examined for grain-size distribution and minerals. The sediments are light brown silty clays, the principal minerals of which are chlorite and muscovite mica. The scarce sand consists of fresh detrital grains of blue-green amphibole, biotite, epidote, zoisite, magnetite, garnet, hypersthene, apatite, chlorite, and scarce zircon. Quartz, plagioclase feldspar, and muscovite are abundant. These minerals are all present in the rocks of the adjacent land areas and have been deposited in the sediments with little alteration or change due to weathering. The clay minerals of the sediments are predominantly muscovite and chlorite with a slight admixture of vermiculite and montmorillonite. There is very little mixed-layering of these minerals. Montmorillonite may be due to diagenetic changes after deposition of these clays in the marine environment of the bay.  相似文献   

15.
含煤岩系沉积学和层序地层学研究现状和展望   总被引:35,自引:6,他引:29  
在对含煤岩系沉积系研究历史进行回顾的基础上,论述了含煤岩系层序地层学方法以及海平面变化与聚煤作用的关系。注重强调分布广泛的厚煤层实际上是在基准面或海平面的抬升过程中堆积的,煤层底面代表海泛面。  相似文献   

16.
提要:本文依据古地磁方法对不同时期的全球古板块进行再造,并在此基础上叠加了全球大地构造背景、洋流系统、气候带分布以及岩相古地理等要素,共编制了11个时间段古板块格局下的全球烃源岩分布图。综合各种地质要素可以看出烃源岩在时间和空间分布上具有强烈不均匀的特征,在时间上,中、新生代烃源岩无论是从分布范围,还是厚度上,都较古生代更为发育;在空间上,全球显生宙海相烃源岩主要分布于陆棚及斜坡相、台内坳陷等环境,而陆相烃源岩则主要分布在湖盆中心。烃源岩的沉积和保存受到超大陆旋回的控制,超大陆汇聚过程中陆架和适宜陆缘的消失不利于烃源岩的沉积和保存,反之亦然。较高的海平面以及上升流的存在是烃源岩发育的有利条件,全球优质烃源岩富含的有机质泥页岩多发育于海侵体系域顶部与高位体系域底部的密集段中。  相似文献   

17.
Marine clastic sediments and volcanics of Arenig (Ordovician) age crop out in South Wales. These were deposited after presumed late Tremadoc erosion and subsequent arc volcanicity. Arenig sedimentation was transgressive, and followed significant erosion of the arc volcanics. Arenig conglomerates, sandstones, and mudstones were deposited in deltaic and turbiditic systems. Storm and tidal processes influenced the shallow marine deposits. The minor rhyolitic volcanics extruded during the Arenig reflect the development of Ordovician marginal basin-type volcanics across Wales. Five sandstone petrofacies are defined and reflect differing proportions of these volcanics and of Cambrian and Precambrian basement material. Sedimentation patterns were controlled by intra-Arenig tectonism during an overall rise in sea level. Facies and petrofacies were ponded in small, interconnected, marine sub-basins. Earliest Arenig tectonism and sedimentation, also recognized in North Wales, reflects the initiation of a marginal basin in Wales.  相似文献   

18.
The South Kerala Sedimentary Basin (SKSB) constitutes one of the most significant landward extensions of the southwest offshore sedimentary basins of India, and is situated between 8o45' and 10o15' N latitudes. With a maximum width of about 20 km and incorporating a 700 m thick sedimentary succession ranging in age from Early Miocene to Holocene, this belt lies almost entirely under water or alluvium-covered coastal plains. In this study, we use two continuously cored bore holes at Eruva (7.25m deep) and Muthukulam (3m deep) separated by a distance of about 7km to investigate the depositional environment as well as paleo ecology of the depocentre and climatic aspects during the Late Pleistocene and Holocene. Results from C14 dating of shell fragments from Eruva (depth zone: 2.10–6.64m) yielded ages in the range of 36.2 to 42.5 kyBP corresponding to the late Pleistocene. Wood fragments in the Muthukulam core sample (depth zone: 1.27–3.00m) gave C14 ages in the range of 3.7 to 7.2 kyBP indicating a Holocene history. The lower half of the Eruva bore hole indicates a marginal marine environment with an abundant supply of terrestrial carbonaceous debris probably corresponding to a period of abnormally high rainfall recorded in many parts of the globe covered by the Asian summer monsoon. The sediments in the upper part of this bore hole indicate a continuation of this environment but with much less input of terrestrial organic carbon. The lower part of the bore hole from this locality, corresponding to the Holocene transgression, is similar to the lower part of Eruva bore hole in the case of TOC. Deposition took place in water bodies with considerable marine influence but receiving high amounts of terrestrial plant debris-mostly in the form of finely divided particles mixed with mud. This transgressive sequence was also deposited during a time when the Asian summer monsoon was abnormally high in intensity as indicated by many examples in India, Africa, Madagascar and elsewhere. It is significant that during the deposition of this part, the sea level was probably the same as present or higher suggesting possible lowering of the stream velocities and resultant deposition of only muddy sediments laden with terrestrial organic material along the coast. The upper part of the section shows a progressively reduced rainfall pattern culminating in a period of very low precipitation with the development of a paleosol, which is traceable all over the SKSB where Late Holocene sediments are available. This period also witnessed aeolian activity modifying the sand ridges in the ridge-runnel systems formed by the Holocene regression.  相似文献   

