首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consideration is given to a search for relativistic objects in massive close binary systems without strong X-ray emission (L x <1034 erg s–1). It is pointed out that, according to the present-day theory on the evolution of massive close binaries, the number of neutron stars and black holes in non-X-ray binary systems must be 100 times the number of the known X-ray binaries comprising OB supergiant stars; that is why, in studying non-X-ray binary systems, the chances are to detect about a hundred of black holes in the Galaxy.Criteria are formulated for the relativistic nature of companions in the binary systems, such as high spatial velocity values and height Z over the galactic plane for OB stars (runaway stars) and for Wolf-Rayet stars. As reported by Tutukov and Yungelson (1973), as well as by van den Heuvel (1976), the presence of ring-type nebulae can serve as another indication of a relativistic nature of companions in the case of Wolf-Rayet stars.Data are collected on Wolf-Rayet stars with low-mass companions (Table I), which can be relativistic objects accreting within a strong stellar wind from Wolf-Rayet stars. Presented are new findings in respect of spectral examination of the runaway OB-stars (Table II), bringing together data on eight OB stars which can represent binary systems with relativistic companions (Table III).A list of 28 OB-stars (Table IV) which offer a good chance for finding relativistic companions is given.  相似文献   

2.
3.
Evolution of massive stars losing mass with the rateM H L/V C is computed (for =1,2,7). It is shown that observed mass loss rates correspond to 0.3 and, therefore, mass loss by stellar wind cannot play any significant role in the evolution of normal massive stars. However, for several types of massive stars (WR, OH/IR, X-ray sources) enhanced mass loss explains their peculiar features. Computations of evolutionary sequences of massive stars with convective overshooting taken into account (as a formal increase of the convective core) show that a significant broadening of the hydrogen-burning band in the H-R diagram may be obtained.  相似文献   

4.
We review various aspects of the evolutionary history of massive X-ray binaries. It is expected that moderately massive close binaries evolve to Be X-ray binaries, while very massive systems evolve to standard X-ray binaries.The compact objects are formed through supernova explosions. The fairly low galactic latitudes of those systems indicate that the explosion should, in general, not have accelerated the system to a velocity larger than 50kms–1. This implies that the mass of the exploding stars is in general less than 5 to 6M .After the explosion, tidal forces will circularize the orbit of short period systems. Even if the tidal evolution has been completed, the expansion of the optical star during the course of its evolution will continously disturb the stability of the orbit. Short period systems with large mass ratio may eventually become tidally unstable. Cen X-3 may be an example of such a system. The predicted rate of the orbital period decrease of Cen X-3 is in agreement with the observed rate.A way to represent the rotational and magnetic evolution of neutron stars in close binary systems is presented. The observed distribution of the pulsation periods of X-ray pulsars with Be companions is consistent with initial magnetic fields of 1012–1013 G of the neutron stars. We suggest that the fast X-ray pulsars 4U 0115+63 and A 0538-66 are young neutron stars, while Cen X-3 and SMC X-1 are recycled pulsars.The evolutionary relationship between massive X-ray binaries, binary pulsars, and millisecond pulsars is also discussed.Invited paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

5.
The photoelectric spectrophotometric scans of the Be stars Gem, Ori, Mon and CMa have been analyzed to find out few stellar parameters. The absolute energy distributions of these stars in the wavelength range 350–750 nm have been given. Their effective temperatures and gravities have been estimated from comparisons with non-LTE model atmospheres. The stars Gem and Mon have been found to have Balmer discontinuities in emission. The excess emission in the region 620–750 nm has been observed for Mon and CMa. The evolutionary aspects of these stars are discussed and their masses have been estimated.  相似文献   

6.
On the basis of observational data for the absolute R and relative R/R amplitudes of variations in radius of galactic classical cepheids (55 stars from Balona and Stobie (1979) and 30 stars from Sollazzoet al. (1981)), four kinds of empirical linear relations are obtained: log(P V)–logR, logP–logR, log(P V)–log(R/R), and logP–log(R/R);P, R, and V are the pulsation periods, the mean stellar radii, and the amplitudes of light variations, respectively. Three groups of stars are considered: short-period cepheids (SPC)-with logP1.1; long-period cepheids (LPC)-with logP>1.1; and s-cepheids (sC). Both the R values and the R/R values increase withP andP V, for a given group of variables. A comparison is performed with our results obtained from data in other sources (Kurochkin, 1966; Gieren, 1982; etc.). The investigated relations can be applied for determining R and R/R of galactic classical cepheids, by using their observedP and V. All studied galactic classical cepheids have R/R<0.35, R<10R for SPC and 10R <R60R for LPC. The sC have smaller R and R/R values than other classical cepheids, at the same periods (the difference is about 2 times for R and 1.4–2.8 times for R/R); the studied sC have R/R in the range 0.025–0.075 and R in the range 1–3R (only Y Oph has R8R ).  相似文献   

