首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Rb-Sr and U-Pb systematics have been studied in the metasedimentary carbonate rocks from the Paleoproterozoic Kuetsjarvi Formation. Samples were taken from the borehole drilled in the northern zone of the Pechenga Greenstone Belt in the northwestern Kola Peninsula. The carbonate section of the formation is made up of three units (from the bottom to top): (I) dolomite (68 m), (II) calcareous-dolomite (9 m), and (III) clayey calcareous (1 m) ones. Dolomites (Mg/Ca = 0.55–0.61) from the lowermost unit I contain 70.3–111 ppm Sr. Initial 87Sr/86Sr ratio in them varies within 0.70560–0.70623 and characterizes the primary continental-lacustrine carbonate sediments. Calcareous dolomites (Mg/Ca = 0.39–0.59) and dolomitic limestones of units II and III (Mg/Ca = 0.02–0.36) are enriched in Sr (285–745 and 550–1750 ppm, respectively). Initial 87Sr/86Sr ratios in these rocks (0.70406–0.70486 and 0.70407–0.70431, respectively) fall within the range typical of the Jatulian seawater, which indicates that the carbonate sediments of two upper units were formed in an open marine basin. Study of dolomites from unit I showed that the Svecofennian metamorphism more significantly affected the U-Pb systems of carbonate rocks as compared to their Rb-Sr systems. In the 207Pb/204Pb-206Pb/204Pb diagram, most data points corresponding to the carbonate constituent of dolomites define isochron with an age of 1900 ± 25 Ma (MSWD = 0.5). The same samples define a positive correlation in the 208Pb/204Pb-206Pb/204Pb plot. Since sedimentary carbonates usually do not contain Th, this correlation points to secondary enrichment of the studied dolomites in Th or thorogenic 208Pb. Hence, the obtained Pb-Pb dating can be regarded as the age of the Svecofennian metamorphic event. Three samples from dolomites of unit I lack any disturbance of the initial U-Th-Pb systematics, but their trend in the 207Pb/204Pb-206Pb/204Pb diagram deviates from the 1900 Ma isochron. Based on these samples, the model U-Pb premetamorphic age of the Kuetsjarvi carbonate sediments is 2075–2100 Ma. This interval is consistent with the age range of the Lomagundi-Jatulian event, which was responsible for the formation of carbonate sediments with high positive δ13C values.  相似文献   

2.
The paper presents data on the structure, composition, and age of granitoid associations (Tokhtogeshil’skii Complex) composing the Kharanur and Sharatologoi polychronous plutons in the northern part of the Ozernala zone in western Mongolia. The Tokhtogeshil’skii Complex was determined to consist of a number of independent magmatic associations, which were formed at 540–450 Ma, within three age intervals (540–520, 510–485, and 475–450 Ma), have different composition, were derived from different sources, and were emplaced in different geodynamic environments. During the first, island-arc stage (540–520 Ma), high-Al plagiogranites were produced, which belong to tonalite-plagiogranite (531 ± 10 Ma) and diorite (529 ±6 Ma) associations in the Kharanur pluton, low-Al plagiogranites of the tonalite-plagiogranite association (519 ± 8 Ma) in the Sharatologoi pluton, and rocks of the Khirgisnur peridotite-pyroxenite-gabbronorite complex (Kharachulu and Dzabkhan massifs). The rocks of the diorite and plagiogranite associations of the Kharanur pluton have ɛNd(T) from +7.9 to +7.4, TNd(DM) = 0.65 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039. The plagiogranites of the Sharatologoi pluton (tonalite-plagiogranite association) are characterized by ɛNd(T) from +6.5 to +6.6, TNd(DM) = 0.73–0.70 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039, which suggest predominantly juvenile subduction sources of the parental melts at a subordinate role of ancient crustal material. During the second, accretionary stage (510–485 Ma), low-Al plagiogranites of the diorite-tonalite-plagiogranite association of the Sharatologoi pluton (494 ± 10 Ma, M type) were formed. The Sr-Nd isotopic characteristics of these rocks ɛNd(T) = +6.6, (87Sr/86Sr)0 = 0.7039 are analogous to those of the plagiogranitoids of the early type. This suggests that the melted sources were similar in composition. During the third, postcollisional stage (475–450 Ma), rocks of the diorite-granodiorite-granite association were formed (459 ± 10 Ma, type I) in the Kharanur pluton. These rocks have ɛNd(T) = +5.1, TNd(DM) = 0.74 Ga, and (87Sr/86Sr)0 = 0.7096. The parental melts were supposedly derived by means of partial melting of “the Caledonian” juvenile crust with the addition of more ancient crustal material.  相似文献   

