共查询到20条相似文献,搜索用时 15 毫秒
1.
Petrogenetic Appraisal of Early Palaeozoic Granitoids of Kinnaur District, Higher Himachal Himalaya, India 总被引:1,自引:0,他引:1
The Early Palaeozoic felsic magmatism of Kinnaur district is represented by more-or-less equivalent Akpa granitoids (477±29 Ma) and Rakcham granitoids (453±9 Ma), which form an integral part of the Central Crystalline Zone in the southern portion of the Tethys Himalayan Tectogen. Both, Akpa granitoids (AG) and Rakcham granitoids (RG), intrude the rocks of the Vaikrita Group. Substantially low magnetic susceptibility values (c = 0.016-0.187 × 10−3 SI) of these Early Palaeozoic granitoids suggest their nature similar to as ilmenite series (reduced-type) granitoids emplaced in a syn-collisional tectonic setting. The modal compositions of AG mainly correspond to two-mica (muscovite-biotite) monzogranite belonging to the granitoids generated by crustal fusion. Based on mineral assemblage (Ms+Bt+Tur+Ap), associated skarn-type tungsten mineralization, occurrence of metasedimentary enclaves, and whole-rock geochemistry (SiO2 = 70.75-72.95 wt.%, TiO2 = 0.02-0.17 wt.%, K2O/Na2O = 1.05-2.32, molar A/CNK = 0.93 to 1.33, CIPW corundum 0.17 to 3.82 wt.%, Av. Sr = 304ppm, initial 87Sr/86Sr = 0.7206±0.00235), the AG can be typically characterized as peraluminous (S-type) granite as similarly noted for RG. Higher Rb/Sr ratio and initial 87Sr/86Sr = 0.737±0.002 of RG compared to that of AG however indicate involvement of relatively more crustal component in generation of RG. The AG is enriched in Ba and light rare earth elements (LREE). The chondrite normalized REE patterns of AG appear weakly fractionated (LaN/LuN= 1.06-6.43) and show pronounced negative Eu-anomaly (EuN/Eu* = 0.03). The AG and RG represent typical S-type granite suites that largely evolved due to differential degree of anatexis (partial fusion) of sedimentary protoliths, prior to Caledonian but after the Pan-Indian thermal orogenic event. 相似文献
2.
Dilip K Mukhopadhyay Bidyut K Bhadra Tamal K Ghosh Deepak C Srivastava 《Journal of Earth System Science》1996,105(2):157-171
Numerous peraluminous and porphyritic granitic bodies and augen gneisses of granitic compositions occur in the nappe sequences
of the Lower Himalaya. They are Proterozoic-to-lower Paleozoic in age and have been grouped into the ‘Lesser Himalaya granite
belt’. The mode of emplacement and tectonic significance of these granites are as yet uncertain but they are generally considered
to be sheet-like intrusions into the surrounding rocks. The small and isolated granite body (the Chur granite) that crops
out around the Chur peak in the Himachal Himalaya is one of the more famous of these granites. Several lines of evidence have
been adduced to show that the Chur granite has a thrust (the Chur thrust) contact with the underlying metasedimentary sequence
(locally called the Jutogh Group). The Chur granite with restricted occurrence at the highest topographic and structural levels
represents an erosional remnant of a much larger sub-horizontal thrust sheet. The contact relations between the country rocks
and many of the other granite and granitic augen gneisses in the Lesser Himalaya belt are apparently similar to that of the
Chur granite suggesting that at least some of them may also represent thrust sheets. 相似文献
3.
