首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
龙湖周边机井开采对地下水流影响的数值模拟   总被引:2,自引:0,他引:2  
人工湖、库和河流等将改变区域水文循环过程,特别是地表水与地下水交换关系。本文对郑州市规划的龙湖入渗水利用和龙湖周边机井布设方案进行比较分析。龙湖水体形成后,湖区与周围地下水位的2.5m落差将使湖水大量入渗补给地下水,大范围抬升湖区周围地下水位,龙湖周围低洼处将有发生盐碱化的危险,威胁到紧靠龙湖的西部国家森林公园和规划中的东北部生态回廊绿地。本文利用美国地质调查局(USGS)颁布的三维地下水数值模型(MODFLOW),模拟不同湖底防渗措施和机井开采方案下龙湖周围地下水位变化以及龙湖入渗量,对龙湖周边布井方案可行性和降低地下水效果加以分析和比较。  相似文献   

2.
通过微咸水和淡水膜下滴灌对比试验,研究灌溉水质对土壤和棉花元素组成及产量的影响.结果表明:微咸水灌溉处理,土壤窄行和膜间微量元素(尤其是铜、铁、锌)含量明显高于宽行,Na+增长率低于宽行;多数棉花器官中钾钠比、钙钠比并未因灌溉水质的区别而产生显著差异;微咸水滴灌有利于促进棉花前期营养生长及后期生殖生长,棉花干物质、单铃重、单位面积铃数及籽棉产量均高于淡水处理;棉株内锰、硼与钙元素间存在显著的相关关系,在一定阈值内,硼、锰促进棉花对钙的吸收.试验证明:微咸水中含有一定量的微量元素,合理利用微咸水灌溉,不会对棉花生长造成胁迫,相反能有效抑制土壤中Na+增长,增强棉花对盐分胁迫的抵抗能力、提高棉花产量.   相似文献   

3.
圆明园遗址公园水文地质条件分析   总被引:2,自引:0,他引:2  
通过遥感解译、水文地质调查、钻孔和抽水试验,结合区域水文、气象和地质等资料,对圆明园的水文地质条件有了初步认识:圆明园处在清河古河道范围内,浅层地下水可分为潜水和第一层承压水,含水层岩性以砂类为主,与湖水有直接联系的潜水含水层的渗透系数大于20md;20世纪50~60年代,圆明园所在区域地下水位较高,地下水补给湖水;近年来,受降水减少和地下水开采等因素影响,地下水位下降较大,湖水位高于潜水位,自然条件下湖水补给地下水。  相似文献   

4.
蔡国英  徐中民 《冰川冻土》2013,35(3):770-775
采用投入产出分析方法, 以黑河流域中游的张掖市为例, 将传统的价值型投入产出表和水资源利用的实物型投入产出表相结合, 构建了混合型水资源投入产出表, 并估算了张掖市各行业的直接用水系数、 用水乘数、 直接产出系数、 产出乘数以及综合用水特性. 结果表明: 张掖市种植业、 畜牧业和其他农业的用水效益和用水效率远低于其他行业, 直接耗用水程度均高, 而直接产出一般. 张掖市过度依赖种植业的产业结构特征造成该地区对水资源的过度依赖. 因此, 调整产业结构, 实施高效的节水措施, 适当降低农业尤其是种植业在国民经济中的比重, 是解决张掖市水资源危机的有效途径.  相似文献   

5.
运城解州地区地下水水质恶化形成原因及防治   总被引:1,自引:1,他引:0       下载免费PDF全文
运城解州地区近年来出现地下水水质明显恶化的现象, 直接影响了当地居民正常生活和农业灌溉用水.通过对该区水文地质条件的调查和水质分析对比, 认为是洪积倾斜平原中上部大量开采地下水使地下水水位下降, 水力坡度变缓, 在这种条件下, 又在咸淡水过渡带附近抽取地下水使地下水位低于硝池水位, 引起咸水入侵, 造成地下水水质恶化.研究认为必须控制开采量和抽水地段才能防止地下水水质进一步恶化和扩展.   相似文献   

6.
为了解环渤海低平原微咸水灌溉的土壤容盐能力问题,对大量野外监测和采样测试数据进行了研究。结果表明,该平原的土壤盐分剖面分布特征具有表聚型、中聚型和底聚型3种类型,其与蒸发、降水或灌溉入渗影响和潜水位埋深变化相关。不同聚型剖面形成的水动力特征各不相同:表聚型土壤盐分剖面的水势梯度指向地表,其绝对值远大于1.0 cmH2O/cm;中聚型土壤盐分剖面上部的水势梯度指向地下水面,剖面下部的水势梯度指向地表;底聚型土壤盐分剖面的水势梯度指向地下水面,水势梯度大于1.0 cmH2O/cm。表聚型土壤盐分剖面不利于微咸水灌溉农田和作物生长。  相似文献   