3.
Summary The timing of Zn–Pb mineralization hosted by early dolomitized lagoonal limestones (Crest facies) at Bleiberg (Carinthia, Austria) has been constrained using Sr-isotopes. This late stage Zn–Pb mineralization is a special feature of the Bleiberg deposit. Samples of the mineralized Crest facies are characterized by higher concentrations of minor and trace elements (except Ba and Sr) compared to samples from the weakly mineralized Wetterstein limestone of the lagoonal facies. The samples from the Crest facies indicate that a fluid with a minimum 87Sr/86Sr ratio of 0.7083 reacted at 210±30 Ma with carbonate rocks having 87Sr/86Sr ratios of approximately 0.7077 during a late stage of ore formation. The 87Sr/86Sr ratios correlate with the Mn and Cl concentrations. Lead isotope data of whole rock samples of Bleiberg yielded an isochron age of 180±40 Ma. They furthermore confirm the presence of two types of common lead; an isotopically distinct ore lead component is present within and close to the ore bodies. The other common Pb component is present in host rocks and in gangue minerals and is distinguished from the ore lead by lower 207Pb/204Pb and 208Pb/204Pb ratios. The Sr and the Pb ages are consistent with geological evidence indicating a Triassic age of Pb–Zn mineralization and support genetic models emphasizing the role of bacteriogenic sulfate reduction at low temperatures prior to subsidence and burial. Elevated 87Sr/86Sr values (>0.7080) of gangue minerals indicate an epigenetic origin of strontium. Our results are consistent with a genetic model postulating formation of the ore-bearing hydrothermal fluids “at depth” where they leached lead from pre-Upper Carboniferous basement rocks.  相似文献   

4.
This paper presents the first Sr isotopic data for the Late Precambrian carbonate rocks of the southern Yenisei Ridge. Their geochemical study allowed estimation of the degree of secondary alterations and gave the possibility to reveal rocks with a less disturbed Rb-Sr isotopic system. The Sr isotopic data indicated Neoproterozoic sedimentation of the rocks about 1070–750 Ma ago. Sr and C isotopic data showed that carbonate rocks of the Sukhoi Pit, Tungusik, and Shirokino groups are Late Riphean and could be comparable with sedimentary sequences of three Precambrian key sections of the Northern Eurasia: the subsequent Derevnino, Burovaya, and Shorikha formations from the Turukhansk Uplift, the Lakhanda Group from the Uchur-Maya region, and the Karatav Group from the South Urals. All studied carbonate rocks are older than 750 Ma and, according to the International Stratigraphic Chart, accumulated prior to global glaciations in the Cryogenian. This is evident from sedimentological study indicating the absence of tillite horizons in the studied sections. δ13C values in the sections vary from +0.4 up to +5.3‰, which testifies to the absence of periods of great cold.  相似文献   

5.
Multi-isotope study including whole-rock Nd–Sr, single zircon Hf, and SIMS δ18O analyses of zircons sheds light on magma sources in the northernmost Arabian–Nubian Shield (ANS) during ~820–570 Ma. Reconnaissance initial Nd and Sr isotope data for the older rocks (~820–740 Ma) reaffirms previous estimates that early crustal evolution in this part of the shield involved some crustal contamination by pre-ANS material. Prominent isotope provinciality is displayed by post-collisional calc-alkaline and alkaline igneous rocks of ~635–570 Ma across a NW-SE transect across basement of the Sinai Peninsula (Egypt) and southern Israel. Silicic rocks of the NW-region are characterized by lower εNd(T)–εHf(T) and higher Sri and δ18O compared with rocks of the SE-region, and the transition between the regions is gradual. Within each region isotope ratios are independent of the extent of magma fractionation, and zircon cores and rims yield similar δ18O values. Comparison with southern segments of the ANS shows that the source for most ~635–570 Ma rocks can be modeled as the isotopically aged lower-intermediate crust in the ANS core (SE-region) and its northern, more contaminated ANS margins (NW-region). Nevertheless, Nd–Sr isotope enrichment of the lithospheric mantle is indicated by some basic magmas of the NW-region displaying the most enriched Nd–Sr isotope compositions. Comparison of Nd and Hf depleted mantle model ages for rocks of the SE-region may indicate that crustal formation events in the ANS geographical core took place at 1.1–1.2 Ga and were followed by crustal differentiation starting at ~0.9 Ga.  相似文献   

6.
 Latest Devonian to early Carboniferous plutonic rocks from the Odenwald accretionary complex reflect the transition from a subduction to a collisional setting. For ∼362 Ma old gabbroic rocks from the northern tectonometamorphic unit I, initial isotopic compositions (εNd=+3.4 to +3.8;87Sr/86Sr =0.7035–0.7053;δ18O=6.8–8.0‰) and chemical signatures (e.g., low Nb/Th, Nb/U, Ce/Pb, Th/U, Rb/Cs) indicate a subduction-related origin by partial melting of a shallow depleted mantle source metasomatized by water-rich, large ion lithophile element-loaded fluids. In the central (unit II) and southern (unit III) Odenwald, syncollisional mafic to felsic granitoids were emplaced in a transtensional setting at approximately 340–335 Ma B.P. Unit II comprises a mafic and a felsic suite that are genetically unrelated. Both suites are intermediate between the medium-K and high-K series and have similar initial Nd and Sr signatures (εNd=0.0 to –2.5;87Sr/86Sr=0.7044–0.7056) but different oxygen isotopic compositions (δ18O=7.3–8.7‰ in mafic vs 9.3–9.5‰ in felsic rocks). These characteristics, in conjunction with the chemical signatures, suggest an enriched mantle source for the mafic magmas and a shallow metaluminous crustal source for the felsic magmas. Younger intrusives of unit II have higher Sr/Y, Zr/Y, and Tb/Yb ratios suggesting magma segregation at greater depths. Mafic high-K to shoshonitic intrusives of the southern unit III have initial isotopic compositions (εNd=–1.1 to –1.8;87Sr/86Sr =0.7054–0.7062;δ18O=7.2–7.6‰) and chemical characteristics (e.g., high Sr/Y, Zr/Y, Tb/Yb) that are strongly indicative of a deep-seated enriched mantle source. Spatially associated felsic high-K to shoshonitic rocks of unit III may be derived by dehydration melting of garnet-rich metaluminous crustal source rocks or may represent hybrid magmas. Received: 7 December 1998 / Accepted: 27 April 1999  相似文献   

