首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Bruce G. Bills 《Icarus》2005,175(1):233-247
The obliquity, or angular separation between orbit normal and spin pole, is an important parameter for the geodynamics of most Solar System bodies. Tidal dissipation has driven the obliquities of the Galilean satellites of Jupiter to small, but non-zero values. We present estimates of the free and forced obliquities of these satellites using a simple secular variation model for the orbits, and spin pole precession rate estimates based on gravity field parameters derived from Galileo spacecraft encounters. The free obliquity values are not well constrained by observations, but are presumed to be very small. The forced obliquity variations depend only on the orbital variations and the spin pole precession rate parameters, which are quite well known. These variations are large enough to influence spatial and temporal patterns of tidal dissipation and tidal stress.  相似文献   

2.
We study the jet and counterjet of the powerful classical double Fanaroff–Riley type II (FR II) radio galaxy Cygnus A as seen in the 5-, 8- and 15-GHz radio bands using the highest spatial resolution and signal-to-noise ratio archival data available. We demonstrate that the trace of the radio knots that delineate the jet and counterjet deviates from a straight line and that the inner parts can be satisfactorily fitted with the precession model of Hjellming & Johnston. The parameter values of the precession model fits are all plausible although the jet speed is rather low (≲ 0.5 c ) but, on investigation, found to be consistent with a number of other independent estimates of the jet speed in Cygnus A. We compare the masses and precession periods for sources with known precession and find that for the small number of active galactic nuclei with precessing jets the precession periods are significantly longer than those of microquasars.  相似文献   

3.
We discuss short wavelength (inertial wave) instabilities present in the standard two-fluid neutron star model when there is sufficient relative flow along the superfluid neutron vortex array. We demonstrate that these instabilities may be triggered in precessing neutron stars, since the angular velocity vectors of the neutron and proton fluids are misaligned during precession. Our results suggest that the standard (Eulerian) slow precession that results for weak drag between the vortices and the charged fluid (protons and electrons) is not seriously affected by the instability. In contrast, the fast precession, which results when vortices are strongly coupled to the charged component, is generally unstable. The presence of this instability renders the standard (solid body) rotation model for free precession inconsistent and makes unsafe conclusions that have recently been drawn regarding neutron star interiors based on observations of precession in radio pulsars.  相似文献   

4.
The dynamics of synchronous rotation and physical librations are revisited in order to establish a conceptually simple and general theoretical framework applicable to a variety of problems. Our motivation comes from disagreements between the results of numerical simulations and those of previous theoretical studies, and also because different theoretical studies disagree on basic features of the dynamics. We approach the problem by decomposing the orientation matrix of the body into perfectly synchronous rotation and deviation from the equilibrium state. The normal modes of the linearized equations are computed in the case of a circular satellite orbit, yielding both the periods and the eigenspaces of three librations. Libration in longitude decouples from the other two, vertical modes. There is a fast vertical mode with a period very close to the average rotational period. It corresponds to tilting the body around a horizontal axis while retaining nearly principal-axis rotation. In the inertial frame, this mode appears as nutation and free precession. The other vertical mode, a slow one, is the free wobble. The effects of the nodal precession of the orbit are investigated from the point of view of Cassini states. We test our theory using numerical simulations of the full equations of the dynamics and discuss the disagreements among our study and previous ones. The numerical simulations also reveal that in the case of eccentric orbits large departures from principal-axis rotation are possible due to a resonance between free precession and wobble. We also revisit the history of the Moon's rotational state and show that it switched from one Cassini state to another when it was at 46.2 Earth radii. This number disagrees with the value 34.2 derived in a previous study.  相似文献   

5.
Here I discuss possible relations between free precession of neutron stars, Tkachenko waves inside them and glitches. I note that the proposed precession period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is consistent with the period of Tkachenko waves for the spin period 8.4 s. Based on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al. 2007), I propose a simple model, in which long period precession is powered by Tkachenko waves generated by a glitch. The period of free precession, determined by a NS oblateness, should be equal to the standing Tkachenko wave period for effective energy transfer from the standing wave to the precession motion. A similar scenario can be applicable also in the case of the PSR B1828-11.  相似文献   

