首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper the effect of solar radiation pressure on the location and stability of the five Lagrangian points is studied, within the frame of elliptic restricted three-body problem, where the primaries are the Sun and Jupiter acting on a particle of negligible mass. We found that the radiation pressure plays the rule of slightly reducing the effective mass of the Sun and changes the location of the Lagrangian points. New formulas for the location of the collinear libration points were derived. For large values of the force ratio β, we found that at β=0.12, the collinear point L3 is stable and some families of periodic orbits can be drawn around it.  相似文献   

2.
The evolution of the periodic orbits around the collinear equilibrium positions, belonging to the Strömgren families a, b and c, with the radiation pressure parameter of the more massive body is studied in the Sun-Jupiter system. These families are determined for a single value of the radiation pressure parameter and particularly when the radiation force of the more massive body is equal to one half of the gravitational attraction. Then the critical stability orbits of each family are transferred with the radiation parameter. The stability of each periodic solution is also studied.  相似文献   

3.
An analytical proof of the existence of some kinds of periodic orbits of second species of Poincaré, both in the Circular and Elliptic Restricted three-body problem, is given for small values of the mass parameter. The proof uses the asymptotic approximations for the solutions and the matching theory developed by Breakwell and Perko. In the paper their results are extended to the Elliptic problem and applied to prove the existence of second-species solutions generated by rectilinear ellipses in the Circular problem and nearly-rectilinear ones in the Elliptic case.  相似文献   

4.
We deal with the study of the spatial restricted three-body problem in the case where the small particle is far from the primaries, that is, the so-called comet case. We consider the circular problem, apply double averaging and compute the relative equilibria of the reduced system. It appears that, in the circular problem, we find not only part of the equilibria existing in the elliptic case, but also new ones. These critical points are in correspondence with periodic and quasiperiodic orbits and invariant tori of the non-averaged Hamiltonian. We explain carefully the transition between the circular and the elliptic problems. Moreover, from the relative equilibria of elliptic type, we obtain invariant 3-tori of the original system.  相似文献   

5.
Robe's restricted three-body problem is investigated with regards to the effects of a linear drag force. In particular. the stability of the model's equilibrium points is studied in this respect. Two scenarios are envisaged: the one originally discussed by Robe himself and the one suggested by him and recently analyzed by the present authors, that assumes for the fluid body the structure of a Roche's ellipsoid.  相似文献   

6.
We have two mass points of equal masses m 1=m 2 > 0 moving under Newton’s law of attraction in a non-collision parabolic orbit while their center of mass is at rest. We consider a third mass point, of mass m 3=0, moving on the straight line L perpendicular to the plane of motion of the first two mass points and passing through their center of mass. Since m 3=0, the motion of m 1 and m 2 is not affected by the third and from the symmetry of the motion it is clear that m 3 will remain on the line L. The parabolic restricted three-body problem describes the motion of m 3. Our main result is the characterization of the global flow of this problem.  相似文献   

7.
The envelope of iso-energetic trajectories in the (repulsive) two-fixed-centre problem is derived. Our analytical calculations finally lead to a transcendental equation, only containing elliptic integrals and the Weierstraßp function, from which the envelope is constructed. The results may serve as a simple model for the boundary layer between two colliding supersonic stellar wind flows in binary systems, in which at least one of the components has a strong radiation field.Beyond this, the effect of non-inertial forces (centrifugal and Coriolis force) due to the binary's orbital motion has been estimated by a numerical analysis within the scope of the (repulsive) restricted three-body problem.All calculations have been performed for a hot model (Wolf-Rayet/O-star) binary system with a set of parameters which might be appropriate for HD 152270. The envelope may be well approximated by a hyperboloid. The non-inertial forces slightly turn the envelope against the line connecting both stars.  相似文献   

8.
A strategy is formulated to design optimal time-fixed impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interiorL 1 libration point of the Sun-Earth/Moon barycenter system. The adjoint equation in terms of rotating coordinates in the elliptic restricted three-body problem is shown to be of a distinctly different form from that obtained in the analysis of trajectories in the two-body problem. Also, the necessary conditions for a time-fixed two-impulse transfer to be optimal are stated in terms of the primer vector. Primer vector theory is then extended to non-optimal impulsive trajectories in order to establish a criterion whereby the addition of an interior impulse reduces total fuel expenditure. The necessary conditions for the local optimality of a transfer containing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. Determination of the location, orientation, and magnitude of each additional impulse is accomplished by the unconstrained minimization of the cost function using a multivariable search method. Results indicate that substantial savings in fuel can be achieved by the addition of interior impulsive maneuvers on transfers between libration-point orbits.An earlier version was presented as Paper AAS 92–126 at the AAS/AIAA Spaceflight Mechanics Meeting, Colorado Springs, Colorado, February 24–26, 1992.  相似文献   

