首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

An important objective of middle atmosphere global climate modelling is the development of the capability of predicting the response of the middle atmosphere to natural or anthropogenic perturbations. To achieve this, a comprehensive chemistry package interactively coupled with radiative and dynamical modules is required. This paper presents preliminary results obtained with a photochemistry module which has been incorporated in the Canadian Middle Atmosphere Model (CMAM). The module contains 42 species including necessary oxygen, hydrogen, nitrogen, chlorine, bromine and methane oxidation cycle species. Photochemical balance equations are solved on‐line throughout the middle atmosphere at every dynamical time step. A full diurnal cycle is simulated with photolysis rates provided by a look‐up table. The chemistry solver is a mass conserving, fully implicit, backward difference scheme which currently uses less than 10% of the GCM run time. We present the results obtained from short integrations and compare them with UARS measurements. The model ozone distribution appears in quantitative agreement with observations showing peak values near 10 ppmv and confined to the 35‐km region. The abundance of nitrogen, chlorine, bromine oxides and their respective contributions to the overall ozone budget is realistic. The study illustrates the capability of the model to simulate middle atmosphere photochemistry for the disparate conditions occurring throughout the region.  相似文献   

2.
Recent advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere in China are briefly reviewed. This review emphasizes four aspects: (1) Development of instrumentation for middle and upper atmosphere observation; (2) Analyses and observation of middle and upper atmosphere; (3) Theoretical and modeling studies of planetary wave and gravity wave activities in the middle atmosphere and their relation to lower atmospheric processes; (4) Study on the coupling between the stratosphere and the troposphere.  相似文献   

3.
孔琴心  任丽新 《大气科学》1983,7(3):341-346
用一台单色计在地面测量太阳0.873微米和0.942微米辐射强度比值。该比值可以有效地消除气溶胶和雷利散射,仅剩下水汽吸收效应,从而能够较好地确定大气垂直路径和斜程路径的水汽总含量。本文还详细讨论了获得校正曲线的方法。  相似文献   

4.
The comparison between the precipitable water vapor w obtained by classical sounding and that obtained by high resolution measurements of spectral solar direct irradiance in the 400–1000 nm spectral range is shown. Three different water vapor absorption functions in the πστ band are used to determine the water vapor w by optical measurements. An episode of attenuation of direct solar irradiance by cirrus clouds is also shown.  相似文献   

5.
Abstract

A new infrared (IR) radiation scheme for extending the CCC/GCM (Canadian Climate Center General Circulation Model) into the middle atmosphere is proposed. It combines the previous CCC/GCM radiation scheme including the effects of H2O, CO2, O3, CH4, N2O, CFC11 and CFC12, clouds and aerosols, with a new computationally efficient matrix parameterization for the cooling rate in the middle atmosphere for both LTE (local thermodynamic equilibrium) and non‐LTE layers. The matrix parameterization includes the effects of both the 15 μm CO2 and the 9.6 μm O3 bands and provides a proper lower boundary condition for the non‐LTE recurrence formula. The new scheme shows satisfactory agreement with line‐by‐line calculations. The absolute error does not exceed 0.8 ? day‐1 for vastly different atmospheric conditions. Introducing the new radiation module into the CCC/GCM results in deviations of the simulated temperature from the CIRA‐1986 model of not more than 10 ? throughout most of the altitude‐latitude domain.  相似文献   

6.
The mechanisms controlling the decadal to multidecadal variability of the Atlantic Meridional Overturning Circulation (MOC) and its influence on the atmosphere are investigated using a control simulation with the IPSL-CM4 climate model. The multidecadal fluctuations of the MOC are mostly driven by deep convection in the subpolar gyre, which occurs south of Iceland in the model. The latter is primarily influenced by the anomalous advection of salinity due to changes in the East Atlantic Pattern (EAP), which is the second mode of atmospheric variability in the North Atlantic region. The North Atlantic Oscillation is the dominant mode, but it plays a secondary role in the MOC fluctuations. During summer, the MOC variability is shown to have a significant impact on the atmosphere in the North Atlantic–European sector. The MOC influence is due to an interhemispheric sea surface temperature (SST) anomaly with opposite signs in the two hemispheres but largest amplitude in the northern one. The SST pattern driven by the MOC mostly resembles the model Atlantic Multidecadal Oscillation (AMO) and bears some similarity with the observed one. It is shown that the AMO reflects both the MOC influence and the local atmospheric forcing. Hence, the MOC influence on climate is best detected using lagged relations between climatic fields. The atmospheric response resembles the EAP, in a phase that might induce a weak positive feedback on the MOC.  相似文献   