6.
7.
In our previous paper (hereafter, paper I) we presented analytical results on the non-planar motion of a planet around a binary star for the cases of the circular orbits of the components of the binary. We found that the orbital plane of the planet (the plane containing the “unperturbed” elliptical orbit of the planet), in addition to precessing about the angular momentum of the binary, undergoes simultaneously the precession within the orbital plane. We demonstrated that the analytically calculated frequency of this additional precession is not the same as the frequency of the precession of the orbital plane about the angular momentum of the binary, though the frequencies of both precessions are of the same order of magnitude. In the present paper we extend the analytical results from paper I by relaxing the assumption that the binary is circular – by allowing for a relatively small eccentricity ε of the stars orbits in the binary. We obtain an additional, ε-dependent term in the effective potential for the motion of the planet. By analytical calculations we demonstrate that in the particular case of the planar geometry (where the planetary orbit is in the plane of the stars orbits), it leads to an additional contribution to the frequency of the precession of the planetary orbit. We show that this additional, ε-dependent contribution to the precession frequency of the planetary orbit can reach the same order of magnitude as the primary, ε-independent contribution to the precession frequency. Besides, we also obtain analytical results for another type of the non-planar configuration corresponding to the linear oscillatory motion of the planet along the axis of the symmetry of the circular orbits of the stars. We show that as the absolute value of the energy increases, the period of the oscillations decreases.  相似文献   

8.
We consider the shape of an accretion disc whose outer regions are misaligned with the spin axis of a central black hole and calculate the steady state form of the warped disc in the case where the viscosity and surface densities are power laws in the distance from the central black hole. We discuss the shape of the resulting disc in both the frame of the black hole and that of the outer disc. We note that some parts of the disc and also any companion star maybe shadowed from the central regions by the warp. We compute the torque on the black hole caused by the Lense–Thirring precession, and hence compute the alignment and precession time-scales. We generalize the case with viscosity and hence surface density independent of radius to more realistic density distributions for which the surface density is a decreasing function of radius. We find that the alignment time-scale does not change greatly but the precession time-scale is more sensitive. We also determine the effect on this time-scale if we truncate the disc. For a given truncation radius, the time-scales are less affected for more sharply falling density distributions.  相似文献   

9.
The kinematics of superluminal components in blazar 3C 454.3 are studied.Nine components are included:superluminal knots R1,R2,R3,R4,A,B,C and D(from Britzen et al.2013) and C4(from Pauliny-Toth 1998).We find that their kinematics derived from VLBI observations can be consistently interpreted in terms of a jet precession scenario with a period of about 14.5 yr.We discuss the model fits of their trajectory,distance from the core and apparent velocity.We show that the bulk Lorentz factor(in the range 4 to 15) derived for these components does not have any dependence on the phase of the precession(or position angle for ejection).The LenseThirring effect is assumed to interpret the precession of the jet nozzle.The results obtained for blazar 3C 454.3 are only suggestive.They are not unique and have yet to be tested,but they might be useful for understanding the kinematics of superluminal components in blazars and for disentangling different mechanisms and factors.  相似文献   

10.
We present hydrodynamic simulations of molecular outflows driven by jets with a long period of precession, motivated by observations of arc-like features and S-symmetry in outflows associated with young stars. We simulate images of not only H2 vibrational and CO rotational emission lines, but also of atomic emission. The density cross-section displays a jaw-like cavity, independent of precession rate. In molecular hydrogen, however, we find ordered chains of bow shocks and meandering streamers which contrast with the chaotic structure produced by jets in rapid precession. A feature particularly dominant in atomic emission is a stagnant point in the flow that remains near the inlet and alters shape and brightness as the jet skims by. Under the present conditions, slow jet precession yields a relatively high fraction of mass accelerated to high speeds, as also attested to in simulated CO line profiles. Many outflow structures, characterized by HH 222 (continuous ribbon), HH 240 (asymmetric chains of bow shocks) and RNO 43N (protruding cavities), are probably related to the slow-precession model.  相似文献   