9.
We study numerically the asymptotic homoclinic and heteroclinic orbits around the hyperbolic Lyapunov periodic orbits which emanate from Euler's critical points L 1 and L 2, in the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these Lyapunov orbits, are also presented. Poincaré surface of sections of these manifolds on appropriate planes and several homoclinic and heteroclinic orbits for the gravitational case as well as for varying radiation factor q 1, are displayed. Homoclinic-homoclinic and homoclinic-heteroclinic-homoclinic chains which link the interior with the exterior Hill's regions, are illustrated. We adopt the Sun-Jupiter system and assume that only the larger primary radiates. It is found that for small deviations of its value from the gravitational case (q 1 = 1), the radiation pressure exerts a significant impact on the Hill's regions and on these asymptotic orbits.  相似文献   

10.
The non-linear stability of the triangular libration points of the restricted three-body problem is studied under the presence of third and fourth order resonance's, when the more massive primary is an oblate spheroid. In this study Markeev's theorem are utilised with the help of KAM theorem. It is found that the stability of the triangular libration points are unstable in the third order resonance case and stable in the fourth order resonance case, for all the values of oblateness factor A1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The stability of some asteroids, in the framework of the restricted three-body problem, has been recently proved in (Celletti and Chierchia, 2003), by developing an isoenergetic KAM theorem. More precisely, having fixed a level of energy related to the motion of the asteroid, the stability can be obtained by showing the existence of nearby trapping invariant tori existing at the same energy level. The analytical results are compatible with the astronomical observations, since the theorem is valid for the realistic mass-ratio of the primaries. The model adopted in (Celletti and Chierchia, 2003), is the planar, circular, restricted three-body model, in which only the most significant contributions of the Fourier development of the perturbation are retained. In this paper we investigate numerically the stability of the same asteroids considered in (Celletti and Chierchia, 2003), (namely, Iris, Victoria and Renzia). In particular, we implement the nowadays standard method of frequency-map analysis and we compare our investigation with the analytical results on the planar, circular model with the truncated perturbing function. By means of frequency analysis, we study the behaviour of the bounding tori and henceforth we infer stability properties on the dynamics of the asteroids. In order to test the validity of the truncated Hamiltonian, we consider also the complete expression of the perturbing function on which we perform again frequency analysis. We investigate also more realistic models, taking into account the eccentricity of the trajectory of Jupiter (planar-elliptic problem) or the relative inclination of the orbits (circular-inclined model). We did not find a relevant discrepancy among the different models.  相似文献   

12.
Special solutions of the planar rectilinear elliptic restricted 3-body problem are investigated for the limiting case e=1. Numerical integration is performed for primaries of equal masses. Starting values which define circular orbit solutions lead to bounded solutions if the initial radius a0 is larger than 3.74 in units of the primaries' semimajor axis a. A comparison with the Eulerian two-fixedcentre problem is presented in order to understand qualitatively the characteristic features of bounded orbits and the transition to escape orbits.  相似文献   

13.
The periodic solutions of the restricted three-body problem representing analytic continuations of Keplerian rectilinear periodic motions are well known (Kurcheeva, 1973). Here the stability of these solutions are examined by applying Poncaré's characteristic equation for periodic solutions. It is found that the isoperiodic solutions are stable and all other solutions are unstable.  相似文献   

14.
Starting with a simple Taylor-based expansion of the inverse of the distance between two bodies, we are able to obtain a series expansion of the disturbing function of the three-body problem (planar elliptic case) which is valid for all points of the phase space outside the immediate vicinity of the collision points. In particular, the expansion is valid for very high values of the eccentricity of the perturbed body. Furthermore, in the case of an interior mean-motion resonant configuration, the above-mentioned expression is easily averaged with respect to the synodic period, yielding once again a global expansion of (R) valid for very high eccentricities.Comparisons between these results and the numerically computed exact function are presented for various resonances and values of the eccentricity. Maximum errors are determined in each case and their origin is established. Lastly, we discuss the applicability of the present expansion to practical problems.  相似文献   

15.
16.
The separatrix between bounded and unbounded orbits in the three-body problem is formed by the manifolds of forward and backward parabolic orbits. In an ideal problem these manifolds coincide and form the boundary between the sets of bounded and unbounded orbits. As a mass parameter increases the movement of the parabolic manifolds is approximated numerically and by Melnikov's method. The evidence indicates that for positive values of the mass parameter these manifolds no longer coincide, and that capture and oscillatory orbits exist.  相似文献   

17.
We consider the scattering motion of the planar restricted three-body problem with two equal masses on a circular orbit. Using the methods of chaotic scattering we present results on the structure of scattering functions. Their connection with primitive periodic orbits and the underlying chaotic saddle are studied. Numerical evidence is presented which suggests that in some intervals of the Jacobi integral the system is hyperbolic. The Smale horseshoe found there is built from a countable infinite number of primitive periodic orbits, where the parabolic orbits play a fundamental role.  相似文献   

18.
19.
The main goal of this paper is to give an approximation to initial conditions for ejection-collision orbits with the more massive primary, in the planar elliptic restricted three body problem when the mass parameter µ and the eccentricity e are small enough. The proof is based on a regularization of variables and a perturbation of the two body problem.This work was partially supported by DGICYT grant number PB90-0695.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号