We report the measurements of thermal conductivity for some Higher Himalayan Crystalline rocks from Joshimath and Uttarkashi areas of the Garhwal Himalaya. Seventy-three rock samples including gneiss, metabasic rock and quartzite were measured. Gneissic rocks, which include augen gneiss, banded gneiss, felsic gneiss and fine-grained gneiss, exhibit a wide range in conductivity, from 1.5 to 3.6 Wm− 1K− 1 for individual samples, and 2.1 to 2.7 Wm− 1K− 1 for the means. Among these, augen gneisses and banded gneisses show the largest variability. Of all the rock types, quartzites (mean 5.4 Wm− 1K− 1) and metabasic rocks (mean 2.1 Wm− 1K− 1) represent the highest and lowest mean values respectively. The range in conductivity observed for gneissic rocks is significantly higher than that generally found in similar rock types in cratonic areas. The rock samples have very low porosity and exhibit feeble anisotropy, indicating that they do not contribute to the variability in thermal conductivity. Besides variations in mineralogical composition, the heterogeneous banding as well as intercalations with metabasic rocks and quartz veins, a common occurrence in structurally complex areas, appears to cause the variability in conductivity. The study therefore brings out the need for systematic characterization of thermophysical properties of major rock types comprising the Himalayan region for lithospheric thermal modeling, assessment of geothermal energy and geo-engineering applications in an area. The dataset constitutes the first systematic measurements on the Higher Himalayan Crystalline rocks. 相似文献
4.
Pratima Pandey S. Nawaz Ali AL. Ramanathan P.K. Champati ray G. Venkataraman 《地学前缘(英文版)》2017,8(4):841-850
Hamtah and Chhota Shigri are two nearby, well monitored glaciers of western Himalaya, lying in the same climatic zone and driven by the same climatic conditions. In this study, topographical characteristics of both the glacier have been explored to understand the role of topography in controlling the glacier response. Further, their topographical characteristics and possible response towards climatic variations have been compared with each other and also with that of the other glaciers in the basin to find out the suitability of these two glaciers to be considered as representative of the region. Multi sensor and multi temporal remote sensing data have been used to carry out to fulfill the objectives. It is found that being in the same climatic zone, the mean accumulation area ratio of Chhota Shigri is 54% and Hamtah is 11% between 1980 and 2014. In comparison to Hamtah, Chhota Shigri glacier has a small upslope area, low compactness ratio indicating the ability of the glacier to receive direct precipitation and solar radiation. The analysis revealed that the Chhota Shigri glacier has a closer resemblance with the other glaciers in the region than Hamtah glacier. Also, the topographical settings of Chhota Shigri glacier are suitable for recording and reflecting year-to-year climatic variations. 相似文献
5.
Temporal and spatial variations in water discharge and sediment load in the Alaknanda and Bhagirathi Rivers in Himalaya, India 总被引:2,自引:0,他引:2
The Alaknanda and Bhagirathi Rivers originate in the mountainous regions of the Himalayas (Garhwal) and result in high sediment yields causing flood hazards downstream of the Ganga River and high sediment flux to the Bay of Bengal. The rivers are perennial, since runoff in these rivers is controlled by both precipitation and glacial melt. In the present study, three locations in the upper reaches of the Ganga River were monitored for 1 yr (daily observations of, more than >1000 samples) for suspended sediment concentrations. In addition, more than one hundred samples were collected from various locations of the Alaknanda and Bhagirathi Rivers at different periods to observe spatial and temporal variations in river suspensions. Further, multi-annual data (up to 40 yrs) of water flow and sediment concentrations were used for inferring the variations in water flow and sediment loads on longer time scales. In most previous studies of Himalayan Rivers, there has been a general lack of long term water flow and sediment load data. In the present study, we carried out high frequency sampling, considered long term discharge data and based on these information, discussed the temporal and spatial variations in water discharge and sediment loads in the rivers in the Himalayan region. The results show that, >75% of annual sediment loads are transported during the monsoon season (June through September). The annual physical weathering rates in the Alaknanda and Bhagirathi River basins at Devprayag are estimated to be 863 tons km−2 yr−1 (3.25 mm yr−1) and 907 tons km−2 yr−1 (3.42 mm yr−1) respectively, which are far in excess of the global average of 156 tons km−2 yr−1 (0.58 mm yr−1). 相似文献
6.