7.
Aquifer storage and recovery (ASR) is considered as a strategy for the storage of water to ensure a sustainable water supply in the Abu Dhabi emirate. Earlier investigations have been conducted, and two sites were proposed for the installation of ASR in the surficial aquifer. Recently, the site located in the center of Abu Dhabi (sand dune area) was executed, and the second site is undergoing the pilot phase of the study. However, the performance and influence of the regional groundwater system may vary depending on regional hydrogeological characteristics, which have not been investigated. Hence, this study attempts to understand the feasibility of the proposed ASR sites in the surficial aquifer using a regional model developed by the finite-difference approach with an accuracy of 0.28 m mean residual difference. Additionally, six sites were selected on the basis of the literature and aquifer parameters and were investigated for their suitability for future ASR installation. Six cycles of injection and recovery at various rates were analyzed at each ASR site by using a transient calibrated model until the end of the year 2030. The area of influence is axisymmetrical in the sand dune area and non-symmetrical in the east and northeastern areas because of the steep topography and groundwater table gradient. At the sites that possess a non-symmetrical influence, the area of influence is always high upstream of the groundwater flow. Heterogeneity-induced variation in the fluctuation of the groundwater table is noted in all sites. Even with 100% recovery, the groundwater table did not reach the ambient groundwater table during the recovery period. This finding confirms the contribution of regional groundwater to the site during recovery. All sites selected for future ASR installation, except site 5, are capable of storing the volume needed to meet expected water demand. Site 2 is considered the most suitable site for ASR installation in the future. This study will facilitate the scientific communities and authorities in understanding the feasibility of ASR installation for sustainable water storage and supply in the Abu Dhabi emirate.  相似文献   

8.
In recent years, voices in Jordan became lauder to exploit the fresh to brackish deep groundwater overlain by fresh groundwater bodies. In this article the implications of such a policy on the existing fresh water bodies are worked out through studying the sources of salinity in the different aquifer systems and the potentials of salinity mobilization by artificial changes in the hydrodynamic regimes. It is concluded that extracting the groundwater of deep aquifers overlain by fresh water bodies, whether the deep groundwater is fresh to brackish, brackish or salty, is equivalent to extracting groundwater from the overlying fresh groundwater bodies because of the hydraulic connections of the deep and the shallow aquifers’ groundwaters. The consequences are even more complicated and severe because exploiting the deep groundwater containing brackish or salty water will lead to refilling by fresh groundwater leaking from the overlying aquifers. The leaking water becomes salinized as soon as it enters the pore spaces of the emptied deep aquifer matrix and by mixing with the deep aquifer brackish or saline groundwater. Therefore, the move to exploit the deep groundwater is misleading and damaging the aquifers and is unjust to future generation's rights in the natural wealth of Jordan or any other country with similar aquifers’ set-up. In addition, desalination produces brines with high salinity which cannot easily be discharged in the highlands of Jordan (with only very limited access to the open sea) because they will on the long term percolate down into fresh water aquifers.  相似文献   

9.
Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency’s maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however.  相似文献   

10.
?znik Lake is a tectonically originated basin mainly controlled by the E–W trending middle strand of the North Anatolian Fault (NAF) system. Pleistocene sediments occurring in front of the faults are well exposed both in the northern and in the southern shorelines of the basin. In this study, two endemic brackish water bivalve species, Didacna subpyramidata Pravoslavkev 1939 and Didacna nov. sp. were found in the oldest terrace of the northern Pleistocene sequence. Having characterized morphology, these species serve as stratigraphic indicators in the regional Pleistocene stratigraphy of the Ponto-Caspian region, and thus are well correlated to the assemblages of the early Khazarian subhorizon (Middle Pleistocene). Hence, these data demonstrate that the early Khazarian brackish water sea covered the study area. Additionally, a model for the formation of the basin is proposed: the ?znik lake basin was a gulf of the former Marmara Sea in the early Khazarian, connecting the Marmara to the Black Sea and the Caspian Sea. The subsequent regional prograding uplifts, main dextral strike-slip fault and many normal faults of the NAF Zone cut off the marine connections to the basin, leading to its present location and topographic level.  相似文献   

