首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
青藏高原地区大气顶净辐射与地表净辐射的关系   总被引:14,自引:0,他引:14  
王可丽  钟强 《气象学报》1995,53(1):101-107
地表净辐射为地气系统净辐射与大气层净辐射之差。对大气层净辐射作不同的假定,可将地表净辐射与大气顶辐射收支之间的关系表示成不同的形式。本文利用1982年8月—1983年7月青藏高原地区地面辐射收支观测资料及同期NOAA-7辐射收支资料,用统计方法讨论了大气顶净辐射与地表净辐射之间的相关性,建立了两者之间的回归方程,并在此基础上分析了青藏高原地区月平均地表净辐射的时空分布特征。  相似文献   

2.
Features of diurnal and annual cycles and of seasonal changes of temperature stratification in the lower 800-m air layer over Moscow are discussed on the basis of analysis of long-term data of acoustic (sodar) observations at Moscow State University (MSU). Of about 34 000 separate hours of height-time sweep of echo signal during 1988–2003, refined estimates are presented of occurrence frequencies of surface and elevated inversions, unstable stratification, etc., in Moscow. On the basis of long series of hourly sodar data and surface weather observations at MSU, special features of temperature stratification are considered under extremely low and high values of air temperature, wind speed, and relative humidity. A review is presented of existing data on temperature stratification in central Russia for the whole period of aerological observations; results of acoustic sounding are compared against the data obtained using other techniques.  相似文献   

3.
Based on the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the daytime CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aerosol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth’s Radiant Energy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aerosol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day–1 depending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The significant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.  相似文献   

4.
本文是讨论东亚地区大气辐射能收支研究工作的第一部分,讨论了以下三个问题: (1)本文利用文献[1]的水汽各吸收带的吸收光谱实验资料,求得了一个适合于手算的水汽对太阳辐射的总吸收能量公式(公式(6))。并把式(6)与Mugge—Moller公式进行了比较。 (2)利用公式(6),计算了东亚地区39个测站1,7月自地面到100毫巴各气层对太阳辐射的吸收能量,及其对大气的加温率。本文还进一步考虑了云的订正、大气对地面反射辐射的吸收,而求得了东亚地区对流层大气吸收能量的分布。 (3)利用1958—1960年中国地区的一些地面总辐射和反射率观测资料,以及本文计算的大气中各种吸牧能量,讨论了中国地区行星反射率的分布和地球大气系统中各种太阳辐射能的收支。  相似文献   

5.
ABSTRACT Using data from 17 coupled models and nine sets of corresponding Atmospheric Model Intercomparison Project (AMIP) results, we investigated annual and seasonal variation biases in the upper 50 m of the south-central equatorial Pacific, with a focus on the double-ITCZ bias, and examined the causes for the amplitude biases by using heat budget analysis. The results showed that, in the research region, most of the models simulate SSTs that are higher than or similar to observed. The simulated seasonal phase is close to that observed, but the amplitudes of more than half of the model results are larger than or equal to observations. Heat budget analysis demonstrated that strong shortwave radiation in individual atmospheric models is the main factor that leads to high SST values and that weak southward cold advection is an important mechanism for maintaining a high SST. For seasonal circulation, large surface shortwave radiation amplitudes cause large SST amplitudes.  相似文献   

6.
云天地表总辐射和净辐射瞬时值的计算方法   总被引:1,自引:0,他引:1  
为减少计算机时,满足实时预报要求,全球数值预报模式中的辐射计算频率通常设定为三小时。这样处理会大大减少计算量,但也同时导致较大辐射日变化偏差,并影响模式对地面能量平衡,对流及降水的模拟。为改进这一缺陷,我们开发了一种辐射快速计算方案,可用于计算瞬时地面太阳总辐射和净辐射,使到达地面的太阳辐射计算可与模式积分同步进行,从而改善地面太阳辐射日变化模拟。本文介绍云天的计算方法。该方案所用的输入变量均为预报模式或卫星观测所能提供的量。结果表明:该方案既可用于数值预报模式也可利用观测资料独立计算地面太阳辐射。经与美国能源部大气辐射观测资料检验,该方案的精度很高,地面总辐射瞬时值的平均计算误差小于7%。  相似文献   

