首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doppler tracking of an interplanetary spacecraft near solar conjunction is strongly affected by the plasma in the solar corona, the main competitive contribution in measurements of the gravitational deflection of light rays. With the simultaneous availability of carriers in X band and Ka band for interplanetary communications, the plasma contribution to the corona can be accurately eliminated and measured. If, as in the Cassini mission, three different observables are available, this can be done in two ways: one deals with the total plasma content in the electric approximation, even in the ionosphere and interplanetary space; another is limited to the corona, but has access to subtler effects, like the magnetic correction to the refractive index. This technique will allow important progress in the radio investigation of the solar corona.  相似文献   

2.
The Ultraviolet Coronagraph Spectrometer on the SOHO satellite covers the 940–1350 Å range as well as the 470–630 Å range in second order. It has detected coronal emission lines of H, N, O, Mg, Al, Si, S, Ar, Ca, Fe, and Ni, particularly in coronal streamers. Resonance scattering of emission lines from the solar disk dominates the intensities of a few lines, but electron collisional excitation produces most of the lines observed. Resonance, intercombination and forbidden lines are seen, and their relative line intensities are diagnostics for the ionization state and elemental abundances of the coronal gas. The elemental composition of the solar corona and solar wind vary, with the abundance of each element related to the ionization potential of its neutral atom (First Ionization Potential–FIP). It is often difficult to obtain absolute abundances, rather than abundances relative to O or Si. In this paper, we study the ionization state of the gas in two coronal streamers, and we determine the absolute abundances of oxygen and other elements in the streamers. The ionization state is close to that of a log T = 6.2 plasma. The abundances vary among, and even within, streamers. The helium abundance is lower than photospheric, and the FIP effect is present. In the core of a quiescent equatorial streamer, oxygen and other high-FIP elements are depleted by an order of magnitude compared with photospheric abundances, while they are depleted by only a factor of 3 along the edges of the streamer. The abundances along the edges of the streamer (‘legs’) resemble elemental abundances measured in the slow solar wind, supporting the identification of streamers as the source of that wind component.  相似文献   

3.
Coronal structures receive radiation not only from the solar disc, but also from the corona. This height-dependent incident radiation plays a crucial role in the excitation and the ionisation of the illuminated plasma. The aim of this article is to present a method for computing the detailed incident radiation coming from the solar corona, which is perceived at a point located at an arbitrary height. The coronal radiation is calculated by integrating the radiation received at a point in the corona over all of the corona visible from this point. The emission from the corona at all wavelengths of interest is computed using atomic data provided by CHIANTI. We obtain the spectrum illuminating points located at varying heights in the corona at wavelengths between 100 and 912 Å when photons can ionise H or He atoms and ions in their ground states. As expected, individual spectral lines will contribute most at the height within the corona where the local temperature is closest to their formation temperature. As there are many spectral lines produced by many ions, the coronal intensity cannot be assumed to vary in the same way at all wavelengths and so must be calculated for each separate height that is to be considered. This code can be used to compute the spectrum from the corona illuminating a point at any given height above the solar surface. This brings a necessary improvement to models where an accurate determination of the excitation and ionisation states of coronal plasma structures is crucial.  相似文献   

4.
对于足点被日面边缘遮挡住的耀斑的观测研究是诊断日冕硬X射线辐射的一个重要方法.通过统计分析RHESSI (Reuven Ramaty High-Energy Solar Spectroscopic Imager)卫星观测到的71个此类耀斑硬X射线源发现,前人提出的两类源,即日冕X射线辐射中热辐射与非热辐射源区空间分离较小的源和分离较大的源,在能谱、成像、光变曲线以及GOES持续时间等方面都没有显著的区别,其中辐射区的面积、耀斑总热能以及GOES持续时间与分离距离之间有很好的相关性.这些结果支持近年来提出的一些耀斑统一模型.同时也表明Masuda耀斑只是一类非常特殊的事件,不具有日冕硬X射线辐射的一般特征.  相似文献   

5.
The damping of MHD waves in solar coronal magnetic field is studied taking into account thermal conduction and compressive viscosity as dissipative mechanisms. We consider viscous homogeneous unbounded solar coronal plasma permeated by a uniform magnetic field. A general fifth-order dispersion relation for MHD waves has been derived and solved numerically for different solar coronal regimes. The dispersion relation results three wave modes: slow, fast, and thermal modes. Damping time and damping per periods for slow- and fast-mode waves determined from dispersion relation show that the slow-mode waves are heavily damped in comparison with fast-mode waves in prominences, prominence–corona transition regions (PCTR), and corona. In PCTRs and coronal active regions, wave instabilities appear for considered heating mechanisms. For same heating mechanisms in different prominences the behavior of damping time and damping per period changes significantly from small to large wavenumbers. In all PCTRs and corona, damping time always decreases linearly with increase in wavenumber indicate sharp damping of slow- and fast-mode waves.  相似文献   

