首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.  相似文献   

2.
A prerequisite for minimizing contamination risk whilst conducting managed aquifer recharge (MAR) with recycled water is estimating the residence time in the zone where pathogen inactivation and biodegradation processes occur. MAR in Western Australia’s coastal aquifers is a potential major water source. As MAR with recycled water becomes increasingly considered in this region, better knowledge of applied and incidental tracer-based options from case studies is needed. Tracer data were collected at a MAR site in Floreat, Western Australia, under a controlled pumping regime over a distance of 50 m. Travel times for bromide-spiked groundwater were compared with two incidental tracers in recycled water: chloride and water temperature. The average travel time using bromide was 87?±?6 days, whereas the estimates were longer based on water temperature (102?±?17 days) and chloride (98?±?60 days). The estimate of average flow velocity based on water temperature data was identical to the estimate based on bromide within a 25-m section of the aquifer (0.57?±?0.04 m day?1). This case study offers insights into the advantages, challenges and limitations of using incidental tracers in recycled water as a supplement to a controlled tracer test for estimating aquifer residence times.  相似文献   

3.
4.
To investigate the effect of recharge water temperature on bioclogging processes and mechanisms during seasonal managed aquifer recharge (MAR), two groups of laboratory percolation experiments were conducted: a winter test and a summer test. The temperatures were controlled at ~5±2 and ~15±3 °C, and the tests involved bacterial inoculums acquired from well water during March 2014 and August 2015, for the winter and summer tests, respectively. The results indicated that the sand columns clogged ~10 times faster in the summer test due to a 10-fold larger bacterial growth rate. The maximum concentrations of total extracellular polymeric substances (EPS) in the winter test were approximately twice those in the summer test, primarily caused by a ~200 μg/g sand increase of both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In the first half of the experimental period, the accumulation of bacteria cells and EPS production induced rapid bioclogging in both the winter and summer tests. Afterward, increasing bacterial growth dominated the bioclogging in the summer test, while the accumulation of LB-EPS led to further bioclogging in the winter test. The biological analysis determined that the dominant bacteria in experiments for both seasons were different and the bacterial community diversity was ~50% higher in the winter test than that for summer. The seasonal inoculums could lead to differences in the bacterial community structure and diversity, while recharge water temperature was considered to be a major factor influencing the bacterial growth rate and metabolism behavior during the seasonal bioclogging process.  相似文献   

5.
Hydrogeology Journal - A participatory modelling approach is presented for effective groundwater management at the Mediterranean coastal plain of Marathon, Greece. The main objective was to...  相似文献   

6.
The recharge flow paths in a typical weathered hard-rock aquifer in a semi-arid area of southern India were investigated in relation to structures associated with a managed aquifer recharge (MAR) scheme. Despite the large number of MAR structures, the mechanisms of recharge in their vicinity are still unclear. The study uses a percolation tank as a tool to identify the input signal of the recharge and uses multiple measurements (piezometric time series, electrical conductivity profiles in boreholes) compared against heat-pulse flowmeter measurements and geochemical data (major ions and stable isotopes) to examine recharge flow paths. The recharge process is a combination of diffuse piston flow and preferential flow paths. Direct vertical percolation appears to be very limited, in contradiction to the conceptual model generally admitted where vertical flow through saprolite is considered as the main recharge process. The horizontal component of the flow leads to a strong geochemical stratification of the water column. The complex recharge pattern, presented in a conceptual model, leads to varied impacts on groundwater quality and availability in both time and space, inducing strong implications for water management, water quality evolution, MAR monitoring and longer-term socio-economic costs.  相似文献   

7.
Percolation ponds have become very popular methods of managed aquifer recharge due to their low cost, ease of construction and the participation and assistance of community. The objective of this study is to assess the feasibility of a percolation pond in a saline aquifer, north of Chennai, Tamil Nadu, India, to improve the storage and quality of groundwater. Electrical resistivity and ground penetrating radar methods were used to understand the subsurface conditions of the area. From these investigations, a suitable location was chosen and a percolation pond was constructed. The quality and quantity of groundwater of the nearby area has improved due to the recharge from the pond. This study indicated that a simple excavation without providing support for the slope and paving of the bunds helped to improve the groundwater quality. This method can be easily adoptable by farmers who can have a small pond within their farm to collect and store the rainwater. The cost of water recharged from this pond works out to be about 0.225 Re/l. Cleaning the pond by scrapping the accumulated sediments needs to be done once a year. Due to the small dimension and high saline groundwater, considerable improvement in quality at greater depths could not be achieved. However, ponds of larger size with recharge shafts can directly recharge the aquifer and help to improve the quality of water at greater depths.  相似文献   