7.
In consideration of the radiation transfer, latent and sensible heat exchange between oceans and at-mosphere, a three-dimensional autonomous nonlinear ordinary differential equation is established by statis-tical parameterization method. The variables of the model are the mean ocean surface temperature Ts, mean atmospheric temperature Ta and atmospheric relative humidity f, and the feedbacks of clouds, water vapor and CO2 are involved. The steady state corresponding to the present-day climate can be obtained from this model. The analysis of parameter sensibility in the steady state indicates that clouds have consid-erable negative feedback effects and water vapor may affect the sign of CO2 feedback. The stability analysis of the steady state to small disturbance indicates that with increase of the positive feedback effect of clouds, the steady state goes through such a structural variance series as a stable node→a stable focal point→an unstable focal point→an unstable node, and when the steady state becomes unstable it undergoes a subcritical Hopf bifurcation. When the steady state is at a focal point, the periodic oscillation solutions of damping or amplifying can be obtained with the period being about two years.  相似文献   

8.
The temporal variability of the total atmospheric water content W and the connection of the coefficient of integral transparency P 2, reduced to the air mass m = 2, with W and aerosol optical depth τ a 0 at a wavelength of 550 nm were analyzed and studied from the observational data of the Meteorological Observatory of Moscow State University for 50 years (1955–2004). The regression equations between mean daily and monthly τ a 0 and τ2 = ?ln P 2 were derived in different months and seasons and can be used for retrieving τ a 0 from the coefficient of the integral transparency for the temperate latitudes. The P 2 intervals are given for which these equations can be used.  相似文献   

9.
The radiative forcings and feedbacks that determine Earth’s climate sensitivity are typically defined at the top-of-atmosphere (TOA) or tropopause, yet climate sensitivity itself refers to a change in temperature at the surface. In this paper, we describe how TOA radiative perturbations translate into surface temperature changes. It is shown using first principles that radiation changes at the TOA can be equated with the change in energy stored by the oceans and land surface. This ocean and land heat uptake in turn involves an adjustment of the surface radiative and non-radiative energy fluxes, with the latter being comprised of the turbulent exchange of latent and sensible heat between the surface and atmosphere. We employ the radiative kernel technique to decompose TOA radiative feedbacks in the IPCC Fourth Assessment Report climate models into components associated with changes in radiative heating of the atmosphere and of the surface. (We consider the equilibrium response of atmosphere-mixed layer ocean models subjected to an instantaneous doubling of atmospheric CO2). It is shown that most feedbacks, i.e., the temperature, water vapor and cloud feedbacks, (as well as CO2 forcing) affect primarily the turbulent energy exchange at the surface rather than the radiative energy exchange. Specifically, the temperature feedback increases the surface turbulent (radiative) energy loss by 2.87 W m?2 K?1 (0.60 W m?2 K?1) in the multimodel mean; the water vapor feedback decreases the surface turbulent energy loss by 1.07 W m?2 K?1 and increases the surface radiative heating by 0.89 W m?2 K?1; and the cloud feedback decreases both the turbulent energy loss and the radiative heating at the surface by 0.43 and 0.24 W m?2 K?1, respectively. Since changes to the surface turbulent energy exchange are dominated in the global mean sense by changes in surface evaporation, these results serve to highlight the fundamental importance of the global water cycle to Earth’s climate sensitivity.  相似文献   