6.
《Solar physics》1995,162(1-2):233-290
The Coronal Diagnostic Spectrometer is designed to probe the solar atmosphere through the detection of spectral emission lines in the extreme ultraviolet wavelength range 150 – 800 . By observing the intensities of selected lines and line profiles, we may derive temperature, density, flow and abundance information for the plasmas in the solar atmosphere. Spatial and temporal resolutions of down to a few arcseconds and seconds, respectively, allow such studies to be made within the fine-scale structure of the solar corona. Futhermore, coverage of large wavelength bands provides the capability for simultaneously observing the properties of plasmas across the wide temperature ranges of the solar atmosphere.  相似文献   

7.
During 2??C?18 January 2008 a pair of low-latitude opposite-polarity coronal holes (CHs) were observed on the Sun with two active regions (ARs) and the heliospheric plasma sheet located between them. We use the Hinode/EUV Imaging Spectrometer (EIS) to locate AR-related outflows and measure their velocities. Solar-Terrestrial Relations Observatory (STEREO) imaging is also employed, as are the Advanced Composition Explorer (ACE) in-situ observations, to assess the resulting impacts on the solar wind (SW) properties. Magnetic-field extrapolations of the two ARs confirm that AR plasma outflows observed with EIS are co-spatial with quasi-separatrix layer locations, including the separatrix of a null point. Global potential-field source-surface modeling indicates that field lines in the vicinity of the null point extend up to the source surface, enabling a part of the EIS plasma upflows access to the SW. We find that similar upflow properties are also observed within closed-field regions that do not reach the source surface. We conclude that some of plasma upflows observed with EIS remain confined along closed coronal loops, but that a fraction of the plasma may be released into the slow SW. This suggests that ARs bordering coronal holes can contribute to the slow SW. Analyzing the in-situ data, we propose that the type of slow SW present depends on whether the AR is fully or partially enclosed by an overlying streamer.  相似文献   

8.
We report preliminary results from a series of numerical simulations of the reduced magnetohydrodynamic equations used to describe the dynamics of magnetic loops in active regions of the solar corona. A stationary velocity field is applied at the photospheric boundaries to imitate the driving action of granule motions. A turbulent stationary regime is reached, characterized by a broadband power spectrum Ek approximately k-3&solm0;2 and heating rate levels compatible with the energy requirements of active region loops. A dimensional analysis of the equations indicates that their solutions are determined by two dimensionless parameters: the Reynolds number and the ratio between the Alfvén time and the photospheric turnover time. From a series of simulations for different values of this ratio, we determine how the heating rate scales with the physical parameters of the problem, which might be useful for an observational test of this model.  相似文献   

9.
We obtained time-sequence spectroscopic observations in (Fe x) 6374 Å and (Fe xiv) 5303 Å lines successively with the 25-cm coronagraph, and narrow-band and Doppler images in 5303 Å line by the 2-D 10-cm Doppler coronagraph NOGIS at the Norikura Solar Observatory, of a coronal region for about 7 h on 9 19–20, 2001. The raster scans were obtained with a quasi-periodicity of about 14 min and NOGIS obtained the images with an interval of about 1 min. The coronal region observed showed the formation of a coronal loop by a high-speed surge in the 6374 Å line rising from one of the footpoints of the loop. Off the limb spectroscopic observations in the 6374 Å line showed large velocities along the line of sight and vertical to the solar limb at the time of formation of the loop. The 5303 Å line observations showed negligible line-of-sight velocities and low vertical velocities when compared to those in the 6374 Å line. A hump in the intensity plots in 5303 Å with height appears to move up with respect to the solar limb with an average velocity of 4km s–1. The FWHM of the 6374 Å showed a much smaller value of about 0.7 Å near the foot point as compared to a value of 1.2 Å at larger heights at the beginning of observations. Later as the loop developed, the FWHM of 6374 Å line showed a gradual decrease along the loop up to 70 from the limb, reached a minimum value of about 0.5 Å and then increased with height during the formation of the loop; this trend lasted for about 2 h. About 3 h after the beginning of the formation of the loop, the FWHM of 6374 Å emission line showed normal values and normal rate of increase with height with some fluctuations. The FWHM of the 5303 Å line did not show such variations along the loop and showed normal decrease in FWHM with height found earlier (Singh et al., 2003a). These observations suggest that a relatively cooler plasma at a temperature of about 0.7 MK or less (corresponding to minimum value of FWHM of 0.5 Å) was ejected from the transition region with a large velocity of about 48km s–1, heated up in the corona by some process and formed a coronal loop with a height of about 200 above the limb that had lifetime greater than 4 h. It appears that the plasma moved from one of the footpoints and the loop was formed by evaporation of chromospheric plasma. No large-scale brightening and H flare were observed in this region during the observational period of 7 h.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