7.
Granitoids from the central Mawson Escarpment (southern Prince Charles Mountains, East Antarctica) range in age from Archaean to Early Ordovician. U–Pb dating of zircon from these rocks indicates that they were emplaced in three distinct pulses: at 3,519 ± 20, 2,123 ± 12 Ma and between 530 and 490 Ma. The Archaean rocks form a layer-parallel sheet of limited extent observed in the vicinity of Harbour Bluff. This granitoid is of tonalitic-trondhjemitic composition and has a Sr-undepleted, Y-depleted character typical of Archaean TTG suites. εNd and TDM values for these rocks are −2.1 and 3.8 Ga, respectively. Subsequent Palaeoproterozoic intrusions are of granitic composition (senso stricto) with pronounced negative Sr anomalies. These rocks have εNd and TDM values of −4.8 and 2.87 Ga, indicating that these rocks were probably melted from an appreciably younger source than that tapped by the Early Archaean orthogneiss. The remaining intrusions are of Early Cambrian to Ordovician age and were emplaced coincident with the major orogenic event observed in this region. Cambro–Ordovician intrusive activity included the emplacement of layer-parallel pre-deformational granite sheets at approximately 530 Ma, and the intrusion of cross cutting post-tectonic granitic and pegmatitic dykes at ca. 490 Ma. These intrusive events bracket middle- to upper-amphibolite facies deformation and metamorphism, the age of which is constrained to ca. 510 Ma—the age obtained from a syn-tectonic leucogneiss. Nd–Sr isotope data from the more felsic Cambro–Ordovican intrusions (SiO2 > 70 wt%), represented by the post-tectonic granite and pegmatite dykes, suggest these rocks were derived from Late Archaean or Palaeoproterozoic continental crust (TDM ∼ 3.5–2.3 Ga, εNd ∼ −21.8 to −25.9) not dissimilar to that tapped by the Early Proterozoic intrusions. In contrast, the compositionally more intermediate rocks (SiO2 < 65 wt%), represented by the metaluminous pre-tectonic Turk orthogneiss, appear to have melted from a notably younger lithospheric or depleted mantle source (TDM = 1.91 Ga, εNd ∼ −14.5). The Turk orthogneiss additionally shows isotopic (low 143Nd/144Nd and low 87Sr/86Sr) and geochemical (high Sr/Y) similarities to magmas generated at modern plate boundaries—the first time such a signature has been identified for Cambrian intrusive rocks in this sector of East Antarctica. These data demonstrate that: (1) the intrusive history of the Lambert Complex differs from that observed in the adjacent tectonic provinces exposed to the north and the south and (2) the geochemical characteristics of the most mafic of the known Cambrian intrusions are supportive of the notion that Cambrian orogenesis occurred at a plate boundary. This leads to the conclusion that the discrete tectonic provinces observed in the southern Prince Charles Mountains were likely juxtaposed as a result of Early Cambrian tectonism.  相似文献   