19.
Major ion chemistry of water and elemental geochemistry of suspended and surficial sediments collected from the Cauvery Estuary were studied to understand the geochemical processes in this tropical estuarine system. Specific conductance (EC), total dissolved solids (TDS), and total suspended matter (TSM) increased conservatively with increasing chlorinity. In general, SO4 2?, Na, K, Ca, and Mg showed an increasing trend while H4SiO4 and PO4 3? showed a decreasing trend toward the sea. Additional removal mechanisms operating for these ions in the Cauvery Estuary have been identified based on observed concentrations. Factor analysis pointed out the sources contributing to the observed trends in estuarine water chemistry. POC and PON decreased toward the high chlorinity zone. TSM in the Cauvery Estuary were mostly of inorganic nature. Stable carbon isotope values showed that the carbon was equally of marine and terrestrial origin and helped to delineate the contribution of river water and seawater. The ? mean size (a logarithmic grain size scale commonly used by sedimentologists) indicated that the surficial sediments were primarily comprised of coarse and silt, whereas suspended sediments were principally silt and clay. Suspended sediments were enriched in clays compared to surficial sediments. Quartz and feldspar were abundant among detritals while chlorite, kaolinite, and montmorillonite were dominant among clays. Silicon was the most abundant element in the sediments followed by Al, Ca, Na, K, Fe, Mn, and P. Heavy metals were enriched in the suspended sediments compared to the surficial bottom sediments as follows: Fe = 3.5, Mn = 7.4, Pb = 1.1, Zn = 15.2, Cu = 7.4, and Cr = 4.0. The levels of Cd, Cr, Zn, and Fe increased up the middle reaches and then decreased toward the sea due to urban effluent and fertilizer input. Size fractionation studies indicated that the metal concentration in the finer fraction was 50% higher by mass than the coarse silt and fine silt fractions. Chemical fractionation studies showed that the abundance of metals were in the order of residual > organic/sulfide > carbonate > Fe/Mn oxide > exchangeable fractions.  相似文献   

20.
The 600 m thick prograding sedimentary succession of Wagad ranging in age from Callovian to Early Kimmeridgian has been divided into three formations namely, Washtawa, Kanthkot and Gamdau. Present study is confined to younger part of the Washtawa Formation and early part of the Kanthkot Formation exposed around Kanthkot, Washtawa, Chitrod and Rapar. The depositional architecture and sedimentation processes of these deposits have been studied applying sequence stratigraphic context. Facies studies have led to identification of five upward stacking facies associations (A, B, C, D, and E) which reflect that deposition was controlled by one single transgressive — regressive cycle. The transgressive deposit is characterized by fining and thinning upward succession of facies consisting of two facies associations: (1) Association A: medium — to coarse-grained calcareous sandstone — mudrocks alternations (2) Association B: fine-grained calcareous sandstone — mudrocks alternations. The top of this association marks maximum flooding surface as identified by bioturbational fabrics and abundance of deep marine fauna (ammonites). Association A is interpreted as high energy transgressive deposit deposited during relative sea level rise. Whereas, facies association B indicates its deposition in low energy marine environment deposited during stand-still period with low supply of sediments. Regressive sedimentary package has been divided into three facies associations consisting of: (1) Association C: gypsiferous mudstone-siltstone/fine sandstone (2) Association D: laminated, medium-grained sandstone — siltstone (3) Association E: well laminated (coarse and fine mode) sandstone interbedded with coarse grained sandstone with trough cross stratification. Regressive succession of facies association C, D and E is interpreted as wave dominated shoreface, foreshore to backshore and dune environment respectively. Sequence stratigraphic concepts have been applied to subdivide these deposits into two genetic sequences: (i) the lower carbonate dominated (25 m) transgressive deposits (TST) include facies association A and B and the upper thick (75m) regressive deposits (HST) include facies association C, D and E. The two sequences are separated by maximum flooding surface (MFS) identified by sudden shift in facies association from B to C. The transgressive facies association A and B represent the sediments deposited during the syn-rift climax followed by regressive sediments comprising association C, D and E deposited during late syn-rift stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号