Impact of geohydrology and neotectonic activity on radon concentration in groundwater of intermontane Doon Valley, Outer Himalaya, India 总被引:1,自引:0,他引:1
Radon concentration was measured in 133 water samples from tubewells, handpumps, dug wells and springs of the Doon Valley,
Outer Himalaya, India. The observed radon values were found to vary from 10 to 154 Bq/l whereas radium in selected water samples
varied from 0.11 to 0.75 Bq/l. Three different clusters of high radon values were observed in the north-western, central and
south-eastern parts of the Doon Valley. These clusters were found to be associated with tectonics (thrust/fault) and associated
uranium mineralization in the area. In general, radon concentration in groundwater was found to be positively correlated with
the depth of the wells, whereas no significant correlation was observed between radon concentration in groundwater and the
water temperature, pH value, conductivity and altitude of the water samples. An attempt has also been made to determine the
nature and extent of aquifers in the Doon Valley on radon concentration in groundwater. The variation in radon concentration
within the groundwater of the study area was found to be controlled by the neotectonic activity and geohydrological processes
that occur in the area. The impact of these activities on radon concentration in groundwater are discussed.
Received: 17 September 1999 · Accepted: 11 April 2000 相似文献
7.
Shiv Mohan Singh Kumar Avinash Parmanand Sharma Ravindra Uttam Mulik Ajay Kumar Upadhyay Rasik Ravindra 《地学前缘(英文版)》2017,8(6):1339-1347
Cryoconite samples were collected from two different climatic domains i.e., the Sutri Dhaka glacier, western Himalaya India and Svalbard glaciers, the Spitsbergen, Arctic, to understand the elemental source and elemental deposition patterns. The data of geochemical analysis suggest that the Himalayan cryoconite samples accumulate higher concentrations as compared to the cryoconite samples of the Arctic glaciers. The concentration of lithophile elements (Cs, Li, Rb and U) was recorded higher in the cryoconite holes of the Himalayas, especially, in the lower to the higher parts of the glacier, whereas, lower concentrations were recorded in the Arctic samples. Chalcophile elements in the Himalayan cryoconites are enriched in As and Bi while the Arctic cryoconite samples show a higher concentration of Bi, Pb and As. The higher concentrations are responsible for influencing the ecosystem and in human health related issues. Siderophile elements (Co, Fe, Mn and Ni) show high concentrations in the Himalayan samples, whereas, the Arctic samples show minor variations and low elemental concentration in these elements, respectively. In addition, a few elements, such as Ag, Mg, and Ca show higher concentration in the Himalayan glacier samples. Ca also occurs in high concentrations in Arctic glacier samples. R-mode factor analysis of the Himalayas (Arctic) samples indicate that the elements are distributed in four (three) factors, explaining 89% (90%) of the variance in their elemental distribution. The Factor 1 suggests statistically significant positive loadings for most of the lithophile, chalcophile and siderophile elements of the “Himalayan” and the Arctic cryoconite samples. The sample-wise factor score distribution shows a considerable variation in the sampling locations along the glaciers of both the regions. Factors 2 and 3, demonstrate insignificant loading for most of the elements, except statistically significant positive loading in some of the elements of the both, Himalayan and Arctic “cryoconites”. The higher elemental concentration in the cryoconites of the Himalayan region may be an indicator of the natural processes and/or attributed to the rapid industrialization in the Asian countries. 相似文献
8.
Normal faults on mesoscopic scale are observed in the Panjal Thrust Zone in the Dalhousie area of western Htmachal. The boundary
between the southern margin of the Higher Himalaya Crystalline (HHC) of Zanskar and the Chamba syncline sequence is also described
as a normal fault, referred to as Bhadarwah Normal Fault in the Bhadarwah area of Doda district on the basis of field mapping
and shear sense criteria using S-C fabric and porphyroblast rotation. The occurrence of these normal faults suggests that
the extensional tectonic regime was not restricted only to the Zanskar shear zone area but that it also occurs south of the
Higher Himalayan range. This suggests NE-directed subhorizontal extension and exhumation of deeper level rocks of Higher Himalaya
Crystallines. 相似文献
9.