8.
The Dargawan gabbros intrusive into the Moli Subgroup of Bijawar Group, yielded Rb-Sr whole rock isochron age of 1967 ± 140 Ma. Based on the oldest age from overlying Lower Vindhyan (1.6Ga) and the underlying youngest basement ages (2.2 Ga), the time range of Bijawar sedimentation may be assigned as 2.1–1.6 Ga (Paleoproterozoic). Sm-Nd Model ages (TDM), obtained, for Dargawan gabbros, is c. 2876–3145 Ma. High initial 87Sr/ 86Sr ratio of 0.70451 (higher than the contemporary mantle) and negative ɛNdi (at 1.9 Ga) value of −1.5 to − 4.5, indicate assimilation of Archaean lower crustal component by the enriched mantle source magma at the time of gabbroic intrusion. The dolerite, from Damdama area, which is intrusive into the basement and overlying sediments of Chandrapur Group in the central Indian craton, yielded Rb-Sr internal isochron age of 1641 ± 120 Ma. The high initial 87Sr/86Sr ratio of 0.7098 and ɛNdi value of −3.5 to −3.7 (at 1.6 Ga) is due to contamination of the mantle source magma with the overlying sediments. These dolerites have younger Sm-Nd Model ages (TDM) than Dargawan gabbros as c. 2462–2675 Ma, which is similar to the age of the Sambalpur granite, from which probably sediments to this part of Chattisgarh basin are derived. Hence mixing of sediments with the Damdama dyke during its emplacement, gives rise to high initial 87Sr/86Sr and low initial 143Nd/144 ratios for these dykes. The c. 1600 Ma age indicates minimum age of onset of the sedimentation in the Chandrapur Group of Chattisgarh basin. Both the above mafic intrusions might have taken place in an intracratonic rift related (anorogenic) tectonic setting. This study is the first reliable age report on the onset of sedimentation in the Chandrapur Group. The total minimum time span of Chandrapur and Raipur Group may be 1.6 Ga to 1.0 Ga (Mesoproterozoic). The unconformably underlying Shingora Group of rocks of Chhattisgarh Supergroup thus indicates Paleoproterozoic age (older than 1.6 Ga). Most part of the recently classified Chattisgarh Supergroup and Bijawar-Vindhyan sequence are of Mesoproterozoic-Paleoproterozoic age and not of Neoproterozoic-Mesoproterozoic age as considered earlier. Petrographic study of basic dykes from Damdama area (eastern margin of Chattisgarh Supergroup) indicated presence of primary uranium mineral brannerite associated with goethite. This is the evidence of mafic intrusive providing geotherm and helping in scavenging the uranium from the surrounding and later alterations causing remobilisation and reconcentration of pre-existing uranium in host rocks as well as in mafic dyke itself otherwise mafic rocks are poor source of uranium and can not have primary uranium minerals initially. It can be concluded that mafic dykes have role in uranium mineralisation although indirectly.  相似文献   

9.
The Tuwu–Yandong porphyry copper belt lies in the eastern Tianshan mountains, eastern section of the Central Asian orogenic belt. The copper mineralization is mainly hosted in plagiogranite porphyries intruded into early Carboniferous volcanic rocks of the Paleozoic Dananhu island arc between the Tarim and Siberian plates. The plagiogranite porphyries have contents of 65–73 wt% SiO2, 14–17 wt% Al2O3, 0.9–2.2 wt% MgO, 3–16 ppm Y, 0.4–1.40 ppm Yb, 347–920 ppm Sr, and positive Eu anomalies. The rocks also exhibit positive ɛ Nd(t) values (+5.0 to +9.4) and low initial 87Sr/86Sr values (0.70316–0.70378). Such features are similar to those of adakites derived from partial melting of a subduction-related oceanic slab. The mineralization age is early Carboniferous (350–320 Ma), which is close to that of the porphyries. The close relationship between the Cu mineralization and the porphyry is also indicated by their similar Sr-Nd-Pb isotopic compositions. We suggest that the copper porphyry (magma) system in the Dananhu island arc was formed by direct melting of an obliquely subducting early Carboniferous oceanic slab.  相似文献   

10.
The Middle Cenozoic lava sequence of the Lake Kizi region was studied. It characterizes the activity of sources in the Northern zone of the eastern Sikhote Alin: a Middle Eocene pulse of slab-related magmatism and prolonged injection of magmas from the sublithospheric convecting mantle in the Late Oligocene. Low contents of high field strength elements (Nb and Ta) with low Nb/Ta, Ce/Pb, and Nb/La and high K/Nb ratios and a low (87Sr/86Sr)0 of 0.703399 were determined in a Middle Eocene dacite with an age of ∼43.5 Ma. Three phases of Late Oligocene volcanic eruptions were distinguished: (1) basaltic andesites (29–27 Ma), (2) basaltic trachyandesites and trachyandesites (27–24 Ma), and (3) andesites (∼23 Ma). The lavas of the first and third phases showed low Ce/Pb, Nb/La, and Ba/La and high K/Nb ratios, which are also characteristic of supraslab processes. The lavas of the second phase are shifted with respect to these ratios toward ocean island basalt compositions. The entire Late Oligocene volcanic sequence falls within a narrow range of the initial strontium isotope ratios, (87Sr/86Sr)0, from 0.703661 to 0.703853. Such ratios are characteristic of volcanic and subvolcanic rocks with ages of ∼37, 31–23, and ∼16 Ma over the whole region of the Tatar Strait coast.  相似文献   