11.
The low lying Western part of the Netherlands is protected from the sea by a 5 km wide stretch of dunes rising to some 50 m of height. The fresh water pocket in the dunes overlies saline groundwater and a brackish transition zone. There was during a century an extraction of fresh groundwater for drinking water, supported by artificial infiltration. This has been stopped some 30 years ago. The consequent wetting of the valuable farm area (flower cultures) behind the dunes is stronger and more extensive than could be expected from mere replenishment of the fresh water zones in the dunes. It is shown in this paper that the lateral shear flows in the brackish and saline groundwater area have displaced (and are displacing) the interfaces vertically downward. The effect of more fresh and less saline groundwater in an arbitrary groundwater column is an (extra) rise of the groundwater head of the upper fresh water part. The described slow process will continue for decades until a new equilibrium has been established. In the mean time the inner dune farm area will have to cope with a surprisingly strong and extensive water level rise.  相似文献   

12.
风积沙对青藏铁路块碎石路基降温效果的影响   总被引:4,自引:4,他引:0  
风沙危害正在威胁着青藏铁路的安全营运. 通过数值方法研究了风积沙填堵和覆盖青藏铁路块碎石路基后, 块碎石层降温机理以及降温效果的变化特征. 结果表明:开放条件下块石路基具有较强的强迫对流效应; 风积沙填堵后, 块碎石层降温效果减弱. 封闭条件下, 冷季路基坡脚处自然对流较强, 冻土上限抬升; 路基内部自然对流较弱, 由于路基填土作用, 路基中心处冻土上限抬升较大, 但随时间增长而降低; 沙层覆盖后, 块碎石层降温效果减弱, 路基下部冻土上限下降. 在气候变暖背景条件下, 封闭块碎石层自然对流减弱, 冻土上限下降, 不利于冻土路基的热稳定. 因此, 建议对沙害路段的块碎石路基采取补强措施.  相似文献   

13.
赵中省 《江苏地质》1997,21(2):93-97
简要论述丰县县城的水文地质条件;对丰县县城规划区主要供水源深层孔隙水的开采作了动态分析;建立了地下水位灰色预测模型并预测了2000年的水位及水位变化区间。  相似文献   

14.
The production of fresh drinking water from brackish groundwater by reverse osmosis (BWRO) is becoming more attractive, even in temperate climates. For successful application of BWRO, the following approach is advocated: (1) select brackish source groundwater with a large volume and a composition that will yield a concentrate (waste water) with low mineral saturation; (2) maintain the feed water salinity at a constant level by pumping several wells with different salinities; (3) keep the permeate-to-concentrate ratio low, to avoid supersaturation in the concentrate; (4) keep the system anoxic (to avoid oxidation reactions) and pressurized (to prevent formation of gas bubbles); and (5) select a confined aquifer for deep well injection where groundwater quality is inferior to the membrane concentrate. This approach is being tested at two BWRO pilot plants in the Netherlands. Research issues are the pumping of a stable brackish source water, the reverse osmosis system performance, membrane fouling, quality changes in the target aquifer as a result of concentrate disposal, and clogging of the injection well. First evaluations of the membrane concentrate indicate that it is crucial to understand the kinetics of mineral precipitation on the membranes, in the injection wells, and in the target aquifer.  相似文献   

15.
Periphyton plays key ecological roles in karstic, freshwater wetlands and is extremely sensitive to environmental change making it a powerful tool to detect saltwater intrusion into these vulnerable and valuable ecosystems. We conducted field mesocosm experiments in the Florida Everglades, USA to test the effects of saltwater intrusion on periphyton metabolism, nutrient content, and diatom species composition, and how these responses differ between mats from a freshwater versus a brackish marsh. Pulsed saltwater intrusion was simulated by dosing treatment chambers monthly with a brine solution for 15 months; control chambers were simultaneously dosed with site water. Periphyton from the freshwater marsh responded to a 1-ppt increase in surface water salinity with reduced productivity and decreased concentrations of total carbon, nitrogen, and phosphorus. These functional responses were accompanied by significant shifts in periphytic diatom assemblages. Periphyton mats at the brackish marsh were more functionally resilient to the saltwater treatment (~?2 ppt above ambient), but nonetheless experienced significant shifts in diatom composition. These findings suggest that freshwater periphyton is negatively affected by small, short-term increases in salinity and that periphytic diatom assemblages, particularly at the brackish marsh, are a better metric of salinity increases compared with periphyton functional metrics due to functional redundancy. This research provides new and valuable information regarding periphyton dynamics in response to changing water sources in the southern Everglades that will allow us to extend the use of periphyton, and their diatom assemblages, as tools for environmental assessments related to saltwater intrusion.  相似文献   