7.
The surface energy budget components from two simulations of the regional climate model RegCM4.2 over the European/North African domain during the period 1989–2005 are analysed. The simulations differ in specified boundary forcings which were obtained from ERA-Interim reanalysis and the HadGEM2-ES Earth system model. Surface radiative and turbulent fluxes are compared against ERA-Interim. Errors in surface radiative fluxes are derived with respect to the Global Energy and Water Cycle Experiment/Surface Radiation Budget satellite-based products. In both space and time, we find a high degree of realism in the RegCM surface energy budget components, but some substantial errors and differences between the two simulations are also present. The most prominent error is an overestimation of the net surface shortwave radiation flux of more than 50 W/m2 over central and southeastern Europe during summer months. This error strongly correlates with errors in the representation of total cloud cover, and less strongly with errors in surface albedo. During other seasons, the amplitude of the surface energy budget components is more in line with reference datasets. The errors may limit the usefulness of RegCM simulations in applications (e.g. high-quality simulation-driven impact studies). However, by using a simple diagnostic model for error interpretation, we suggest potential sensitivity studies aiming to reduce the underestimation of cloud cover and overestimation of shortwave radiation flux.  相似文献   

8.
9.
Using the data of long-term (1958–2012) actinometric and meteorological observations of the Meteorological Observatory of Lomonosov Moscow State University, the observed and computed long-wave fluxes and the factors defining their variability are estimated. Obtained are the normals and determined are the limits of variability of effective radiation. Analyzed are the peculiarities of atmospheric back radiation. Demonstrated is the trend towards the decrease (in absolute value) in effective radiation caused by the increase in the atmospheric back radiation flux (E a). The trend towards the increase in the atmospheric back radiation is determined by the increase in the values of meteorological parameters: cloudiness, atmospheric moisture content, and temperature. The content of aerosol and carbon dioxide does not affect the long-term variations of E a registered in Moscow. Derived empirical formulae can be recommended for estimating the atmospheric back radiation and effective radiation of the Earth surface using meteorological observations.  相似文献   

10.
Components of the surface radiation budget (SRB) [incoming shortwave radiation (ISR) and downwelling longwave radiation (DLR)] and cloud cover are assessed for three regional climate models (RCM) forced by analysed boundary conditions, over North America. We present a comparison of the mean seasonal and diurnal cycles of surface radiation between the three RCMs, and surface observations. This aids in identifying in what type of sky situation simulated surface radiation budget errors arise. We present results for total-sky conditions as well as overcast and clear-sky conditions separately. Through the analysis of normalised frequency distributions we show the impact of varying cloud cover on the simulated and observed surface radiation budget, from which we derive observed and model estimates of surface cloud radiative forcing. Surface observations are from the NOAA SURFRAD network. For all models DLR all-sky biases are significantly influenced by cloud-free radiation, cloud emissivity and cloud cover errors. Simulated cloud-free DLR exhibits a systematic negative bias during cold, dry conditions, probably due to a combination of omission of trace gas contributions to the DLR and a poor treatment of the water vapor continuum at low water vapor concentrations. Overall, models overestimate ISR all-sky in summer, which is primarily linked to an underestimate of cloud cover. Cloud-free ISR is relatively well simulated by all RCMs. We show that cloud cover and cloud-free ISR biases can often compensate to result in an accurate total-sky ISR, emphasizing the need to evaluate the individual components making up the total simulated SRB.  相似文献   

11.
F. Weng  X. Zou  Z. Qin 《Climate Dynamics》2014,43(5-6):1439-1448
Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit-A (AMSU-A) observations from a series of National Oceanic and Atmospheric Administration satellites have been extensively utilized for estimating the atmospheric temperature trend. For a given atmospheric temperature condition, the emission and scattering of clouds and precipitation modulate MSU and AMSU-A brightness temperatures. In this study, the effects of the radiation from clouds and precipitation on AMSU-A derived atmospheric temperature trend are assessed using the information from AMSU-A window channels. It is shown that the global mean temperature in the low and middle troposphere has a larger warming rate (about 20–30 % higher) when the cloud-affected radiances are removed from AMSU-A data. It is also shown that the inclusion of cloud-affected radiances in the trend analysis can significantly offset the stratospheric cooling represented by AMSU-A channel 9 over the middle and high latitudes of Northern Hemisphere.  相似文献   