Pradeep Srivastava Jayant K. Tripathi R. Islam Manoj K. Jaiswal 《Quaternary Research》2008,70(1):68-80
We study the aggradation and incision of the Alaknanda River Valley during the late Pleistocene and Holocene. The morphostratigraphy in the river valley at Deoprayag shows the active riverbed, a cut terrace, and a fill terrace. The sedimentary fabric of the fill terrace comprises four lithofacies representing 1) riverbed accretion, 2) locally derived debris fan, 3) the deposits of waning floods and 4) palaeoflood records. The sedimentation style, coupled with geochemical analysis and Optically Stimulated Luminescence (OSL) dating, indicate that this terrace formed in a drier climate and the river valley aggraded in two phases during 21–18 ka and 13–9 ka. During these periods, sediment supply was relatively higher. Incision began after 10 ka in response to a strengthened monsoon and aided by increase of the tectonic gradient. The cut terrace formed at ~ 5 ka during a phase of stable climate and tectonic quiescence. The palaeoflood records suggest wetter climate 200–300 yr ago when the floods originated in the upper catchment of the Higher Himalaya and in the relatively drier climate ~ 1.2 ka when locally derived sediments from the Lesser Himalaya dominated flood deposits. Maximum and minimum limits of bedrock incision rate at Deoprayag are 2.3 mm/a and 1.4 mm/a. 相似文献
10.
Snow avalanche hazards in mountainous areas of developing countries have received scant attention in the scientific literature. The purpose of this paper is to describe this hazard and mitigative measures in Kaghan Valley, Pakistan Himalaya, and to review alternatives for future reduction of this hazard. Snow avalanches have long posed a hazard and risk to indigenous populations of the Himalaya and Trans-Himalaya mountains. Land use intensification due to population growth, new transportation routes, military activity and tourism is raising levels of risk. The history of land use in the study area is such that investigations of avalanche hazard must rely on different theoretical bases and data than in most industrialised countries. Despite the intensive use of valley-bottom land which is affected by avalanches, a number of simple measures are currently employed by the indigenous population to mitigate the hazard. Out-migration during the winter months is the most important one. During the intensive use period of summer avalanche-transported snow provides numerous resources for the population. In Kaghan the avalanche hazard is increasing primarily as a result of poorly located new buildings and other construction projects. The large scale of avalanche activity there rules out any significant improvement or protection of the currently difficult winter access. Instead, future mitigation of the hazard should focus on protecting the small number of winter inhabitants and minimising property damage. 相似文献
11.
The repetitive soil slope failure along the National Highway (NH)-5 in Jhakri region of Himachal Pradesh, India draws frequent concern due to heavy damage and traffic disruption almost every year. Being only linking route from border district to the nearby land area, stability of the road-cut slopes along this highway is of major concern in regard to safe transportation. Absence of any previous stability investigation of this recurring slope failure calls for an integrated geotechnical and numerical approach in order to understand the instability factors. The geotechnical analysis has been performed to determine the inherent properties of soil materials which affect the stability of existing slope. An event-specific antecedent rainfall threshold has been suggested to quantify the relationship between rainfall and slope failure. A two-dimensional limit equilibrium method has also been executed to visualize the scenario of pre- and post-failure stability of the slope. On the basis of limit equilibrium analysis, it has been inferred that slope geometry is a major affecting parameter that influences the failure pattern. Moreover, preventive measures through benching and soil nailing have also been proposed and validated through limit equilibrium analysis for long-term stability and safe transportation. 相似文献
12.
Neotectonic Control on the Geomorphic Evolution of the Gangotri Glacier Valley, Garhwal Himalaya 总被引:1,自引:0,他引:1
The paper records evidences of neotectonic activities in the Gangotri glacier valley that are found to be responsible for the present-day geomorphic set-up of the area since the last phase of major glaciation. Geomorphological features indicate the presence of a large glacier in the valley in the geological past. Prominent planar structures present in the rocks were later on modified into sets of normal faults in the present-day Himalayan tectonic set-up giving rise to graben structures. The block nearest the snout is traversed by the NW-SE trending Gaumukh fault. A number of terraces mark the entrenchment of Bhagirathi River in this part. The contrasting drainage morphometric parameters of two sides of the valley and asymmetric recessional patterns of the tributary glaciers further document movement along the fault. The distribution and orientation of debris fans also seem to be controlled by neotectonic activity. The neotectonic activity that followed the process of deglaciation has brought the glacially carved, wide U- shaped valley in contact with the present-day fluvially incised narrow and relatively deep valley. The wider segments have become sites of active deposition of glacially eroded debris. The low gradient and excessive filling has resulted in the river attaining a braided nature in these segments. 相似文献
13.