16.
Recirculating cooling water systems are consist of a cooling tower and heat-exchanger network which conventionally have a parallel configuration. However, reuse of water between different cooling duties enables cooling water networks to be designed with series arrangements. This will results in performance improvement and increased cooling tower capacity. Research on recirculating cooling water systems has mostly focused on the individual components. However, a particular design method represented by Kim and Smith accounts for the whole system interactions. In this study, the Kim and Smith design method is expanded and a comprehensive simulation model of recirculating cooling system was developed to account for the interaction between the cooling tower performance and the heat-exchanger network configuration. Regarding this model and considering cycle water quality through introducing ozone treatment technology, a modern methodology of recirculating cooling water system design was established and developed. This technique, called the integrated ozone treatment cooling system design, is a superior designed tool based on pinch analysis and mathematical programing. It also ensures maximum water and energy conservation, minimum cost and environmental impacts. Related coding in MATLAB version 7.3 was used for the illustrative example to get optimal values in cooling water design method computations. The result of the recently introduced design methodology was compared with the Kim and Smith design method.  相似文献   

17.
The developments of cones of depression in the North China Plain (NCP) were studied to determine the possible impact of the proposed South-to-North Water Diversion Project (SNWDP) on groundwater levels. In the past five decades, the exploitation of groundwater in the NCP has been excessive. Numerous hydrological and hydrogeological problems were caused by the gradual decline of the water table in the NCP. In order to protect groundwater resources and alleviate hydrogeological problems, the SNWDP was proposed to progressively solve the shortage of water resources in northern China. In this paper, the development of cones of depression was studied to determine the possible impact of the hydrological engineering, the SNWDP. In the study, a numerical model for regional groundwater flow was created using MODFLOW. The results showed that the SNWDP is beneficial for groundwater recovery in the NCP. The area of cones of depression will be reduced to varying degrees. Some immense groundwater cones will gradually shrink. However, it will take a long time to recover groundwater environment in the NCP.  相似文献   

18.
青藏铁路透壁通风管通风路基模型试验及初始温度场特征   总被引:9,自引:2,他引:7  
通风路基作为一种积极主动保护冻土路基的冷却调控技术能有效的抬升多年冻土上限, 保护冻土路基的稳定性. 目前实体试验工程通风路基一般采用路基内预埋实体混凝土管或PVC管, 管壁不能透风, 管壁与土体间主要通过热传导进行换热. 一种管壁开孔、可以透风的新型通风管--"透壁通风管"既能以管内空气间的对流带走管内热量; 因其管壁透风, 低温的冷空气可以透过管壁的大孔眼穿透到通风管周围的介质中, 直接与其进行热交换, 从而改善传统通风管换热模式. 为探索透壁通风管在青藏铁路路基中的实际温控效果而进行了青藏铁路透壁通风管路基现场试验, 试验路基短期监测资料的分析结果显示, 透壁通风管对青藏铁路路基具有良好的冷却能力, 可在一定程度上抬升冻土上限; 透壁通风管路基经填土级配优化重组后更能充分发挥其路基冷却效果  相似文献   

19.
Limestone and dolostone aquifers play a major role in the water supply system of Israel. In many cases, there are brackish to saline springs at their outlets. The source of the saline water and the mechanism of salinization differ from place to place. In some cases, it is due to mixing with seawater (Mediterranean or Dead Sea) at the fresh-saline water interface, while in other cases deepseated brines emerge along regional faults. The general policy for reclaiming the fresh component of the water before mixing with the saline component is to try to catch the fresh water as far as possible upstream from the outlet. In most cases, this is the area where the mixing takes place. The main case histories in Israel are discussed in this paper.  相似文献   

20.
To reconstruct patterns of fish migration using otolith chemistry, it is essential to validate the relationship between elements in otoliths and the surrounding water, and in particular, how processes such as competition and facilitation among multiple elements influence otolith chemistry. Using a controlled laboratory experiment, juvenile black bream (Acanthopagrus butcheri) were reared in both brackish and seawater spiked with different concentrations of Sr and Ba. The addition of Sr to the solution facilitated the uptake of Ba into otoliths of fish reared in brackish water, but not in seawater. Conversely, Ba did not facilitate nor compete with the uptake of Sr in either brackish or seawater. In brackish water, Sr incorporation into otoliths may create crystal defects within the CaCO3 matrix, enabling greater incorporation of Ba. Ba:Ca partition coefficients (DBa) for brackish and seawater were 0.058 and 0.136, respectively, whereas Sr:Ca partition coefficients (DSr) for brackish and seawater were 0.463 and 0.287, respectively. The influence of Sr on Ba incorporation in fish otoliths is important to consider when reconstructing migration histories of fish, especially in brackish water environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号