8.
9.
Managed aquifer recharge (MAR) is increasingly being considered as a means of reusing urban stormwater and wastewater to supplement the available water resources. Subsurface storage is advantageous as it does not impact on the area available for urban development, while the aquifer also provides natural treatment. However, subsurface storage can also have deleterious effects on the recovered water quality through water–rock interactions which can also impact on the integrity of the aquifer matrix. A recent investigation into the potential for stormwater recycling via Aquifer Storage Transfer and Recovery (ASTR) in a carbonate aquifer is used to determine the important hydrogeochemical processes that impact on the recovered water quality. An extensive period of aquifer flushing allows observation of water quality changes under two operating scenarios: (1) separate wells for injection and recovery, representing ASTR; and (2) a single well for injection and recovery, representing Aquifer Storage and Recovery (ASR).  相似文献   

10.
11.
12.
Fast population growth and rapid industrialization, on one hand, and lack of sewerage network and poor living condition, on the other, have led to the deterioration of surface and ground water quality in the city of Addis Ababa. The urban wastewater is discharged largely into streams that drain the city. Only less than 3% join the wastewater treatment facilities. Due to sporadic rainfall that causes shortage in groundwater recharge, managed aquifer recharge (MAR) experiment was tested on soil column collected from Akaki Well Field which is located in the southern part of the city using water from the Big Akaki River that crosses the same well field and effluent from Kaliti Wastewater Treatment Plant. Water quality analysis for 17 different parameters was done for both the inflow and outflow water samples and soils were tested for electrical conductivity and cation exchange capacity. The results indicate improved water quality as a result of higher attenuation/filtration capacity of the vadose zone in the well field due to the presence of vertisols. The main geochemical processes that have acted in the soil column could be cation exchange, dissolution, precipitation, oxidation, nitrification, die off etc. that are responsible for the effectiveness of vadose zone for MAR.  相似文献   

13.
Managed aquifer recharge (MAR) is necessary for water resources management in arid and semiarid regions. Infiltration rate is often a decisive limiting factor in site selection for MAR. In order to avoid scale effects in the application of infiltration rate parameters, the largest in situ infiltration test in China was undertaken between August 19 and August 30, 2009 to measure the infiltration rate of the field selected for MAR in Shijiazhuang City, China. The in situ test lasted for 10 days, and about 1.82 × 107 m3 of water was introduced into the infiltration field. Groundwater level variations were monitored during the test. Monitoring showed that the infiltration rate of surface water was 1.5 m/day, which means that about 10–15 × 108 m3/a of water could be injected into the target aquifer. Also, groundwater level variations showed that the northern part of the infiltration field had a higher infiltration rate, as predicted, and the test result supplied a sound foundation for validation of the groundwater numerical simulation, which will be of benefit for future predictions of the response of the groundwater level to artificial recharge engineering. Finally, an artificial recharge plan was proposed based on the infiltration test results and the water source conditions, which would be useful for the development of MAR programs and management of local water resources.  相似文献   

14.
Hydrogeology Journal - While the success and sustainability of managed aquifer recharge (MAR) strongly depends on many characteristics of the site, it is necessary to integrate the site...  相似文献   

15.
Whether groundwater resources can be sustainably utilized is largely determined and characterized by hydrogeological parameters.Estimating the groundwater recharge is one of the essential parameters for managing water resources and protecting water resources from contamination.This study researched the spatial and temporal variation of groundwater recharge in the Thepkasattri sub-district through integrating chloride mass balance(CMB)and water table fluctuation(WTF)methods.The chloride content of representative rainfall and groundwater samples was analyzed.Besides,WTF method was adopted from groundwater level data from 2012 to 2015.According to the CMB method,the mean recharge was estimated to be 1172 mm per year,accounting for 47%of the annual rainfall.Moreover,the estimated recharge from the WTF method took 26%of annual rainfall in 2015.The recharge was underestimated according to the WTF method,because of the uncertainty in specific yield estimates and the number of representative wells in the study area.Moreover,the correlation between rainfall and water table fluctuation data indicated the positive linear relationship between two parameters.The spatial recharge prediction indicated that recharge was higher(1200-1400 mm/yr)in the eastern and western catchment,while that in the central floodplains was between 800 mm/yr and 1100 mm/yr.In addition,low recharge value between 450 mm/yr and 800 mm/yr was observed in the south-west part of Thepkasattri.The spatial variation of recharge partly reflects the influences of land use and land cover of the study area.  相似文献   

16.
The Kucuk Menderes River Basin in western Turkey has been facing continuous groundwater-level decline for decades. Previous studies have suggested that, to avoid aquifer depletion in the basin, artificial recharge structures should be constructed. To assess artificial aquifer recharge potential in one of the subbasins, a two-dimensional (2-D) groundwater model was set up using SEEP/W software. The material functions and parameters used in the model for both saturated and unsaturated conditions were taken from previous studies. The model has been calibrated under transient conditions. The excess runoff volume that could be collected in the recharge basins was estimated from flood frequency analysis. Various scenarios were simulated to observe the change in groundwater level and storage with respect to different exceedance probabilities. Simulation results suggest that a significant increase in groundwater storage is achieved by applying surface artificial-recharge methods. In addition to the recharge basins, to reinforce the effect of artificial recharge, simulations are repeated with underground dam construction at the downstream side of the basin. Although groundwater storage is increased with the addition of the dam, the increase in groundwater storage was not sufficient to warrant the construction.  相似文献   