Dendrochronological reconstruction of snow avalanche activity in the Lahul Himalaya,Northern India 总被引:1,自引:0,他引:1
Mass wasting and avalanche events substantially impact the landscape morphology and consequently human habitation throughout
the Himalaya. There is, however, a paucity of snow avalanche documentation for the region. The application of dendrochronologic
research methods introduces a sensitive approach to document the recurrence of snow avalanche events in a region where historical
records are either non-existent or difficult to access. An exploratory dendrochronologic study was undertaken in the Lahul
Himalaya of Northern India during the summer of 2006. Included within the fieldwork was an assessment of avalanche track morphology
to enable identification of the slope characteristics that might be associated with an increase in avalanche activity. Thirty-six
trees growing on the Ratoli avalanche track were sampled. The oldest tree was a Cedrus deodara with a pith date of 1950. A tree-ring-derived avalanche response curve highlights four avalanche events that occurred from
1972 to 2006. The successful scientific results based on the application of the method used provide the basis for local planners
to quantify slope failure hazards in forested areas throughout the western Himalaya. 相似文献
14.
RECONSTRUCTION OF THE PAST CLIMATE FROM TREE RINGS OVER WESTERN HIMALAYA, INDIA 相似文献
15.
Petrology of a non-classical Barrovian inverted metamorphic sequence from the western Arunachal Himalaya, India 总被引:1,自引:0,他引:1
In this study, we reconstruct the inverted metamorphic sequence in the western Arunachal Himalaya using combined structural and metamorphic analyses of rocks of the Lesser and Greater Himalayan Sequences. Four thrust-bounded stratigraphic units, which from the lower to higher structural heights are (a) the Gondwana rocks and relatively weakly deformed metasediments of the Bomdila Group, (b) the tectonically interleaved sequence of Bomdila gneiss and Bomdila Group, (c) the Dirang Formation and (d) the Se La Group are exposed along the transect, Jira–Rupa–Bomdila–Dirang–Se La Pass. The Main Central thrust, which coincides with intense strain localization and the first appearance of kyanite-grade partial melt is placed at the base of the Se La Group.Five metamorphic zones from garnet through kyanite, kyanite migmatite, kyanite-sillimanite migmatite to K-feldspar-kyanite-sillimanite migmatites are sequentially developed in the metamorphosed low-alumina pelites of Dirang and Se La Group, with increasing structural heights. Three phases of deformation, D1–D2–D3 and two groups of planar structures, S1 and S2 are recognized, and S2 is the most pervasive one. Mineral growths in all these zones are dominantly late-to post-D2, excepting in some garnet-zone rocks, where syn-D1 garnet growths are documented. Metamorphic isograds, which are aligned parallel to S2 were subsequently folded during D3. The deformation produced plane-non-cylindrical fold along NW–SE axis.In the garnet-zone, peak metamorphism is marked by garnet growth through the reaction biotite + plagioclase → garnet + muscovite. An even earlier phase of syn-D1 garnet growth occurred in the chlorite stability field with or without epidote. In the kyanite-zone metapelites, kyanite appeared via the pressure-sensitive reaction, garnet + muscovite → kyanite + biotite + quartz. Staurolite was produced in the same rock by retrograde replacement of kyanite following the reaction, garnet + kyanite + H2O → staurolite + quartz. These reactions depart from the classical kyanite- and staurolite-isograd reactions in low-alumina pelites, encountered in other segments of eastern Himalaya. In the metapelites, just above the kyanite-zone, melting begins in the kyanite field, through water-saturated and water-undersaturated melting of paragonite component in white mica. Leucosomes formed through these reactions are characteristically free of K-feldspar, with sodic plagioclase and quartz as the dominant constituents. With increasing structural height, the melting shifts to water-undersaturated melting of muscovite component of white mica, producing an early K-feldspar + kyanite and later K-feldspar + sillimanite assemblages and granitic leucosomes.Applications of conventional geothermobarometry and average P–T method reveal near isobaric (at P 8 kbar) increase in peak metamorphic temperatures from 550 °C in the garnet-zone to >700 °C for K-feldspar-kyanite-sillimanite-zone rocks. The findings of near isobaric metamorphic field gradient and by the reconstruction of the reaction history, reveal that the described inverted metamorphic sequence in the western Arunachal Himalaya, deviates from the classical Barrovian-type metamorphism. The tectonic implication of such a metamorphic evolution is discussed. 相似文献
16.