7.
Main results of computations of evolution for massive close binaries (10M +9.4M , 16M +15M , 32M +30M , 64M +60M ) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars — mass exchange — Wolf-Rayet star or blue supergiant plus main sequence star — explosion of the initially more massive star appearing as a supernova event — collapsed or neutron star plus Main-Sequence star, that may be observed as a runaway star — mass exchange leading to X-rays emission — collapsed or neutron star plus WR-star or blue supergiant — second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars.Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries.  相似文献   

8.
We present the seventh list of stars of the late M and C spectral classes taken from the plates of the First Byurakan Spectral Sky Survey (FBS). Data on 24 objects, 2 of which are carbon stars of early subclasses (R-stars), are given for the first time. The spectral membership of two known stars is established. The objects lie in the zone 3 h 40 m 18 h 30 m and +76° +80°.Translated fromAstrofizika, Vol. 38, No. 3, 1995.  相似文献   

9.
Line-forming regions around close binaries with strong winds ( /4r * v 10–4 g cm–2) are large in extent compared with the stars, large enough to screen them. Their orbitally-modulated Doppler shifts can overestimate the mass function, because of a larger rotational lever arm. In particular, most of the black-hole candidates need not involve companions more massive than a neutron star.The solar-wind problem is reconsidered. An extrapolation to Wolf-Rayet stars suggests that their winds are centrifugally driven. Their mass-loss rates tend to have been overestimated.Seemingly single (massive) stars can hide a (compact) companion.  相似文献   

10.
A statistical model for the binaries in the solar neighbourhood is constructed, using schematic but plausible distribution functions for the semi-major axes, the mass-ratios, and the eccentricities. The model is calibrated to give correct numbers of observed visual binaries and is then used to study the (closer) binaries of relevance for the HIPPARCOS mission. One main purpose is to estimate the influence of astrometric binaries observed by their photocentres. It is found that some 500 such systems (out of the 100000 stars observed by HIPPARCOS) should show a detectably curved motion, while more than ten times more show an orbital proper motion bias greater than the HIPPARCOS accuracy 0.002 yr–1. Also, a non-negligible fraction (1%) of all stars will be binaries with periods close to 1 year causing problems for the parallax determination. The main contribution to these figures is from faint Main-Sequence stars. The period-distribution for the resolved HIPPARCOS binaries is also obtained, and for many of them the periods are fairly short (<100 yr). Such data as these are to be used as guidelines in the construction of reduction software for the HIPPARCOS observations.Communication presented at the International Conference on Astrometric Binaries, held on 13–15 June, 1984, at the Remeis-Sternwarte Bamberg, Germany, to commemorate the 200th anniversary of the birth of Friedrich Wilhelm Bessel (1784–1846).  相似文献   

11.
It is suggested that the minimum mass of a star at the time of its formation is approximately 0.01M . Making use of this fact and the stellar mass functionF(M) M , it is found that the hidden mass (or the missing mass) in the solar neighborhood may be explained by the presence of a large number of invisible stars of very low mass (0.01M M<0.07M ).  相似文献   

12.
This article reviews observational data on cataclysmic variables (CVs) whose orbital periods fall within the so-called period gap between 2 and 3 hours. The orbital period distribution of cataclysmic variables and the filling of the period gap by various types of CVs are demonstrated. Roughly half the stars in the period gap are magnetic, of which the majority are polars, while the other half (except a few stars) are SU UMa-type stars characterized by superbursts and superhumps. It is also interesting to note that those intermediate polars whose periods fall within the gap are among the stars with constant superhumps. The height above the galactic plane is estimated for the nonmagnetic stars and it is shown that, contrary to predictions, the stars in the period gap do not belong (except for one) to the spherical component of the galaxy. Light curves, some characteristic times, burst amplitudes, etc. are given for a number of Su UMa-type stars observed by the authors. The evolution of superbursts from the stars NY Ser, V725 Aql, and Var73 Dra is described. Observational data are presented on the classical nova V Per, a star whose period lies right in the middle of the period gap but whose status (magnetic or nonmagnetic) has still unclear.  相似文献   