11.
The Early Devonian Gumeshevo deposit is one of the largest ore objects pertaining to the dioritic model of the porphyry copper system paragenetically related to the low-K quartz diorite island-arc complex. The (87Sr/86Sr)t and (ɛNd)t of quartz diorite calculated for t = 390 Ma are 0.7038–0.7045 and 5.0–5.1, respectively, testifying to a large contribution of the mantle component to the composition of this rock. The contents of typomorphic trace elements (ppm) are as follows: 30–48 REE sum, 5–10 Rb, 9–15 Y, and 1–2 Nb. The REE pattern is devoid of Eu anomaly. Endoskarn of low-temperature and highly oxidized amphibole-epidote-garnet facies is surrounded by the outer epidosite zone. Widespread retrograde metasomatism is expressed in replacement of exoskarn and marble with silicate (chlorite, talc, tremolite)-magnetite-quartz-carbonate mineral assemblage. The 87Sr/86Sr ratios of epidote in endoskarn and carbonate in retrograde metasomatic rocks (0.7054–0.7058 and 0.7053–0.7065, respectively) are intermediate between the Sr isotope ratios of quartz dioritic rocks and marble (87Sr/86Sr = 0.70784 ± 2). Isotopic parameters of the fluid equilibrated with silicates of skarn and retrograde metasomatic rocks replacing exoskarn at 400°C are δ18O = +7.4 to +8.5‰ and δD = −49 to −61‰ (relative to SMOW). The δ13C and δ18O of carbonates in retrograde metasomatic rocks after marble are −5.3 to +0.6 (relative to PDB) and +13.0 to +20.2% (relative to SMOW), respectively. Sulfidation completes metasomatism, nonuniformly superimposed on all metasomatic rocks and marbles with formation of orebodies, including massive sulfide ore. The δ34S of sulfides is 0 to 2‰ (relative to CDT);87Sr/86Sr of calcite from the late calcite-pyrite assemblage replacing marble is 0.704134 ± 6. The δ13C and 87Sr/86Sr of postore veined carbonates correlate positively (r = 0.98; n = 6). The regression line extends to the marble field. Its opposite end corresponds to magmatic (in terms of Bowman, 1998b) calcite with minimal δ13C, δ18O, and 87Sr/86Sr values (−6.9 ‰, +6.7‰, and 0.70378 ± 4, respectively). The aforementioned isotopic data show that magmatic fluid was supplied during all stages of mineral formation and interacted with marble and other rocks, changing its Sr, C, and O isotopic compositions. This confirms the earlier established redistribution of major elements and REE in the process of metasomatism. A contribution of meteoric and metamorphic water is often established in quartz from postore veins.  相似文献   

12.
The Precambrian Chhotanagpur granite gneiss complex (CGGC) terrain covers more than 80,000 sq km area, and is dominated by granitoid gneisses and migmatites. Recent geochronological data indicate that the CGGC terrain has witnessed five tectonomagmatic thermal events at: (i) 2.5–2.4 Ga, (ii) 2.2–2.0 Ga, (iii) 1.6–1.4 Ga, (iv) 1.2–1.0 Ga, and (v) 0.9–0.8 Ga. Of these, the third and the fourth events are widespread. The whole-rock Rb-Sr isotopic analysis of twenty granite samples from the CGGC of Raikera-Kunkuri region, Jashpur district, Chhattisgarh, Central India, yields two distinct isochrons. The eleven samples of grey granites define an isochron age of 1005±51 Ma with moderate initial 87Sr/86Sr ratio of 0.7047±0.0065, which corresponds to the fourth tectonomagmatic event. On the other hand, the nine samples of pink granites indicate younger isochron age of 815±47 Ma with a higher initial 87Sr/86Sr ratio of 0.7539±0.0066 that matches with the fifth phase of the thermal event. The data suggest emplacement of large bodies of grey granite at ∼1005 Ma that evolved possibly from precursors of tonalitic-granodioritic composition. Furthermore, the younger age (∼815 Ma) suggests the age of metasomatism, involving isotopic resetting, that resulted in genesis of pink granite bodies of limited areal extent. By analogy, the age of metasomatism (∼815 Ma) may also be taken to represent the age of Y-mineralisation in the Raikera-Kunkuri region of the CGGC terrain.  相似文献   

13.
Precious-metal mineralization in the southern Apuseni Mountains of western Romania is hosted by mid-Miocene (∼14 Ma) andesitic stocks and lava flows. The mineralized veins are surrounded by aureoles of hydrothermal alteration, consisting of quartz, sericite, K-feldspar, pyrite and calcite. The alteration process caused a total homogenization of initial 87Sr/86Sr in the rocks. Ages determined for the hydrothermal alteration are 13.7–15.7 Ma, indicating that hydrothermal alteration immediately followed igneous activity. Furthermore, a large influx of radiogenic Sr took place during alteration, this Sr probably being derived from the hydrothermal leaching of continental meta-sedimentary rocks in the basement. Received: 5 December 1997 / Accepted: 26 February 1998  相似文献   

14.
The main objective of this work is the generalization of lithostratigraphic, biostratigraphic and isotopic-geochronological data characterizing carbonate rocks from type succession of the broadly acknowledged chronostratigraphic subdivision of the Lower Riphean, such as the Burzyan Group of the Southern Urals and its analogs. Using an original approach to investigation of the Rb-Sr and Pb-Pb isotopic systems in carbonates and strict criteria of their retentivity, we studied the least altered (“best”) samples of the Burzyan carbonates, which retain the 87Sr/86Sr ratio of the sedimentation environment. As long ago as 1550 ± 30 and 1430 ± 30 Ma, that ratio corresponded to 0.70460–0.70480 and 0.70456–0.70481. The results confirm the influx of the mantle material predominantly into the World Ocean of the Early Riphean. The influence of meteoric diagenesis was likely responsible for local declines of δ18O in the Burzyan carbonates down to the values of −2.5 to −1.5‰ V-PDB. In the “best” samples, this parameter ranges from −0.7 to 0‰, which is consistent with the assumption that δ18O values (0 ± 1‰) characterized the stasis of the carbonate carbon isotopic composition in oceanic water 2.06–1.25 Ga ago. C-isotopic data on carbonate from the Paleoproterozoic-Lower Riphean boundary formations of the Urals, India, North America and Siberia suggest that the mentioned stasis ended by the commencement of the Early Riphean ca. 1.6–1.5 Ga ago. In the least altered carbonates of the Early Riphean, the δ18O variation range corresponds to 4.0–4.5‰.  相似文献   