10.
11.
12.
上对流层/下平流层水物质分布与输送特征   总被引:1,自引:0,他引:1  
基于Aura卫星微波临边探测仪(MLS)探测的水汽、冰水含量和温度等资料,对比分析了夏季亚洲季风区与北美季风区、暖池区以及伊朗高原上对流层/下平流层水汽、冰水含量以及水物质总含量(水汽和冰水含量之和)的分布特征,并探讨了不同区域水汽的输送过程。结果表明:在215-83 hPa高度上水物质总含量在亚洲季风区均出现了高值中心,且亚洲季风区水物质总含量明显大于北美季风区;在215 hPa高度水汽对水物质总含量起主要的贡献,而到了147-83 hPa高度,冰水含量与水汽对水物质总含量的贡献大致相当,亚洲季风区上对流层/下平流层水汽的高值中心揭示了反气旋对水汽的隔离作用。水汽混合比在147 hPa和100 hPa高度不同的概率密度分布反映出不同高度影响水汽输送的不同因素。北半球冬季暖池区100 hPa上空温度极低,水汽混合比峰值概率仅为2 ppmv;而在147 hPa高度上,亚洲季风区频繁的深对流使得大量水汽被输送到对流层上层,这是亚洲季风区水汽概率“长尾”分布的主要原因。在100 hPa和147 hPa高度,冰水含量主要集中在小值,可能是由冰晶粒子消耗水汽而增长到一定尺度后沉降造成的。  相似文献   

13.
谢坤  任雪娟  张耀存  姚素香 《气象学报》2009,67(6):1002-1012
将区域海气耦合模式RegCM3-POM和区域气候模式RegCM3 40年(1963-2002年)的模拟结果与NCEP/NCAR再分析资料进行对比,检验区域海气耦合模式对中国华北地区夏季大气水汽含量和水汽输送特征的模拟能力,比较耦合模式与单独区域气候模式的差异.结果表明,区域海气耦合模式RegCM3-POM的模拟性能相对于单独区域气候模式RegCM3,大气水汽输送特征的模拟能力有了较大的改进.分析显示两种模式都能够较好地再现东哑地区气候平均夏季大气水汽储量浅红和水汽输送的空间分布特征,而耦合模式对大气水汽输送的模拟更为合理.在对流层中低层更接近观测;耦合模式对中国华北地区夏季平均大气水汽输送通量在垂直方向卜的分布型及水平4个边界水汽输送收支的模拟,相对于单独大气模式有了一定的改进;耦合模式对伴随华北地区夏季早涝的大气水汽异常输送也具有较好的模拟能力,其模拟的水汽输送异常的来源与观测基本一致,尤其是在20°N以北地区,耦合模式结果相对于单独区域气候模式有了很大的改进.但同时耦合模式在低纬度海洋上对气候平均夏季大气水汽含量模拟的偏差比区域气候模式显著;与观测相比,耦合模式对来自孟加拉湾地区的大气水汽输送模拟偏弱,而对西太平洋副热带高压西侧水汽输送模拟偏强,与华北夏季旱涝相联系的水汽输送异常的模拟在低纬度海洋上也存在明显偏差.  相似文献   