Nd isotopic data reveal the material and tectonic nature of the Main Central Thrust zone in Nepal Himalaya 总被引:1,自引:0,他引:1
The Main Central Thrust (MCT) is a tectono-metamorphic boundary between the Higher Himalayan crystallines (HHC) and Lesser Himalayan metasediments (LHS), reactivated in the Tertiary, but which had already formed as a collisional boundary in the Early Paleozoic. To investigate the nature of the MCT, we analyzed whole-rock Nd isotopic ratios of rocks from the MCT and surrounding zones in the Taplejung–Ilam area of far-eastern Nepal, Annapurna–Galyang area of central Nepal, and Maikot–Barekot area of western Nepal. We define the MCT zone as a ductile–brittle shear zone between the upper MCT (UMCT) and lower MCT (LMCT). The protoliths of the MCT zone may provide critical constraints on the tectonic evolution of the Himalaya. The LHS is lithostratigraphically divided into the upper and lower units. In the Taplejung–Ilam area, different lithologic units and their εNd (0) values are as follows; HHC (− 10.0 to − 18.1), MCT zone (− 18.5 to − 26.2), upper LHS unit (− 17.2), and lower LHS unit (− 22.0 to − 26.9). There is a distinct gap in the εNd (0) values across the UMCT except for the southern frontal edge of the Ilam nappe. In the Annapurna–Galyang and Maikot–Barekot areas, different lithologic units and their εNd (0) values are as follows; HHC (− 13.9 to − 17.7), MCT zone (− 23.8 to − 26.2 except for an outlier of − 12.4), upper LHS unit (− 15.6 to − 26.8), and lower LHS unit (− 24.9 to − 26.8). These isotopic data clearly distinguish the lower LHS unit from the HHC. Combining these data with the previously published data, the lowest εNd (0) value in the HHC is − 19.9. We regard rocks with εNd (0) values below − 20.0 as the LHS. In contrast, rocks with those above − 19.9 are not always the HHC, and some parts of them may belong to the LHS due to the overlapping Nd isotopic ratio between the HHC and LHS. Most rocks of the MCT zone have Nd isotopic ratios similar to those of the LHS, but very different from those of the HHC. The spatial patterns in the distribution of εNd (0) value around the UMCT suggest no substantial structural mixing of the HHC and LHS during the UMCT activities in the Tertiary. A discontinuity in the spatial distribution of εNd (0) values is laterally continuous along the UMCT throughout the Himalayas. These facts support the theory that the UMCT was originally a material boundary between the HHC and LHS, suggesting the MCT zone was mainly developed with undertaking a role of sliding planes during overthrusting of the HHC in the Tertiary. 相似文献
17.
Kireet Kumar M. S. Miral Sneh Joshi Namrata Pant Varun Joshi L. M. Joshi 《Environmental Geology》2009,58(6):1151-1159
The present study investigates solute dynamics of meltwater of Gangotri glacier system in terms of association of different
chemical compounds with the geology of the area. In the meltwater, the presence of cations varied as c(Mg2+) > c(Ca2+) > c(Na+) > c(K+), while order of concentration of anions has been c(HCO3
−) > c(SO4
2−) > c(Cl−) > c(NO3
−) in years 2003 and 2004. The magnesium and calcium are found as the dominant cations along with bicarbonate and sulphate
as dominant anions. The high ratios of c(Ca2+ + Mg2+)/total cations and c(Ca2+ + Mg2+)/c(Na+ + K+) indicate that the meltwater chemistry of the Gangotri glacier system catchment is mostly controlled by carbonate weathering.