15.
Isotopic compositions of C, O, and Sr in carbonates, as well as Rb-Sr systems in the silicate material from Upper Precambrian and Lower Cambrian rocks exposed by the Chapa River in the northern Yenisei Ridge, are studied. The Late Precambrian part of the section includes the following formations (from the bottom to top): Lopatinskaya (hereafter, Lopatino), Vandadykskaya (hereafter, Vandadyk) or Kar’ernaya, Chivida, Suvorovskaya (hereafter, Suvorovo), Pod”emskaya (hereafter, Podyom), and Nemchanka. They are characterized by alternation of horizons with anomalously high and low δ13C values (such alternation is typical of the ∼700–550 Ma interval). The lower, relatively thin (20 m), positive excursion (δ13C up to 4.3‰) was established in dolomites from the lower subformation of the Vandadyk (Kar’ernaya) Formation (hereafter, lower Vandadyk subformation). The upper positive excursion (δ13C = 2.2 ± 0.6‰) was recorded in the 3-km-thick Nemchanka Formation enriched in terrigenous rocks. The lower negative excursion stands out as uniform, moderately low δ13C values (−2 ± 1‰) and significant thickness. It comprises the upper part of the Vandadyk Formation, as well as Chivida and Podyom formations. The upper negative excursion is related to a thin (∼20 m) marker carbonate horizon of the upper Nemchanka subformation, in which δ13C values fall down to −8.3‰. The lower part of the Lebyazhinskaya (hereafter, Lebyazhino) Formation, which overlies the Nemchanka Formation, shows a step-by-step increase in δ13C from −2.2 to 2.5‰ typical of the Vendianto-Cambrian (Nemakit-Daldyn Horizon/Stage) transitional sequences. The absence of relationships between the carbon and oxygen isotope compositions and other parameters of postsedimentary alterations suggests that the excursions characterized above could form at the sedimentation stage and coincide in general with δ13C fluctuations in seawater. The value of 87Sr/86Sr = 0.7076−0.7078 in limestones of the Podyom Formation points to their early Ediacaran age. Values of 87Sr/86Sr = 0.70841 and 0.70845 in dolomites of the lower Lebyazhino subformation correspond to the Early Cambrian. The Rb-Sr systems of the clay material from the Vandadyk and Chivida formations are approximated by a straight line, parameters of which correspond to the age of 695 ± 20 Ma (87Sr/86Sr0 = 0.7200 ± 0.0013) and probably characterize the epigenetic stage of older sedimentary rocks, which were subjected to very rapid exhumation and “polar” sulfuric acid weathering in the course of glacioeustatic regression.  相似文献   

16.
Major- and trace-element contents and Sr–Nd isotope ratios were determined in albitite, albitized and unaltered late-Variscan granitoid samples from the world-class Na-feldspar deposits of central Sardinia, Italy. The albite deposit of high economic grade has geological, textural, and chemical features typical of metasomatic alteration affecting the host granitoids. Albitization, locally accompanied by chloritization and epidotization, was characterized by strong leaching of Mg, Fe, K, and geochemically similar trace elements, and by a significant increase of Na. Ca, and P were moderately leached in the most metasomatized rocks. Other major (Si, Ti, Ca) and trace elements (U, Th, Y, and Zr), along with light (LREE) and middle (MREE) rare-earth elements, behaved essentially immobile at the deposit scale. The Nd-isotope ratios (0.512098 to 0.512248) do not provide information on the emplacement age of the unaltered late-Variscan granitoids. On the other hand, their Sr-isotope ratios fit an errorchron of 274±29 Ma (1σ error), in fair agreement with all published ages of Sardinian Variscan granitoids. The very low Rb content of albitized rocks precludes application of the Rb–Sr radiometric system to determine the age of albitization. The Sm–Nd system is not applicable either, because the 143Nd/144Nd ratios of albitized rocks and unaltered granitoids overlap. The overlap confirms that Sm and Nd were substantially immobile during albitization. On the other hand, the measured 87Sr/86Sr ratios of the albitized rocks are appreciably lower than those of the unaltered host granitoids, whereas, their initial Sr-isotope ratios are higher. This seems to suggest that a) albitization was induced by non-magmatic fluids rich in radiogenic Sr, and b) albitization occurred shortly after the granitoid emplacement. This conclusion is supported by Nd isotopes, because unaltered granitoids and albitites fit the same reference isochron at 274 Ma. The fluids acquired radiogenic Sr by circulation through the Lower Paleozoic metasedimentary basement. Specifically, it is estimated that Sr supplied by the non-carbonatic basement represents about 22 wt% of total Sr in albitite.  相似文献   