10.
The first space-borne solar astronomy experiment of India, namely Solar X-ray Spectrometer (SOXS), was successfully launched on 08 May 2003 on board geostationary satellite GSAT-2 of India. The SOXS is composed of two independent payloads, viz. SOXS Low-Energy Detector (SLD) Payload and SOXS High-Energy Detector (SHD) Payload. The SOXS aims to study the full-disk integrated X-ray emission in the energy range from 4 keV to 10 MeV. In this paper we present the first report on the SLD instrumentation and its in-orbit performance. The SLD payload was designed and developed at the Physical Research Laboratory in collaboration with various centers of Indian Space Research Organisation (ISRO). The basic scientific aim of the SLD payload is to study solar flares in the energy range from 4 to 60 keV with high spectral and temporal resolution. To meet these requirements, the SLD payload employs state-of-the-art solid state detectors, the first time for a solar astronomy experiment, viz. Si PIN (4 –25 keV), and cadmium–zinc–telluride (4 –60 keV). With their superb high-energy resolution characteristics, SLD can observe iron and iron–nickel complex lines that are visible only during solar flares. In view of its 3.4 FOV, the detector package is mounted on a Sun Aspect System, for the first time, to get uninterrupted observations in a geostationary orbit. The SLD payload configuration, its in-flight operation, and the response of the detectors are presented. We also present the first observations of solar flares made by the SLD payload and briefly describe their temporal and spectral mode results.  相似文献   

11.
Phillips  K.J.H.  Read  P.D.  Gallagher  P.T.  Keenan  F.P.  Rudawy  P.  Rompolt  B.  Berlicki  A.  Buczylko  A.  Diego  F.  Barnsley  R.  Smartt  R.N.  Pasachoff  J.M.  Babcock  B.A. 《Solar physics》2000,193(1-2):259-271
The Solar Eclipse Coronal Imaging System (SECIS) is an instrument designed to search for short-period modulations in the solar corona seen either during a total eclipse or with a coronagraph. The CCD cameras used in SECIS have the capability of imaging the corona at a rate of up to 70 frames a second, with the intensities in each pixel digitised in 12-bit levels. The data are captured and stored on a modified PC. With suitable optics it is thus possible to search for fast changes or short-period wave motions in the corona that will have important implications for the coronal heating mechanism. The equipment has been successfully tested using the Evans Solar Facility coronagraph at National Solar Observatory/Sacramento Peak and during the 11 August 1999 eclipse at a site in north-eastern Bulgaria. The instrument is described and preliminary results are outlined.  相似文献   

12.
13.
Multi-wavelength solar images in the extreme ultraviolet (EUV) are routinely used for analysing solar features such as coronal holes, filaments, and flares. However, images taken in different bands often look remarkably similar, as each band receives contributions coming from regions with a range of different temperatures. This has motivated the search for empirical techniques that may unmix these contributions and concentrate salient morphological features of the corona in a smaller set of less redundant source images. Blind Source Separation (BSS) does precisely this. Here we show how this novel concept also provides new insight into the physics of the solar corona, using observations made by SDO/AIA. The source images are extracted using a Bayesian positive source-separation technique. We show how observations made in six spectral bands, corresponding to optically thin emissions, can be reconstructed by a linear combination of three sources. These sources have a narrower temperature response and allow for considerable data reduction, since the pertinent information from all six bands can be condensed into a single composite picture. In addition, they give access to empirical temperature maps of the corona. The limitations of the BSS technique and some applications are briefly discussed.  相似文献   

14.
This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. (Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5?–?0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.  相似文献   

15.
The original coronal index of the solar activity (CI) has been constructed on the basis of ground-based measurements of the intensities of the coronal line of 530.3 nm (Rybanský in Bull. Astron. Inst. Czechoslov., 28, 367, 1975; Rybanský et al. in J. Geophys. Res., 110, A08106, 2005). In this paper, CI is compared with the EUV measurements on the CELIAS/SEM equipment based on the same idea as the original idea of the coronal index. The correlation is very good for the period 1996?–?2005 (r=0.94 for daily values). The principal result of this paper is the introduction of the modified coronal index (MCI) which in all uses and contexts can replace the existing CI index. Daily MCI values extend over a time period of six solar activity cycles. Future MCI measurements will be derived from more reliable measurements made by space-based observatories that are not influenced by the weather. MCI measurements are and will continue to be archived at the web site of the Slovak Central Observatory in Hurbanovo ( http://www.suh.sk/obs/vysl/MCI.htm ).  相似文献   