Attempts are made to develop rating curves for discharge and different cations. Sporadic rise in discharge without corresponding
rise in concentration of most of cations is responsible for their loose correlation in a compound valley glacier like Gangotri
glacier. 相似文献
18.
Sangla valley is situated at an altitude of ~ 3500 m above mean sea level and lies in the Kinnaur district of Himachal Pradesh.
It is fed by river Baspa, a tributary of river Sutlej, that entrenches through the Quaternary glaciogenic deposits before
emerging out of the valley and joining the river Sutlej at Karcham. The unstratified to stratified glaciogenic deposits consist
of large boulders to fine silt and are classified into four major depositional facies on the basis of sedimentary texture
and depositional environment. The facies — basal conglomerates, debris flow, water/sheet flow and laminites — represents the
change in the environment of deposition from glaciofluvial to lacustrine and also the extent of the glacier to the valley
floor during late Quaternary. 相似文献
19.
《地学前缘(英文版)》2022,13(6):101432
Quantitative glacial chronologies of past glaciations are sparse in the Himalaya, and mostly absent in the Kashmir Himalaya. We used cosmogenic 10Be exposure dating, and geomorphological mapping to reconstruct glacial advances of the Thajwas Glacier (TG) in the Great Himalayan Range of the Kashmir Himalaya. From 10Be exposure dating of ten moraine boulders, four glacial stages with ages ~20.77 ± 2.28 ka, ~11.46 ± 1.69 ka, ~9.12 ± 1.39 ka and ~4.19 ± 0.78 ka, were identified. The reconstructed cosmogenic radionuclide ages confirmed the global Last Glacial Maximum (gLGM), Younger Dryas, Early Holocene, and Neoglaciation episodes. As per area and volume change analyses, the TG has lost 51.1 km2 of its area and a volume of 2.64 km3 during the last 20.77 ± 2.28 ka. Overall, the results suggested that the TG has lost 64% of area and 73% of volume from the Last glacial maximum to Neoglaciation and about 85.74% and 87.67% of area and volume, respectively, from Neoglaciation to the present day. The equilibrium line altitude of the TG fluctuated from 4238 m a.s.l present to 3365 m a.s.l during the gLGM (20.77 ± 2.28 ka). The significant cooling induced by a drop in mean ambient temperature resulted in a positive mass balance of the TG during the gLGM. Subsequently the melting accelerated due to the continuing rise of the global ambient temperature. Paleo-glacial history reconstruction of the Kashmir Himalaya, with its specific geomorphic and climatic setting, would help close the information gap about the chronology of past regional glacial episodes. 相似文献
20.
The fractionation of P in Pandoh Lake surface sediments has been investigated for the first time in order to understand its environmental availability and sources, and the eutrophication status of this lake. Inorganic-P is present mainly as authigenic-P (step-III). The authigenic P concentration is higher in winter relative to the summer and monsoon seasons and ranged from 35.9 to 46.9 μg/g. The loosely sorbed or exchangeable-P (step-I), Fe(III)-bound-P (step-II) and detrital inorganic-P (step-IV) were higher in the monsoon season and varied from 3.70 to 11.1 μg/g, 16.9 to 32.0 μg/g and 9.89 to 17.0 μg/g, respectively. Organic-P reached a maximum in the summer season and ranged from 8.00 to 14.9 μg/g. Authigenic-P and detrital inorganic-P show seasonal changes, as pH influences the interaction between P and CaCO3 in the water column. In the winter season, phosphate is precipitated out of the water column and fixed in the sediments as a result of an increase in pH. Calcite-bound-P in the sediments may be redissolved by decreasing pH in the summer season. Relatively high rates of mineralization during the monsoon results in the seasonal pattern of organic-P fractionation to sediment as follows: monsoon = winter < summer. Iron, Ca, organic matter and silt and clay contents seem to play a significant role in regulating the seasonal P budget. Principal component analysis (PCA) was used to identify the factors which influence sedimentary P in the different seasons. 相似文献