17.
We show here that the Amalaoulaou complex, in the Pan-African belt of West Africa (Gourma, Mali), corresponds to the lower and middle sections of a Neoproterozoic intra-oceanic arc. This complex records a 90–130-Ma-long evolution of magmatic inputs and differentiation above a subducting oceanic slab. Early c. 793 Ma-old metagabbros crystallised at lower crustal or uppermost mantle depths (25–30 km) and have geochemical characteristic of high-alumina basalts extracted from a depleted mantle source slightly enriched by slab-derived sedimentary components ((La/Sm)N < 1; εNd: +5.4–6.2; 87Sr/86Sr: 0.7027–0.7029). In response to crustal thickening, these mafic rocks were recrystallised into garnet-granulites (850–1,000°C; 10–12 kbar) and subject to local dehydration–melting reactions, forming trondhjemititic leucosomes with garnet–clinopyroxene–rutile residues. Slightly after the granulitic event, the arc root was subject to strong HT shearing during partial exhumation (detachment faults/rifting or thrusting), coeval with the emplacement of spinel- and garnet-pyroxenite dykes crystallised from a high-Mg andesitic parental magma. Quartz and hornblende-gabbros (700–660 Ma) with composition typical of hydrous volcanic rocks from mature arcs ((La/Sm)N: 0.9–1.8; εNd: +4.6 to +5.2; 87Sr/86Sr: 0.7028–0.7031) were subsequently emplaced at mid-arc crust levels (~15 km). Trace element and isotopic data indicate that magmas tapped a depleted mantle source significantly more enriched in oceanic sedimentary components (0.2%). Exhumation occurred either in two stages (700–660 and 623 Ma) or in one stage (623 Ma) with a final exhumation of the arc root along cold P-T path (550°C, 6–9 kbar; epidote–amphibolite and greenschist facies conditions) during the main Pan-African collision event (620–580 Ma). The composition of magmas forming the Cryogenian Amalaoulaou arc and the processes leading to intra-arc differentiation are strikingly comparable to those observed in the deep section of exposed Mezosoic oceanic arcs, namely the Kohistan and Talkeetna complex. This evolution of the Amalaoulaou oceanic arc and its accretion towards the West African craton belong to the life and closure of the Pharusian Ocean that eventually led to the formation of the Greater Gondwana supercontinent, a similar story having occurred on the other side of the Sahara with the Mozambique Ocean.  相似文献   

18.
The Chelopech deposit is one of the largest European gold deposits and is located 60 km east of Sofia, within the northern part of the Panagyurishte mineral district. It lies within the Banat–Srednegorie metallogenic belt, which extends from Romania through Serbia to Bulgaria. The magmatic rocks define a typical calc-alkaline suite. The magmatic rocks surrounding the Chelopech deposit have been affected by propylitic, quartz–sericite, and advanced argillic alteration, but the igneous textures have been preserved. Alteration processes have resulted in leaching of Na2O, CaO, P2O5, and Sr and enrichment in K2O and Rb. Trace element variation diagrams are typical of subduction-related volcanism, with negative anomalies in high field strength elements (HFSE) and light element, lithophile elements. HFSE and rare earth elements were relatively immobile during the hydrothermal alteration related to ore formation. Based on immobile element classification diagrams, the magmatic rocks are andesitic to dacitic in compositions. Single zircon grains, from three different magmatic rocks spanning the time of the Chelopech magmatism, were dated by high-precision U–Pb geochronology. Zircons of an altered andesitic body, which has been thrust over the deposit, yield a concordant 206Pb/238U age of 92.21 ± 0.21 Ma. This age is interpreted as the crystallization age and the maximum age for magmatism at Chelopech. Zircon analyses of a dacitic dome-like body, which crops out to the north of the Chelopech deposit, give a mean 206Pb/238U age of 91.95 ± 0.28 Ma. Zircons of the andesitic hypabyssal body hosting the high-sulfidation mineralization and overprinted by hydrothermal alteration give a concordant 206Pb/238U age of 91.45 ± 0.15 Ma. This age is interpreted as the intrusion age of the andesite and as the maximum age of the Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf isotope ratios of zircons from the Chelopech magmatic rocks, together with published data on the Chelopech area and the about 92-Ma-old Elatsite porphyry–Cu deposit, suggest two different magma sources in the Chelopech–Elatsite magmatic area. Magmatic rocks associated with the Elatsite porphyry–Cu deposit and the dacitic dome-like body north of Chelopech are characterized by zircons with ɛHfT90 values of ∼5, which suggest an important input of mantle-derived magma. Some zircons display lower ɛHfT90 values, as low as −6, and correlate with increasing 206Pb/238U ages up to about 350 Ma, suggesting assimilation of basement rocks during magmatism. In contrast, zircon grains in andesitic rocks from Chelopech are characterized by homogeneous 176Hf/177Hf isotope ratios with ɛHfT90 values of ∼1 and suggest a homogeneous mixed crust–mantle magma source. We conclude that the Elatsite porphyry–Cu and the Chelopech high-sulfidation epithermal deposits were formed within a very short time span and could be partly contemporaneous. However, they are related to two distinct upper crustal magmatic reservoirs, and they cannot be considered as a genetically paired porphyry–Cu and high-sulfidation epithermal related to a single magmatic–hydrothermal system centered on the same intrusion.  相似文献   