12.
13.
夏露  张强  岳平  刘君圣 《气象科学》2017,37(3):339-347
本文利用兰州大学半干旱气候与环境观测站(SACOL站)2006—2012年陆面过程观测资料以及榆中站气象资料,分析了陆面各辐射收支分量对于气候波动的响应,并且研究了地表反照率年际波动变化,讨论了各陆面过程参数对于黄土高原气候背景年际波动的反馈。并且根据黄土高原降水类型将全年分为冬夏半年讨论,以得到更为显著的年际变化特征和相关关系。结果显示,2006—2012年气温降水的趋势与近年来黄土高原暖干化总趋势相吻合。地表浅层土壤湿度和温度都与气温、降水呈现很好的响应。气候因素的综合影响是地表反照率变化波动的原因。通过冬夏半年资料区分探究得到,长波辐射分量与气候要素的相关较短波辐射分量与气候要素的相关性更强。但总体而言,陆面过程对于该地区气候背景波动的响应机制是较为复杂的。  相似文献   

14.
殷宗昭  林锦明  沈锺 《气象》1991,17(7):8-13
利用南极瑞穗站(日本)1979年近地面层微气象资料及净辐射、本站气压等资料进行了统计分析。采用鲍文比-能量平衡法求得月平均感热通量和潜热通量,采用热含法计算得出月平均雪面热通量,使用了直接测量的净辐射通量,研究了该站雪面热量平均特征。其中突出的特征是3—12月雪面净辐射值为负值,主要靠感热通量由大气向雪面补充热量。将本文结果与苏联少先队站1956年的结果进行了比较,得出相当一致的年变化规律。最后,得出瑞穗站雪面为一强冷源。  相似文献   

15.
青藏高原地区地表及行星反射率   总被引:5,自引:3,他引:5       下载免费PDF全文
文章讨论了利用ISCCP卫星观测资料确定青藏高原地区地表反射率的方法,在无积雪地区和季节,地表反射率可以ISCCP可见光反射率为基础,在模式计算过程中,假定紫外反射率以及红外与可见光反射率的比值分别为常数。敏感性试验表明,由这两个假设所产生的误差并不显著。在有积雪地区或季节,地表平均反射率可直接由ISCCP可见光反射率表示。试验结果与地面实际观测作了比较,除沙漠区外,两者比较一致。文中还计算了高原晴天行星反射率。经与ERBE卫星观测比较,发现从5月至9月高原周围沙漠区气溶胶对辐射平衡有较显著的影响。而在其  相似文献   

16.
A series of model experiments with the coupled Max-Planck-Institute ECHAM5/OM climate model have been investigated and compared with microwave measurements from the Microwave Sounding Unit (MSU) and re-analysis data for the period 1979?C2008. The evaluation is carried out by computing the Temperature in the Lower Troposphere (TLT) and Temperature in the Middle Troposphere (TMT) using the MSU weights from both University of Alabama (UAH) and Remote Sensing Systems (RSS) and restricting the study to primarily the tropical oceans. When forced by analysed sea surface temperature the model reproduces accurately the time-evolution of the mean outgoing tropospheric microwave radiation especially over tropical oceans but with a minor bias towards higher temperatures in the upper troposphere. The latest reanalyses data from the 25?year Japanese re-analysis (JRA25) and European Center for Medium Range Weather Forecasts Interim Reanalysis are in very close agreement with the time-evolution of the MSU data with a correlation of 0.98 and 0.96, respectively. The re-analysis trends are similar to the trends obtained from UAH but smaller than the trends from RSS. Comparison of TLT, computed from observations from UAH and RSS, with Sea Surface Temperature indicates that RSS has a warm bias after 1993. In order to identify the significance of the tropospheric linear temperature trends we determined the natural variability of 30-year trends from a 500?year control integration of the coupled ECHAM5 model. The model exhibits natural unforced variations of the 30?year tropospheric trend that vary within ±0.2?K/decade for the tropical oceans. This general result is supported by similar results from the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model. Present MSU observations from UAH for the period 1979?C2008 are well within this range but RSS is close to the upper positive limit of this variability. We have also compared the trend of the vertical lapse rate over the tropical oceans assuming that the difference between TLT and TMT is an approximate measure of the lapse rate. The TLT?CTMT trend is larger in both the measurements and in the JRA25 than in the model runs by 0.04?C0.06?K/decade. Furthermore, a calculation of all 30?year TLT?CTMT trends of the unforced 500-year integration vary between ±0.03?K/decade suggesting that the models have a minor systematic warm bias in the upper troposphere.  相似文献   