11.
The IAU Working Group on Precession and the Equinox looked at several solutions for replacing the precession part of the IAU 2000A precession–nutation model, which is not consistent with dynamical theory. These comparisons show that the (Capitaine et al., Astron. Astrophys., 412, 2003a) precession theory, P03, is both consistent with dynamical theory and the solution most compatible with the IAU 2000A nutation model. Thus, the working group recommends the adoption of the P03 precession theory for use with the IAU 2000A nutation. The two greatest sources of uncertainty in the precession theory are the rate of change of the Earth’s dynamical flattening, ΔJ2, and the precession rates (i.e. the constants of integration used in deriving the precession). The combined uncertainties limit the accuracy in the precession theory to approximately 2 mas cent−2. Given that there are difficulties with the traditional angles used to parameterize the precession, zA, ζA, and θA, the working group has decided that the choice of parameters should be left to the user. We provide a consistent set of parameters that may be used with either the traditional rotation matrix, or those rotation matrices described in (Capitaine et al., Astron. Astrophys., 412, 2003a) and (Fukushima Astron. J., 126, 2003). We recommend that the ecliptic pole be explicitly defined by the mean orbital angular momentum vector of the Earth–Moon barycenter in the Barycentric Celestial Reference System (BCRS), and explicitly state that this definition is being used to avoid confusion with previous definitions of the ecliptic. Finally, we recommend that the terms precession of the equator and precession of the ecliptic replace the terms lunisolar precession and planetary precession, respectively.  相似文献   

12.
This paper describes a numerical simulation of the rigid rotation of the Moon in a relativistic framework.Following a resolution passed by the International Astronomical Union(IAU) in 2000,we construct a kinematically non-rotating reference system named the Selenocentric Celestial Reference System(SCRS) and give the time transformation between the Selenocentric Coordinate Time(TCS) and Barycentric Coordinate Time(TCB).The post-Newtonian equations of the Moon's rotation are written in the SCRS,and they are integrated numerically.We calculate the correction to the rotation of the Moon due to total relativistic torque which includes post-Newtonian and gravitomagnetic torques as well as geodetic precession.We find two dominant periods associated with this correction:18.6 yr and 80.1 yr.In addition,the precession of the rotating axes caused by fourth-degree and fifth-degree harmonics of the Moon is also analyzed,and we have found that the main periods of this precession are 27.3 d,2.9 yr,18.6 yr and 80.1 yr.  相似文献   

13.
We present a model of a freely precessing neutron star, which is then compared against pulsar observations. The aim is to draw conclusions regarding the structure of the star, and to test theoretical ideas of crust–core coupling and superfluidity. We argue that, on theoretical grounds, it is likely that the core neutron superfluid does not participate in the free precession of the crust. We apply our model to the handful of proposed observations of free precession that have appeared in the literature. Assuming crust-only precession, we find that all but one of the observations are consistent with there being no pinned crustal superfluid at all; the maximum amount of pinned superfluid consistent with the observations is about 10−10 of the total stellar moment of inertia. However, the observations do not rule out the possibility that the crust and neutron superfluid core precess as a single unit. In this case the maximum amount of pinned superfluid consistent with the observations is about 10−8 of the total stellar moment of inertia. Both of these values are many orders of magnitude less than the 10−2 value predicted by many theories of pulsar glitches. We conclude that superfluid pinning, at least as it affects free precession, needs to be reconsidered.  相似文献   

14.
By means of affine decomposition of oblique frame, a simple general formula is established which is convenient for calculating the precession of the perihelion point of a Keplerian ellipse under perturbation.  相似文献   

15.
Transiting exoplanetary systems are surpassingly important among the planetary systems since they provide the widest spectrum of information for both the planet and the host star. If a transiting planet is on an eccentric orbit, the duration of transits T D is sensitive to the orientation of the orbital ellipse relative to the line of sight. The precession of the orbit results in a systematic variation in both the duration of individual transit events and the observed period between successive transits,   P obs  . The periastron of the ellipse slowly precesses due to general relativity and possibly the presence of other planets in the system. This secular precession can be detected through the long-term change in   P obs  (transit timing variations, TTV) or in T D (transit duration variations, TDV). We estimate the corresponding precession measurement precision for repeated future observations of the known eccentric transiting exoplanetary systems (XO-3b, HD 147506b, GJ 436b and HD 17156b) using existing or planned space-borne instruments. The TDV measurement improves the precession detection sensitivity by orders of magnitude over the TTV measurement. We find that TDV measurements over a approximately 4 yr period can typically detect the precession rate to a precision well exceeding the level predicted by general relativity.  相似文献   