13.
Apparent radius, visual brightness, effective temperature and absolute radius for 416 B5 v-F5 v stars of the catalogue of the Geneva Observatory (Rufener, 1976) have been determined.Twenty-eight stars, anomalous in log versus (m v)0 diagrams, have been singled out. A good correlation for seven stars, in common with the list of Hanbury Brownet al. (1974), has been found. Similar parameters determined for 279 B5 v-F5 v stars of two preceding papers (Fracassiniet al., 1973, 1975) have allowed us to determine the averaged diagrams logq v/q, logR/R and logT e versus (B-V)0 for 695 B5 v-F5 v stars.Moreover, in the present paper a good correlation logq v/q versus logR/R and careful relation M v=–7.40logR/R +3.31 for B5 v-F5 v stars have been determined. Plain correlations between logR/R and blanketing parameterm 2 for some spectral types seem to point out that there arereal differences in the absolute radii of stars of thesame spectral type, in agreement with recent researches on the HR diagram (Houck and Fesen, 1978).Systematic differences between double (spectroscopic and visual) and single stars are found. In particular, the averaged relation m 2 versus logR/R shows that A2 v-F5 v double stars may have a higher metallicity indexm 2 and smaller absolute radii than single stars. Finally, the diagram logv sini versus logR/R confirms some properties of binary systems found by other researchers (Huang, 1966; Plavec, 1970; Levato, 1974; Kitamura and Kondo, 1978).Thesis for the degree in Applied Physics.  相似文献   

14.
The nonequilibrium dynamical theory of thermonuclear reaction in the stars is used to analyse the stabilities of P-PI reactions in the solar core and 3 reactions of helium burning in the core of red giant stars. The constant stability of stars on the main sequence and the helium flash instability have been explained from a new point of view. Calculations show that the (g - T) term in the dynamical equation has a damaging effect on the stability of the thermonuclear reaction, but its intensity in the core of red giant stars is ~ 107 times that in the solar core. It may be intimately related to some instability of the stellar structure. The effect on the flash instability is especially analysed.  相似文献   

15.
On the basis of the most recent data, the fraction of known Wolf-Rayet binaries is 0.22. In the solar neighbourhood (d<2.5 kpc) this fraction is 0.34In order to assess the relative importance of massive binary evolution as one of the ways to produce WR stars, the galactic distribution of WR binaries is compared with that of single WR stars using improved intrinsic parameters and new data for the fainter WR stars.In the galactic plane the increase of the binary frequency with galactocentric distance is confirmed.In a direction perpendicular to the galactic plane it is demonstrated at all distances from the Sun that the single-line spectroscopic WR binaries with small mass functions have definitely larger -distances than the single WR stars and the WR binaries with massive companions. This is consistent with the evolutionary scenario for massive binaries summarized by van den Heuvel (1976). Among the single WR stars the fraction of those with large |z|-distances is increasing with galactocentric distance, like the fraction of the known binaries. This implies that among the high-|z| single WR stars as well as among the WR stars with lower |z|-values many binaries are still to be discovered.The total WR binary frequency in the Galaxy could be well above 50%.Contribution from the Bosscha Observatory No. 79.Invited paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia, 3–7 June, 1983.  相似文献   

16.
The eighth list of late-type stars of spectral classes M and C detected on the plates of the First Byurakan Spectral Sky Survey (FBS) in the zone +80 +90° is presented. Of the 79 objects detected, 67 are new discoveries (66 M stars and one carbon star); 16 objects are unidentified IRAS sources. The equatorial coordinates, spectral classes, and magnitudes are given.Translated fromAstrofizika, Vol. 39, No. 4, pp. 523–529, November, 1996.  相似文献   