19.
The sediment-hosted stratiform Cu–Co mineralization of the Luiswishi and Kamoto deposits in the Katangan Copperbelt is hosted by the Neoproterozoic Mines Subgroup. Two main hypogene Cu–Co sulfide mineralization stages and associated gangue minerals (dolomite and quartz) are distinguished. The first is an early diagenetic, typical stratiform mineralization with fine-grained minerals, whereas the second is a multistage syn-orogenic stratiform to stratabound mineralization with coarse-grained minerals. For both stages, the main hypogene Cu–Co sulfide minerals are chalcopyrite, bornite, carrollite, and chalcocite. These minerals are in many places replaced by supergene sulfides (e.g., digenite and covellite), especially near the surface, and are completely oxidized in the weathered superficial zone and in surface outcrops, with malachite, heterogenite, chrysocolla, and azurite as the main oxidation products. The hypogene sulfides of the first Cu–Co stage display δ34S values (−10.3‰ to +3.1‰ Vienna Canyon Diablo Troilite (V-CDT)), which partly overlap with the δ34S signature of framboidal pyrites (−28.7‰ to 4.2‰ V-CDT) and have ∆34SSO4-Sulfides in the range of 14.4‰ to 27.8‰. This fractionation is consistent with bacterial sulfate reduction (BSR). The hypogene sulfides of the second Cu–Co stage display δ34S signatures that are either similar (−13.1‰ to +5.2‰ V-CDT) to the δ34S values of the sulfides of the first Cu–Co stage or comparable (+18.6‰ to +21.0‰ V-CDT) to the δ34S of Neoproterozoic seawater. This indicates that the sulfides of the second stage obtained their sulfur by both remobilization from early diagenetic sulfides and from thermochemical sulfate reduction (TSR). The carbon (−9.9‰ to −1.4‰ Vienna Pee Dee Belemnite (V-PDB)) and oxygen (−14.3‰ to −7.7‰ V-PDB) isotope signatures of dolomites associated with the first Cu–Co stage are in agreement with the interpretation that these dolomites are by-products of BSR. The carbon (−8.6‰ to +0.3‰ V-PDB) and oxygen (−24.0‰ to −10.3‰ V-PDB) isotope signatures of dolomites associated with the second Cu–Co stage are mostly similar to the δ13C (−7.1‰ to +1.3‰ V-PDB) and δ18O (−14.5‰ to −7.2‰ V-PDB) of the host rock and of the dolomites of the first Cu–Co stage. This indicates that the dolomites of the second Cu–Co stage precipitated from a high-temperature, host rock-buffered fluid, possibly under the influence of TSR. The dolomites associated with the first Cu–Co stage are characterized by significantly radiogenic Sr isotope signatures (0.70987 to 0.73576) that show a good correspondence with the Sr isotope signatures of the granitic basement rocks at an age of ca. 816 Ma. This indicates that the mineralizing fluid of the first Cu–Co stage has most likely leached radiogenic Sr and Cu–Co metals by interaction with the underlying basement rocks and/or with arenitic sedimentary rocks derived from such a basement. In contrast, the Sr isotope signatures (0.70883 to 0.71215) of the dolomites associated with the second stage show a good correspondence with the 87Sr/86Sr ratios (0.70723 to 0.70927) of poorly mineralized/barren host rocks at ca. 590 Ma. This indicates that the fluid of the second Cu–Co stage was likely a remobilizing fluid that significantly interacted with the country rocks and possibly did not mobilize additional metals from the basement rocks.  相似文献   

20.
We report concordant ages of 451.1 ± 6.0 and 450.5 ± 3.4 Ma from direct Rb–Sr and Re–Os isochron dating, respectively, of ore-stage Zn–Cu–Ge sulfides, including sphalerite for the giant carbonate-hosted Kipushi base metal (+Ge) deposit in the Neoproterozoic Lufilian Arc, DR Congo. This is the first example of a world-class sulfide deposit being directly dated by two independent isotopic methods. The 451 Ma age for Kipushi suggests that the ore-forming solutions did not evolve from metamorphogenic fluids mobilized syntectonically during the Pan-African-Lufilian orogeny but rather were generated in a Late Ordovician postorogenic, extensional setting. The homogeneous Pb isotopic composition of the sulfides indicates that both Cu–Ge- and Zn-rich orebodies of the Kipushi deposit formed contemporaneously from the same fluid system. The sulfide Pb isotope signatures in combination with initial 87Sr/86Sr and 187Os/188Os ratios defined by the isochrons point to metal sources located in the (upper) crust. The concordant Re–Os and Rb–Sr ages obtained in this study provide independent proof of the geological significance of direct Rb–Sr dating of sphalerite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号