17.
《Applied Geochemistry》2005,20(8):1496-1517
Chloride concentrations were as high as 230 mg/L in water from the surface discharge of long-screened production wells in Pleasant Valley, Calif., about 100 km NW of Los Angeles. Wells with the higher Cl concentrations were near faults that bound the valley. Depending on well construction, high-Clwater from different sources may enter a well at different depths. For example, Cl concentration in the upper part of some wells completed in overlying aquifers influenced by irrigation return were as high as 220 mg/L, and Cl concentrations in water sampled within wells at depths greater than 450 m were as high as 500 mg/L. These high-Cl waters mix within the well during pumping and produce the water sampled at the surface discharge. Changes in the major ion, minor ion, trace element, and δ34S and δ13C isotopic composition of water in wells with depth were consistent with changes resulting from SO4 reduction, precipitation of calcite, and cation exchange. The chemical and isotopic composition of high-Cl water from deep wells trends towards the composition of oil-field production water from the study area. Chloride concentrations in oil-field production water present at depths 150 m beneath freshwater aquifers were 2200 mg/L, and Cl concentrations in underlying marine rock were as high as 4400 mg/L. High-Cl concentrations in water from deeper parts of wells were associated with dissolved organic C composed primarily of hydrophobic neutral compounds believed to be similar to those associated with petroleum in underlying deposits. These compounds would not be apparent using traditional sampling techniques and would not be detected using analytical methods intended to measure contamination.  相似文献   

18.
The Luhuagang landfill site (LLS) in Kaifeng, China, lacks liner and leachate collection systems. Thus, leachate generated from the waste dump has contaminated the surrounding subsoil and shallow aquifer with various chemicals, including 1,2,4-Trichlorobenzene (1,2,4-TCB). This paper is a part of a series of studies on adsorption, transport and biodegradation and fate of 1,2,4-TCB in the shallow aquifer beneath LLS. Here, adsorption of 1,2,4-TCB onto silt, fine sand and medium sand aquifer deposits collected at LLS was conducted by performing batch experiments involving four common adsorption kinetic models. The results of the analyses showed that the pseudo-second-order adsorption kinetic model provided the best fit for the equilibrium data with a coefficient of determination (R 2) greater than 0.99. Least squares analysis of Henry, Freundlich and Langmuir linearly transformed isotherm models was used to establish the best isotherm for 1,2,4-TCB adsorption onto the three aquifer materials. The Freundlich isotherm provided the best fit for experimental data with R 2 > 0.99. The results further suggested that the highest adsorption rate of 1,2,4-TCB (27.55 μg/g) was onto silt deposit, followed by fine sand (21.65 μg/g) and medium sand (14.88 μg/g). This showed that silt layer beneath the LLS was critical for retarding the downward percolation and migration of 1,2,4-TCB into the shallow aquifer systems under the landfill. The findings of the study were adopted as basis for designing the slated transport and biodegradation study of 1,2,4-TCB in aquifer system at LLS.  相似文献   

19.
This paper presents a case study about the perception of landslide risk. Following a major set of landslides in the eastern part of Austria in June 2009, we surveyed local experts, residents who had suffered losses from the landslides, and others living in the affected communities. Overall, the risk perception was significantly higher among those who had been personally affected by a landslide, had knowledge of the geology in the study region, had been affected by another natural hazard, or spent a lot of time outdoors and in touch with nature. Non-experts viewed natural factors as the main causes for the occurrence of landslides, while experts viewed anthropogenic factors as more important. Likewise, non-experts placed a greater emphasis on hard measures (such as retaining walls) to reduce the risk, whereas the experts tended to focus on better information and land-use planning. In terms of responsibility for mitigative actions, a majority of inhabitants believed that public authorities should undertake most of the costs, whereby those who had personal experience with landslides were more likely to favor the government paying for it.  相似文献   

20.
Uranium occurs naturally in groundwater and surface water. The objective of this study is to understand the causes for the occurrence of uranium and its spatio-temporal variation in groundwater in a part of Nalgonda district, Andhra Pradesh, south India. Uranium deposits occur in the southeastern part of this area. Groundwater samples were collected from 44 wells every two months from March 2008 to January 2009. The samples were analyzed for pH, ORP and uranium concentration. The uranium concentration in groundwater varies from 0.2 ppb to a maximum of 68 ppb with a mean of 18.5 ppb. About 21.6% of the samples were above the drinking water limit of 30 ppb set by USEPA. The uranium concentration varied with fluctuation in groundwater level, pH and ORP. Uranium concentration in groundwater changes depending on lithology, degree of weathering and rainfall recharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号