17.
A semi-continuous hierarchy, (i.e., one in which there are galaxies outside clusters, clusters outside superclusters etc.), is examined using an expression of the field equations of general relativity in a form due to Podurets, Misner and Sharp. It is shown (a) that for a sufficiently populous hierarchy, the thinning factor( i+1/ i [r i /r i+1] is approximately equal to the exponentN in a continuous density law (=aR –N) provided (r i /r i+1)3-1; (b) that a hierarchical Universe will not look decidedly asymmetric to an observer like a human being because such salient observers live close to the densest elements of the hierarchy (viz stars), the probability of the Universe looking spherically symmetric (dipole anisotropy0.1 to such an observer being of order unity; (c) the existence of a semi-continuous or continuous hierarchy (Peebles) requires that 2 if galaxies, not presently bound to clusters were once members of such systems; (d) there are now in existence no less than ten arguments for believing 2, though recent number counts by Sandageet al. seem to be in contradiction to such a value; (e) Hubble's law, withH independent of distance, can be proved approximately in a relativistic hierarchy provided (i)N=2, (ii)2GM(R)/c 2 R1; (iii)Rc (iv)M0 in a system of massM, sizeR (f) Hubble's law holds also in a hierarchy with density jumps; (g)H100 km s–1 Mpc–1; (h) objects forming the stellar level of the hierarchy (in a cosmology of the Wilson type) must once have had 2GM/c 2 R1; (i) there is a finite pressurep=2Ga in all astrophysical systems (a=R N ,N2); (j) for the Galaxy, theory predictsp G7×10–12 dyn cm–2, observation givesp G5×10–12 dyn cm–2; (k) if the mass-defect (or excess binding energy) hypothesis is taken as a postulate, all non-collapsed astrophysical systems must be non-static, and any non-static, p0 systems must in any case be losing mass; (1) the predicted mass-loss rate from the Sun is 1012 g s–1, compared to 1011 g s–1 in the observed solar wind; (m) the mass-loss rates known by observation imply timescales of 5×109 years for the Sun and 1010 years for other astrophysical systems; (n) degenerate superdense objects composed of fermions must haveN-2 if they were ever at their Schwarzschild radii and comprised a finite numberN B of baryons; (o)N B1057N for degenerate fermion and boson systems; (p)285-4; (q) the metric coefficients for superdense bodies give equations of motion that imply equal maximum luminosities for all evolving superdense bodies (L max1059 erg s–1); (r) larger bodies have longer time-scales of energy radiation atL max (10–5 s for stars,1 h for QSO's) (s) expansion velocities are c soon after the initial loss of equilibrium in a superdense object; (t) if the density parametera(t) in aR –N isa=a (non-atomic constants of physicsc, G, A), andA, thenN=2; (u) N2 is necessary to giveMM at the stellar level of the hierarchy;(v) systems larger than, and including, galaxies must have formed by clumping of smaller systems and not (as advocated by Wertz and others) in a multiple big bang.  相似文献   

18.
In this paper we adopt the method of relativistic fluid dynamics to examine the number density distribution of stars around a massive black hole in the core of stellar clusters. We obtain extensive results,n(r) r –a, 3/2a9/2, which include, respectively, then(r) r –7/4 power law obtained by Bahcall and Wolf and then(r) r –9/4 power law by Peebles. Sincen(r) is not an observable quantity for star clusters, we also consider general relativity effects, i.e., the consequence of the bending of light, in calculating the projected density of stars in such a system. As an example we employ a massive black hole 103 M inlaid in the center of a globular cluster and calculate various projected densities of stars. The results show that cusp construction occurs in all cases unless the central black hole massM=0, and the polytropic index does not affect at all the position of the capture radiusr a. The obvious differences in the surface density is only embodied in the interior of the capture radius. At the outer regions of the core, the surface density of stars declines rapidly with ar –5 power law in all cases. These results can be applied to cases of unequal-mass and non-steady state.  相似文献   

19.
A detailed study of classical polytropes in general relativity has been presented for O ((dP/dE)O) 1.0 and O((P/E O)O. The behaviour of various structural parameters with O/O, O and O are the values ofP/E and dP/dE at the centre) has been studied. The most important result of this study is the fact the qualitative behaviour of all the structural parameters depends only on the value of µO for the various assigned O values. The maximum value of surface red shift occurs when µO=0.6 and for O=1.0 it equals 0.618. These structures are gravitationally bound for µO0.8 and most so for µO=0.4. The maximum value of binding coefficient comes out to be 0.181 when O=1.0. These structures have been used to model neutron stars. The maximum mass of neutron star based upon such a model comes out to be 2.55M (for µO=0.4 and O=1.0) and maximum size comes out to be 15.0 km (for µO=0.2 and O=1.0). It is also seen that the structures are pulsationally stable for µ0.6.  相似文献   

20.
An essential part in the mechanics under study is taking into consideration the effect of motions of the Universe objects upon that of an individual one surrounded by them including those infinitely far from it. Only macro-objects of the Universe are meant here.
Zusammenfassung Ein wesentlicher Bestandteil der Mechanik unter unserer Betrachtung ist die Berechnung des Einflusses auf die Bewegung eines individuellen Objektes von Bewegungen der Universum Objekte die es umringen einschließlich jene Objekte, die unendlich entfernt sind. Nur Makroobjekte des Weltalles sind in der Absicht dabei.

, . .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号