14.
Summary A two-dimensional radiative-convective model has been developed to calculate mean annual zonally-averaged temperature profiles for 18 latitudinal belts each of 10° width. The model includes meridional heat transport and impacts of surface albedo and lapse rate feedback mechanisms. In view of its flexibility and computational efficiency compared to a three-dimensional general circulation model, this model may serve as a useful tool in studying the climate sensitivity to external forcings.The model has been successfully applied to reproduce the meridional variation of climatic elements for the standard atmosphere. Next, the climate sensitivity to a doubling of atmospheric CO2 has been examined. The surface temperature response ranges from 1.6 °C near the equator to 4 °C in polar regions with a global mean of 2.1 °C. The meridional distribution of surface warming due to doubled CO2 simulated by our model agrees qualitatively with those obtained by NCAR and GFDL global circulation models in that the largest warmings in all three simulations are found at high latitudes in the Northern Hemisphere. An interesting feature of our findings is that the maximum response due to doubled CO2 tends to descend from the upper troposphere at low latitudes to the surface at high latitudes. The responses of the transport of sensible and latent heat are in opposite direction thus leading to only slight but positive changes in the total meridional heat flux.
Zusammenfassung Es wurde ein zweidimensionales Strahlungs-Konvektions-Modell entwickelt, um zonal gemittelte Temperaturprofile für 10° breite Gürtel zu berechnen. Das Modell beinhaltet meridionalen Wärmetransport, Einflüsse der Albedo und des vertikalen Temperaturgradienten. Aufgrund seiner Flexibilität und rechnerischen Effizienz im Vergleich zu dreidimensionalen Modellen der allgemeinen Zirkulation, kann dieses Modell gut zum Studium der Sensitivität des Klimas auf äußere Antriebe verwendet werden.Das Modell wurde zuerst erfolgreich angewandt, um die meridionale Variabilität der Klimaelemente für die Standardatmosphäre zu reproduzieren. Dann wurde die Sensitivität gegenüber einer Verdoppelung des atmosphärischen CO2 untersucht. Die Veränderungen an der Erdoberfläche reichten von 1.6 °C nahe dem Äquator bis zu 4 °C in Polnähe mit einem globalen Mittel von 2.1 °C. Die meridionale Verteilung stimmt qualitativ mit den Modellergebnissen von NCAR und GFDL überein. Alle prognostizieren die größten Erwärmungen in den hohen Breiten der Nordhemisphäre. Ein interessantes Ergebnis dieser Untersuchung ist, daß die größte Erwärmung von der oberen Troposphäre in niedrigen Breiten in hohen Breiten zur Oberfläche absinkt. Die Prognosen für die Änderung des Transports von fühlbarer und iatenter Wärme zeigen den umgekehrten Effekt. Das führt zu einem geringen Anstieg des meridionalen Wärmeflusses.


With 9 Figures  相似文献   

15.
Latitudinal heat transport in the ocean and atmosphere represents a fundamental process of the Earth's climate system. The ocean component of heat transport is effected by the thermohaline circulation. Changes in this circulation, and hence latitudinal heat transport, would have a significant effect on global climate. Paleoclimate evidence from the Greenland ice cores and deep sea sediment cores suggests that during much of glacial time the climate system oscillated between two different states. Bimodal equilibrium states of the thermohaline circulation have been demonstrated in climate models. We address the question of the role of the atmospheric hydrological cycle on the global thermohaline circulation and the feedback to the climate system through changes in the ocean's latitudinal heat transport, with a simple coupled ocean-atmosphere energy-salt balance model. Two components of the atmospheric hydrological cycle, i.e., latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean appear to play separate roles. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation or a rapid transition between two different equilibria in the global thermohaline circulation; maximum difference between the modes occurs in the North Atlantic. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations, with maximum changes occurring in the North Pacific. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. In the regime with vapor flux from the Atlantic to the Pacific, the on mode has strong production of deep water in the North Atlantic and a large flux of heat to the atmosphere from the high latitude North Atlantic. The off mode has strong deep water production in the Southern Ocean and weak production in the North Pacific. Heat transport into the high latitude North Atlantic by the ocean is reduced to about 20% of the on mode value. For estimated values of water vapor transport for the present climate the model asserts that while water vapor transport from the Atlantic to the Pacific Ocean is sufficiently large to make the North Atlantic the dominant region for deep water production, latitudinal water vapor transport is sufficiently low that the thermohaline circulation appears stable, i.e., far from a bifurcation point. This conclusion is supported to some extent by the fact that the high latitude temperature of the atmosphere as recorded in the Greenland ice cores has changed little over the last 9000 years.  相似文献   