17.
The water and energy cycle in the Tibetan Plateau is an important component of Monsoon Asia and the global energy and water cycle. Using data at a CEOP (Coordinated Enhanced Observing Period)-Tibet site, this study presents a first-order evaluation on the skill of weather forecasting from GCMs and satellites in producing precipitation and radiation estimates. The satellite data, together with the satellite leaf area index, are then integrated into a land data assimilation system (LDAS-UT) to estimate the soil moisture and surface energy budget on the Plateau. The system directly assimilates the satellite microwave brightness temperature, which is strongly affected by soil moisture but not by cloud layers, into a simple biosphere model. A major feature of this system is a dual-pass assimilation technique, which can auto-calibrate model parameters in one pass and estimate the soil moisture and energy budget in the other pass. The system outputs, including soil moisture, surface temperature, surface energy partition, and the Bowen ratio, are compared with observations, land surface models, the Global Land Data Assimilation System, and four general circulation models. The results show that this satellite data-based system has a high potential for a reliable estimation of the regional surface energy budget on the Plateau.  相似文献   

18.
由GMS卫星资料获取我国夏季地表辐射收支   总被引:14,自引:0,他引:14       下载免费PDF全文
陈渭民  高庆先  洪刚 《大气科学》1997,21(2):238-246
地表辐射收支是一个重要的基本辐射参数,本文导得卫星可见光和红外波段测值与地表辐射收支的基本关系,据此利用GMS静止气象卫星可见光和红外通道数值化资料和地面辐射收支观测资料,建立了几个由卫星资料估计地面辐射收支的模式,选择效果最佳的一种模式,通过内插方法求取全国辐射收支分布,回归效果与实测结果比较表明,方法有实际应用价值。  相似文献   

19.
Based on the theory of the radiation transfer and some physical approximation techniques,a numericalclimatological method for the radiation budget in the troposphere over China is proposed.By utilizingten-year-averaged climatological data (1960—1969,1961—1970) from 104 stations,the radiation budgetand its components of the troposphere over China are calculated.In contrast with the satellite observationsand other computational results,the present results are satisfactory.The main factors which determine theradiation budget are also discussed briefly.  相似文献   

20.
We present an analysis of the factors which control the seasonal variations of the clear-sky greenhouse effect, based on satellite observations and radiative transfer simulations. The satellite observations include the radiation budget at the top of the atmosphere from the Earth Radiation Budget Experiment and the total column moisture content derived from the Special Sensor Microwave/Imager. The simulations were performed with the SAMSON system described in an earlier paper, using atmospheric temperatures and humidities from operational analyses produced by the European Centre for Medium Range Weather Forecasts. At low latitudes, the magnitude of the clear-sky greenhouse effect is dominated by the strong thermodynamic link between the total column moisture content of the atmosphere and sea surface temperatures, with minimal seasonal variations. In contrast, at middle to high latitudes there are strong seasonal variations, the clear-sky greenhouse effect being largest in winter and smallest in summer. These variations cannot be explained by the seasonal cycle in the total column moisture content, as this is largest in summer and smallest in winter. The variations are controlled instead by the seasonal changes in atmospheric temperatures. The colder atmosphere in winter enhances the temperature differential between the atmosphere and the sea surface, leading to a larger greenhouse effect despite the lower moisture contents. The magnitude of the clear-sky greenhouse effect is thus controlled by atmospheric humidity at low latitudes, but by atmospheric temperature at middle and high latitudes. These controls are illustrated by results from sensitivity experiments with SAMSON and are interpreted in terms of a simple model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号