16.
K. B. Ramesh 《Solar physics》1998,177(1-2):311-319
Lomnický tít data of 5303 Ú coronal green-line index (CI) are analysed for the years 1965–1994. The yearly quiet-Sun component (Q_ci) of CI estimated through the linear regression analysis of CI with sunspot numbers (SS) and CI with Ca plage index (CA) are found to vary with the 11-year solar activity cycle. Comparison of Q_ci with the quiet-Sun component of 10.7 cm flux (Q_10.7) revealed that the Q_ci contributes principally to the entire CI, while Q_10.7 assumes much smaller values compared to its yearly averages. The slowly varying component of 5303 Ú emission associated with sunspots and plages seems to be nearly absent in CI. This aspect is also confirmed through the multiple-linear regression analysis of CI with sunspots and plages. The delayed response of green corona to both sunspots and plages also revealed similar results.  相似文献   

17.
Using one-arcsecond-slit-scan observations from the Hinode/EUV Imaging Spectrometer (EIS) on 5 February 2007, we find the plasma outflows in the open and expanding coronal funnels at the eastern boundary of AR 10940. The Doppler-velocity map of Fe?xii 195.120 Å shows the diffuse closed-loop system to be mostly red-shifted. The open arches (funnels) at the eastern boundary of AR exhibit blue-shifts with a maximum speed of about 10?–?15 km?s?1. This implies outflowing plasma through these magnetic structures. In support of these observations, we perform a 2D numerical simulation of the expanding coronal funnels by solving the set of ideal MHD equations in appropriate VAL-III C initial temperature conditions using the FLASH code. We implement a rarefied and hotter region at the footpoint of the model funnel, which results in the evolution of slow plasma perturbations propagating outward in the form of plasma flows. We conclude that the heating, which may result from magnetic reconnection, can trigger the observed plasma outflows in such coronal funnels. This can transport mass into the higher corona, giving rise to the formation of the nascent solar wind.  相似文献   

18.
With a view to investigate variations in parameters of coronal emission lines over a large range of radial distance from the limb, raster scans were made with sufficiently long exposure times on several days during September – October 2003. An analysis of the data shows that (i) in most of the coronal structures, the FWHM of the Fe xiv 5303 Å line decreases up to 300″±50″, (ii) the FWHM of the Fe x 6374 Å line increases up to about 200″ and then remains unchanged up to about 500″, and (iii) the FWHMs of the Fe xi 7892 Å and Fe xiii 10747 Å lines show an intermediate behaviour with height. The analysis of the data also shows that the ratio of FWHM of 6374 Å to that of 5303 Å increases from 0.93 at the limb to 1.18 at 200″ above the limb. From this and the ratio of intensities of the two lines we infer that the plasma in steady coronal structures at a height of about 200″ has a temperature of about 1.5 MK and a non-thermal velocity around 17 km s?1. The observations also show that non-homogeneous temperatures and non-thermal velocities largely exist in the lower corona up to about 300″±100″ above the limb. Amplitudes of variations in FWHM of different emission lines with height in the coronal loops are similar to those in the diffuse plasma around the coronal loops.  相似文献   

19.
We present X-ray fluorescence observations of the lunar surface, made by the Chandrayaan-1 X-ray Spectrometer during two solar flare events early in the mission (12th December 2008 and 10th January 2009). Modelling of the X-ray spectra with an abundance algorithm allows quantitative estimates of the MgO/SiO2 and Al2O3/SiO2 ratios to be made for the two regions, which are in mainly basaltic areas of the lunar nearside. One of these ground tracks includes the Apollo 14 landing site on the Fra Mauro Formation. Within the 1σ errors provided, the results are inside the range of basaltic samples from the Apollo and Luna collections. The Apollo 14 soil composition is in agreement with the results from the January flare at the 1σ uncertainty level. Discrepancies are observed between our results and compositions derived for the same areas by the Lunar Prospector gamma-ray spectrometer; some possible reasons for this are discussed.  相似文献   

20.
The scientific and operational aims of the Czech-made Hard X-Ray Spectrometer (HXRS) launched onboard the U.S. Department of Energy Multispectral Thermal Imager satellite (MTI), on 12 March 2000 are discussed. The principal operating characteristics of the instrument such as the temporal resolution, energy band selection, spectral sensitivity, and the in-flight calibration procedure are described as well as the technical details of the spectrometer including detectors, shielding (against charged particles) and electronic design. The MTI host satellite and its orbit are briefly described. Recent observations by the 3 GHz Ondřejov radiometer are compared with HXRS data to demonstrate one example of the HXRS data utilization: the temporal relation between hard X-rays and radio emission. These results show relatively long time delays (2–14 s) of the GHz broadband radio pulses relative to the hard X-ray emission peaks. Access to the HXRS data base via the Internet is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号