16.
A new atmospheric model has been developed jointly by Météo-France, and the European Centre for Medium-range Weather Forecasts (ECMWF) under the acronyms ARPEGE (action de recherche petite echelle grande echelle, which means research project on small and large scales) and IFS (integrated forecast system). This model includes, inter alia, an atmospheric general circulation model (GCM) which is intended by the French climate modelling community to be used for studying the anthropogenic climate impact. A preliminary version of this model has been available since 1992. This paper describes its main characteristics. Three 10-year integrations of this model having spectral horizontal resolutions of T21, T42, and T79 have been performed using prescribed monthly mean sea surface temperatures (SST) observed from 1979 until 1988. The results of these integrations are presented and compared with the observed climatology. The comparison is made for the winter (DJF) and summer (JJA) periods. It is shown that the model is capable of reproducing the observed climatology in a generally successful manner.  相似文献   

17.
利用Aura卫星微波临边观测仪(Microwave Limb Sounder,MLS)数据,评估了ERA-I、MERRA、JRA-55、CFSR和NCEP2等5套再分析资料的水汽数据在青藏高原及周边上对流层-下平流层(Upper Troposphere and Lower Stratosphere,UTLS)的质量,然后选取其中质量较好的两套水汽数据,分析它们对青藏高原及周边UTLS水汽的时空分布和演变的表征能力。结果表明,与MLS数据相比,5套再分析资料中在UTLS普遍偏湿,最大偏湿在上对流层215 hPa,约为165%,而在下平流层,ERA-I和MERRA与MLS的差异相对较小。总的来看,ERA-I和MERRA表征的水汽与MLS更为接近。进一步的对比表明,ERA-I和MERRA中青藏高原及周边水汽含量的时空分布与MLS较为接近,夏季能够表征青藏高原在纬向和经向上的水汽高值区,冬季能够表征对流层顶、西风急流中心附近的水汽梯度带,而且MERRA的结果要好于ERA-I。ERA-I、MERRA和MLS中青藏高原地区的水汽季节演变都表现为冬季1-2月水汽含量低,夏季7-8月水汽含量高,水汽的季节变化在200~300 hPa最大。MLS资料显示,在青藏高原地区对流层顶附近,存在随时间向上向极的水汽传输信号。相较而言,ERA-I对向上水汽传输信号的表征更好,而MERRA对下平流层(100 hPa)向极水汽传输信号的表征更好。  相似文献   

18.
The sensitivity of tropical Atlantic climate to upper ocean mixing is investigated using an ocean-only model and a coupled ocean–atmosphere model. The upper ocean thermal structure and associated atmospheric circulation prove to be strongly related to the strength of upper ocean mixing. Using the heat balance in the mixed layer it is shown that an excessively cold equatorial cold tongue can be attributed to entrainment flux at the base of the oceanic mixed layer, that is too large. Enhanced entrainment efficiency acts to deepen the mixed layer and causes strong reduction in the upper ocean divergence in the central equatorial Atlantic. As a result, the simulated sea surface temperature, thermocline structure, and upwelling velocities are close to the observed estimates. In the coupled model, the seasonal migration of the Intertropical Convergence Zone (ITCZ) reduces when the entrainment efficiency in the oceanic mixed layer is enhanced. The precipitation rates decrease in the equatorial region and increase along 10°N, resulting in a more realistic Atlantic Marine ITCZ. The reduced meridional surface temperature gradient in the eastern tropical Atlantic prohibits the development of convective precipitation in the southeastern part of the tropical Atlantic. Also, the simulation of tropical Atlantic variability as expressed in the meridional gradient mode and the eastern cold tongue mode improves when the entrainment efficiency is enhanced.  相似文献   

19.
Interaction between sensible heat and water vapor diffusion in the lower atmosphere leads to the necessity of solving two simultaneous turbulent diffusion equations. This solution is obtained by the construction of Green's function which when incorporated in the boundary conditions produces two integral equations. These are solved by transformation into two algebraic equations by means of the Laplace Transformation. The results show how for a simple steady-state case, sensible heat and water vapor transfer and also the water surface temperature depend on the meteorological conditions and the rate of change of energy content of the water body. Due to advection, the water surface temperature and the turbulent fluxes vary in the downwind direction. However, for practical calculations of the mean evaporation or heat transfer, the error introduced by the use of an average temperature is usually quite small and negligible.  相似文献   

20.
This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean–atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean–atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Niño-Southern oscillation) consequently increases, as the damping processes are left unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号