16.
In binary radio pulsars with a main-sequence star companion, the spin-induced quadrupole moment of the companion gives rise to a precession of the binary orbit. As a first approximation one can model the secular evolution caused by this classical spin-orbit coupling by linear-in-time changes of the longitude of periastron and the projected semi-major axis of the pulsar orbit. This simple representation of the precession of the orbit neglects two important aspects of the orbital dynamics of a binary pulsar with an oblate companion. First, the quasiperiodic effects along the orbit, owing to the anisotropic 1/ r 3 nature of the quadrupole potential. Secondly, the long-term secular evolution of the binary orbit, which leads to an evolution of the longitude of periastron and the projected semi-major axis, which is non-linear in time.   In this paper a simple timing formula for binary radio pulsars with a main-sequence star companion is presented which models the short-term secular and most of the short-term periodic effects caused by the classical spin-orbit coupling. I also give extensions of the timing formula that account for long-term secular changes in the binary pulsar motion. It is shown that the short-term periodic effects are important for the timing observations of the binary pulsar PSR B1259–63. The long-term secular effects are likely to become important in the next few years of timing observations of the binary pulsar PSR J0045–7319. They could help to restrict or even determine the moments of inertia of the companion star and thus probe its internal structure.   Finally, I reinvestigate the spin-orbit precession of the binary pulsar PSR J0045–7319 since the analysis given in the literature is based on an incorrect expression for the precession of the longitude of periastron. A lower limit of 20° for the inclination of the B star with respect to the orbital plane is derived.  相似文献   

17.
We study spherical and disc clusters in a near-Keplerian potential of galactic centres or massive black holes. In such a potential orbit precession is commonly retrograde, that is, the direction of the orbit precession is opposite to the orbital motion. It is assumed that stellar systems consist of nearly-radial orbits. We show that if there is a loss-cone at low angular momentum (e.g. due to consumption of stars by a black hole), an instability similar to loss-cone instability in plasma may occur. The gravitational loss-cone instability is expected to enhance black hole feeding rates. For spherical systems, the instability is possible for the number of spherical harmonics   l ≥ 3  . If there is some amount of counter-rotating stars in flattened systems, they generally exhibit the instability independent of azimuthal number m . The results are compared with those obtained recently by Tremaine for distribution functions monotonically increasing with angular momentum.
The analysis is based on simple characteristic equations describing small perturbations in a disc or a sphere of stellar orbits highly elongated in radius. These characteristic equations are derived from the linearized Vlasov equations (combining the collisionless Boltzmann kinetic equation and the Poisson equation), using the action-angle variables. We use two techniques for analysing the characteristic equations: the first one is based on preliminary finding of neutral modes, and the second one employs a counterpart of the plasma Penrose–Nyquist criterion for disc and spherical gravitational systems.  相似文献   

18.
In publications presenting analytical results on the non-coplanar motion of a circumbinary planet it was shown that the unperturbed elliptical orbit of the planet undergoes simultaneously two kinds of the precession: the precession of the orbital plane and the precession of the orbit in its own plane. It is also well-known that there is also the relativistic precession of the planetary orbit in its own plane. In the present paper we study a combined effect of the all of the above precessions. For the general case, where the planetary orbit is not coplanar with the stars orbits, we analyzed the dependence of the critical inclination angle ic, at which the precession of the planetary orbit in its own plane vanishes, on the angular momentum L of the planet. We showed that the larger the angular momentum, the smaller the critical inclination angle becomes. We presented the analytical result for ic(L) and calculated the value of L, for which the critical inclination value becomes zero. For the particular case, where the planetary orbit is not coplanar with the stars orbits, we demonstrated analytically that at a certain value of the angular momentum of the planet, the elliptical orbit of the planet would become stationary: no precession. In other words, at this value of the angular momentum, the relativistic precession of the planetary orbit and its precession, caused by the fact that the planet revolves around a binary (rather than single) star, cancel each other out. This is a counterintuitive result.  相似文献   

19.
There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schafer and Wex & Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schafer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i = 87.7129 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex & Kopeikin's is supported.  相似文献   

20.
In this paper we model the gravitational wave emission of a freely precessing neutron star. The aim is to estimate likely source strengths, as a guide for gravitational wave astronomers searching for such signals. We model the star as a partly elastic, partly fluid body with quadrupolar deformations of its moment of inertia tensor. The angular amplitude of the free precession is limited by the finite breaking strain of the star's crust. The effect of internal dissipation on the star is important, with the precession angle being rapidly damped in the case of a star with an oblate deformation. We then go on to study detailed scenarios where free precession is created and/or maintained by some astrophysical mechanism. We consider the effects of accretion torques, electromagnetic torques, glitches and stellar encounters. We find that the mechanisms considered are either too weak to lead to a signal detectable by an Advanced LIGO interferometer, or occur too infrequently to give a reasonable event rate. We therefore conclude that, using our stellar model at least, free precession is not a good candidate for detection by the forthcoming laser interferometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号